
Edge Anomaly Detection Framework for AIOps in Cloud and IoT

Pieter Moens1 a, Bavo Andriessen1, Merlijn Sebrechts1 b, Bruno Volckaert1 c

and Sofie Van Hoecke2 d

1Internet and Data Science Lab (IDLab), Ghent University-imec, Ghent, Belgium
{pieter.moens, bavo.andriessen, merlijn.sebrechts, bruno.volckaert, sofie.vanhoecke}@ugent.be

Keywords: AIOps, Cloud Computing, Internet of Things, Microservices, Anomaly Detection, Monitoring

Abstract: Artificial Intelligence for IT Operations (AIOps) addresses the rising complexity of cloud computing and In-
ternet of Things by assisting DevOps engineers to monitor and maintain applications. Machine Learning is an
essential part of AIOps, enabling it to perform Anomaly Detection and Root Cause Analysis. These techniques
are often executed in centralized components, however, which requires transferring vast amounts of data to a
central location. This increase in network traffic causes strain on the network and results in higher latency.
This paper leverages edge computing to address this issue by deploying ML models closer to the monitored
services, reducing the network overhead. This paper investigates two architectural approaches: a sidecar archi-
tecture and a federated architecture, and highlights their advantages and shortcomings in different scenarios.
Taking this into account, it proposes a framework that orchestrates the deployment and management of dis-
tributed edge ML models. Additionally, the paper introduces a Python library to assist data scientists during
the development of AIOps techniques and concludes with a thorough evaluation of the resulting framework
towards resource consumption and scalability. The results indicate up to 98.3% reduction in network usage
depending on the configuration used while maintaining a minimal increase in resource usage at the edge.

1 INTRODUCTION

The rise in cloud computing and the (Industrial) In-
ternet of Things (IoT) introduced a shift in mod-
ern application architectures. Container-based archi-
tectures, e.g., the microservice architecture, tackle
the shortcomings of the traditional monolithic archi-
tecture such as scalability (Dragoni et al., 2017).
The distributed nature of the microservice architec-
ture increases the complexity of the system, which
in turn increases the importance of monitoring and
observability. Artificial Intelligence for IT Opera-
tions (AIOps) aims to support operations engineers
to maintain the applications and avoid system down-
time by leveraging Machine Learning (ML) for e.g.
Anomaly Detection (AD) and Root Cause Analysis
(RCA) (Dang et al., 2019).

Monitoring and anomaly detection are commonly
performed in a centralized manner, i.e., one service
is responsible for collecting and processing the mon-
itoring data from all services in the distributed sys-

a https://orcid.org/0000-0003-2035-8766
b https://orcid.org/0000-0002-4093-7338
c https://orcid.org/0000-0003-0575-5894
d https://orcid.org/0000-0002-7865-6793

tems. While this approach is easily manageable, it has
a major drawback: all monitoring data must traverse
the network to reach the central monitoring service,
therefore introducing additional network traffic and
increasing network latency. Reducing this network
traffic can reduce costs and improve the performance
of the network in general, especially in public cloud
environments (e.g. Amazon Web Services, Google
Cloud Platform, Microsoft Azure) and IoT use-cases.

To address this increase in network usage, edge
ML has been introduced. It brings intelligence close
to the services they are monitoring, which are located
at the edge of the infrastructure layer. In order to
achieve this, several challenges should be addressed.
Firstly, to deploy ML models on edge devices, they
must be optimized towards resource usage (e.g. CPU
and memory consumption). Secondly, moving from
a centralized monitoring and AIOps solution towards
distributed learning at the edge introduces an increase
in complexity with regards to orchestration of the
distributed ML models and services (Goethals et al.,
2021).

This paper presents Deucalion, an edge anomaly
detection framework for cloud computing and IoT
applications. According to Greek mythology, Deu-



calion, son of Prometheus, is able to survive the flood
by building an ark. Analogous, the Deucalion frame-
work enables DevOps engineers to survive the mod-
ern flood of monitoring data. It leverages edge com-
puting and distributed learning to provide support
for the automated deployment of ML models on the
edge, real-time data collection from the monitored re-
sources. In addition to the presented framework to
orchestrate the deployment and management of the
distributed edge ML models, a supporting Python li-
brary has been implemented to ease the development
process of the models and to bridge the gap between
data scientists and DevOps engineers.

The remainder of this article is structured as fol-
lows: Firstly, Section 2 discusses the state-of-the-art
in edge computing frameworks, Section 3 provides
background information about the service mesh pat-
tern for microservices and highlights its advantages,
Section 4 describes the methodology and architec-
tures used in our proposed solution, Section 5 dis-
cusses design choices during implementation of the
framework and resulting Python library, Section 6
evaluates the presented framework with regard to
overhead for the monitored system and finally, Sec-
tion 7 concludes this paper and outlines a vision for
future work.

2 RELATED WORK

Edge computing is an active research area, particu-
larly in the ML department. Thorough research is
done on how models can be reduced and optimized
to be deployed at the edge. The focus of this paper is
therefore not the optimization of the machine learning
or anomaly detection models themselves, but an opti-
mization of the way these models can be deployed in
a decentralized manner, such that the network usage
caused by monitoring is reduced.

(Calo et al., 2017) identifies three generic archi-
tectures for applying AI to IoT (AIoT) in the edge.
First, a centralized approach where the AI is applied
in a centralized cloud environment. All data are sent
to and processed by the cloud. Secondly, an edge ap-
proach where the data is processed in the edge nodes.
The third approach is an enhancement of the edge ap-
proach with a tree-structured architecture: the data is
produced in the leaf nodes but processed in the in-
ternal nodes of the tree structure. The data is further
aggregated as it goes up the tree.

(Debauche et al., 2020) describe a hybrid architec-
ture for edge AIoT by making a distinction between
three types of nodes in the infrastructure layer: (i) re-
mote nodes in the cloud, (ii) nodes in the edge and (iii)

IoT nodes, or devices. The proposed architecture con-
sists of a centralized cluster of nodes in the cloud and
one or more (micro) clusters at the edge. The data are
collected on IoT devices or nodes and pushed to the
edge clusters. These edge clusters host numerous ser-
vices including machine learning models, databases
and a streaming platform. The processed data from
the different edge clusters is then collected and ag-
gregated in the cloud. All nodes in the system are
managed by Kubernetes container orchestration and
the ML models are deployed on the cloud and edge
nodes as containerized applications. The proposed so-
lution yields promising results with regard to latency
and network usage reduction, but the clusters at the
edge introduce a significant overhead in terms of re-
source usage.

(Becker et al., 2020) discusses preliminary ideas
towards AIOps for edge computing including the
automated deployment of AD models on edge de-
vices. They introduce a framework, ZerOps4E, which
leverages the Bitflow stream processing framework
for both the collection of data streams and the de-
ployment of the models. They specifically target
lightweight edge devices capable of running Docker
containers (e.g. Raspberry Pi). The authors underline
the need for an edge anomaly detection framework,
but they do not provide enough details and insights
in the architecture and implementation of the frame-
work to enable reproduction of or extensions to their
proposed solution, making it difficult to evaluate or
build upon the presented work.

(Raj et al., 2021) present an automation frame-
work for edge MLOps. They describe a continuous
integration and development pipeline for ML models
at the edge and focus particularly on challenges such
as online learning, analytics and versioning. Similar
to previously mentioned work, they leverage Docker
containerization for deployment of the ML models
on different types of devices. Their framework is
based on the Azure cloud environment, using Azure
ML Services, Azure DevOps, Azure IoT central and
Azure blob storage, which imposes vendor lock-in.

In summary, recent research has shed light on the
benefits of, and need for, AIOps in cloud computing
and IoT. Although various architectures are proposed
to optimize resource consumption, little attention is
given to the orchestration and deployment of the dis-
tributed models as well as the extendibility and flex-
ibility of the solution to different scenarios. This pa-
per tackles these shortcomings by presenting a single
framework for AIOps that focuses on automated de-
ployment and data collection under various configu-
rations, without altering the underlying application.



3 BACKGROUND: SERVICE
MESH

Cloud native applications can be designed as dis-
tributed (collections of) microservices. Each mi-
croservice or collection thereof is tasked with a dis-
crete business function. Interaction by the users with
the application often propagates throughout the sys-
tem as these microservices communicate with one an-
other. As the number of microservices in the applica-
tion grows larger, monitoring the network traffic be-
comes complex. A service mesh is a dedicated in-
frastructure layer that can be added to the application
to enable features such as observability, traffic man-
agement, and security (Li et al., 2019). It divides
the application in two layers. Firstly, the data plane
which consists of the application specific microser-
vices and a number of network proxies. These prox-
ies guide and manage all service-to-service commu-
nication. Secondly, the control plane which consists
of services dedicated to performing the service mesh
specific tasks such as managing and configuring the
network proxies.

A number of service mesh technologies such as
Amazon Web Services (AWS) App Mesh1, Link-
erd22, AirBnB Synapse3 and Istio (Calcote and
Butcher, 2019) have been developed over the last
years. All of these technologies focus on network
traffic management (e.g. load balancing) and moni-
toring (e.g. network tracing). Istio is an open-source
service mesh technology based on Kubernetes con-
tainer orchestration. Its control plane consists of three
services: (i) the pilot, which communicates with the
proxies to handle traffic management and routing, (ii)
the citadel, which provides secure communication be-
tween services and (iii) the galley, which is respon-
sible for configuration management, distribution and
processing. Istio deploys the network proxies as side-
car containers (Sheikh et al., 2018). By doing this, the
service mesh can be seamlessly applied to any cloud
native application without altering the underlying mi-
croservices. A sidecar proxy is a containerized ap-
plication that runs on the same device as the service
it is monitoring. This means that communication be-
tween the proxy and the service is local and does not
influence the network.

1https://aws.amazon.com/app-mesh/
2https://linkerd.io/
3https://airbnb.io/projects/synapse/

4 ARCHITECTURE

In this paper, we discuss and showcase how the con-
cept of a service mesh can be expanded, beyond the
use case of network traffic management and monitor-
ing, towards AIOps and edge anomaly detection. The
concept of sidecar containers is not restricted to net-
work proxies. They can be any type of logical com-
ponent that should be deployed closely to the appli-
cation service, such as an anomaly detection model.
Similarly to the previously mentioned service mesh
technologies, a control plane can be defined that con-
sists of framework specific services. The Deucalion
control plane consists of:

• Sidecar Injector: A component that handles in-
jection of the anomaly detection sidecar in all mi-
croservices of the application.

• Alert Manager: A centralized service that col-
lects the output of the deployed models, such as
detected anomalies.

As these control plane services are located in the
cloud, all communication between the deployed side-
car containers and the control plane components is re-
garded as overhead in network traffic introduced by
the monitoring solution. We present and discuss two
approaches to optimize the reduction in network traf-
fic and latency by moving the ML models and mon-
itoring solutions to the edge while minimizing the
overhead introduced by the framework, such as re-
source usage at the intelligent edge.

4.1 Sidecar Architecture

The sidecar architecture minimizes the network traf-
fic by placing the ML models as close to the mon-
itored services as possible. Each deployed Kuber-
netes pod containing an application service will be
injected with an additional sidecar container. This
sidecar container pulls the monitoring data from the
pod in which it is deployed. As a result, all monitor-
ing data is contained within the pod itself and only
detected events or anomalies are pushed towards the
centralized Alert Manager. This architecture maxi-
mizes the reduction in the network traffic and can op-
timally be used in a scenario where the edge devices
have sufficient resources and network communication
can become costly (i.e. 5G networks or public cloud
environments). A schematic overview of the proposed
sidecar architecture is shown in Figure 1.

4.2 Federated Architecture

Running a sidecar container alongside each applica-
tion service introduces an increase in resource usage,



Figure 1: Sidecar architecture where a sidecar container is
injected into every pod in the data plane. The control plane
consists of an Alert Manager, which receives the output of
the anomaly detection models, and a Sidecar Injector.

i.e., memory and CPU consumption. In some use-
cases, it might make sense to group application ser-
vices in federations. For example, given a scenario
where a cloud application is deployed across multi-
ple clusters or availability zones, services within the
same availability zone could be considered to be in
the same federation. Similarly, in an IoT application,
services within the same physical boundary or local
network, e.g. the same building, could represent a
single federation. A visual representation of the pro-
posed federated approach is shown in Figure 2.

Figure 2: Architecture of the federated approach where the
data plane is divided into federations of data plane services.
Only one monitoring service and anomaly detection model
is deployed per federation.

In this approach, hierarchical (sub)layers are cre-
ated. A monitoring solution (e.g. Prometheus) is de-
ployed within each federation. This solution func-
tions as a centralized monitoring service within the
federation and collects all monitoring data from the
application services, or targets, in its federation. An

ML service is then deployed as a sidecar next to the
monitoring instances which it queries to receive all
collected data. This way, the overhead on the system
with regard to resource usage can be heavily reduced
in exchange for a lesser reduction in network usage as
the monitoring service collects monitoring data from
all monitored services or pods. Depending on the use-
case, the size of each federation can be determined in
order to optimize the overall cost of the application.

5 IMPLEMENTATION

To implement the methodology discussed in the pre-
vious section, a number of technology choices can
be made. The most common monitoring solution for
cloud applications today is Prometheus. Prometheus
is an open-source time-series database that collects
data from its targets using a pull policy. It relies on
all services in the application to expose data in the
form of metrics on a configured HTTP(S) endpoint.
Prometheus uses a standardized data format, Open-
Metrics, that is well documented and widely accepted
within the community (Di Stefano et al., 2021).

The proposed solution is twofold. Firstly, a
Python framework has been designed to support data
scientists in developing real-time AD services with-
out requiring expertise in cloud native applications or
different infrastructures. Secondly, the control plane
components consisting of two components: the side-
car injection, which handles orchestration of the AD
services and ensures automation and ease of deploy-
ment for DevOps engineers, and the central compo-
nent to dynamically collect the output of the deployed
ML models. For this central component, the choice
for Prometheus Alert Manager has been made. The
Alert Manager is open-source and scalable by de-
sign. It is a mature component and supports out-of-
the-box integration with various consumers. As the
Prometheus Alert Manager is well-documented, in-
depth functionality will not be elaborated on in this
paper. We refer the reader to (Sabharwal and Pandey,
2020) for all documentation about this component.

5.1 Python Framework

To establish real-time AD, the monitoring data should
be continuously collected or received from the chosen
monitoring solution and exposed or pushed to the cen-
tral alert manager. In order to relieve the data scientist
of this implementation effort, a framework is created
that ensures integration with the applications services
and the control plane components.

As mentioned in Section 4, the strategy to col-



lect data differs based on the deployed architecture.
When using the sidecar architecture, the data is di-
rectly collected from the application services. Simi-
larly to a centralized Prometheus solution, all applica-
tion services expose their monitoring data or metrics
on a dedicated endpoint. The AD service then period-
ically scrapes the configured endpoint of the service
it is monitoring. For the federated architecture, how-
ever, a Prometheus instance is deployed for each fed-
eration. Prometheus is designed to handle data collec-
tion from multiple targets. The AD service then only
needs to query the collected data from the Prometheus
instance.

The core design of the framework is based on the
observer pattern. The developed model can be reg-
istered as an observer. By doing this, the model is
notified whenever a new (batch of) data point(s) is
available and the prediction pipeline can be executed.
When an anomaly is detected, the observer creates an
event which is pushed to the central Alert Manager.
A visualization of the different modules is shown in
Figure 3.

Figure 3: Architecture of the Deucalion framework. The
AnomalyDetection class is an implementation of the Ob-
server interface. This component is created by the user of
the framework and is use-case specific.

To prevent vendor lock-in, the framework is de-
signed with modularity in mind and can be easily
extended for different technology design choices, al-
lowing components such as Prometheus and the Alert
Manager to be exchanged for alternative solutions.

5.2 Sidecar Injection

The Sidecar Injector is implemented as a Kubernetes
Mutating Admission Webhook (Kubernetes, 2022).
An Admission Webhook in Kubernetes implements
an HTTPS callback which is notified whenever a re-
source is created, updated or deleted. As the name
suggests, the webhook is able to mutate the newly cre-
ated or updated resource before it is deployed. Dur-
ing this stage, the sidecar container is dynamically in-
jected.

To simplify the configuration and deployment
of the framework, Helm charts have been created

(Howard, 2022). With a limited set of configuration
values, the framework can be installed on any Kuber-
netes cluster (version ≥ v1.16) with the desired side-
car or federated architecture. With a single command,
the framework takes care of the deployment of all
control plane services as well as additional resources
required for a Kubernetes Admission Webhook, such
as SSL/TLS certificates and Role-based Access Con-
trol (RBAC).

For the sidecar injection, two arguments are re-
quired: (i) the image of the sidecar container and (ii) a
ConfigMap containing sidecar specific configuration.
These arguments can be configured for each deploy-
ment in the application.
kind: Deployment
metadata:
annotations:
deucalion-config-map:

deucalion-sidecar-config-map
deucalion-sidecar-image:

"pimoens/deucalion-app:latest"

Flexibility towards the various strategies that can be
adopted is assured through different configuration op-
tions for various resources in the Kubernetes mani-
fests. The easiest method is to enable sidecar injec-
tion at the namespace level. A namespace is an ab-
stract hierarchical layer within a Kubernetes cluster.
It consists of a group of resources (e.g. pods, ser-
vices, ingress). Using this method, all pods within the
namespace are injected with a sidecar container. The
configuration and sidecar image are specified at the
namespace level, but can be overwritten for different
deployments in the system.
kind: Namespace
metadata:
labels:
deucalion-injection: ’enabled’

To achieve the federated architecture, a FederationID
is specified. Analogous to the sidecar architecture,
this can be achieved at deployment or namespace
level. In addition to sidecar injection, the framework
will deploy and automatically configure a Prometheus
instance per federation. The Prometheus instance
monitors all containers in the namespace that have the
prometheus.io/scrape annotation.
kind: Deployment
metadata:
annotations:
deucalion-federation: federation1

6 EVALUATION

The presented framework is evaluated using a bench-
mark microservice application: the Bookinfo applica-



tion developed by Istio4. The evaluation data is col-
lected by deploying the demo on the Fed4Fire testbed
(Demeester et al., 2016). A Kubernetes cluster con-
sisting of four nodes is used, each node has a 2 Intel
Xeon E5620 quad CPUs and 12GB RAM. With In-
tel Hyper-Threading enabled, this results in 16 logical
CPUs per node.

To represent the federated architecture, the canary
deployment with different versions of review service
is considered as a single federation. The other ser-
vices belong to a second federation. This approach
represents a federated architecture where federations
can be dynamically established when services are hor-
izontally scaled. The manifests for both the side-
car architecture and federated architecture, as well as
the captured evaluation data, are made available on
GitHub5.

6.1 Network usage

To evaluate the benefits of using the presented frame-
work, the reduction in network traffic is captured.
Figure 4 shows the network usage (mean trasmit-
ted bytes) for the Bookinfo application when de-
ployed using a centralized monitoring solution (i.e.
Prometheus), the sidecar architecture and the feder-
ated architecture respectively. To showcase the base-
line, the microservice application without monitoring
is considered.

As expected the network traffic is heavily reduced
when comparing the sidecar architecture with the
classic centralized monitoring solution. The number
of transmitted bytes per second for the centralized so-
lution is around 56 KB/s, which results in a 55 KB/s,
or 98.3%, reduction in network overhead, caused by a
centralized monitoring solution such as Prometheus,
when using the sidecar architecture. A reduction of
27.5% can also be noticed when comparing the feder-
ated architecture to the centralized solution. This re-
duction of network traffic is influenced by the number
of federations used and their size. The optimal con-
figuration is use-case specific and can be easily mod-
ified with the framework as discussed in Section 5.
When comparing to the deployment without moni-
toring, the sidecar architecture deployment increases
the network usage by 10.7%. This increase is in-
troduced by the communication between the control
plane components and the sidecars, i.e. one message
per detected anomaly. For the deployed application
during evaluation, this results in one message per 5
seconds.

4https://istio.io/latest/docs/examples/bookinfo/
5https://github.com/predict-idlab/deucalion

Figure 4: Mean transmitted bytes (Bps) captured for a de-
ployment without monitoring, with centralized monitoring,
using the sidecar architecture and using the federated archi-
tecture.

Quality of Service (QoS) and low latency are a
priority in modern cloud native applications. There-
fore, the impact of the framework on scalability is
measured in addition to network usage. A load test
is conducted on the different deployments using Lo-
cust (Pradeep and Sharma, 2019). The network per-
formance (total requests measured by Istio) is shown
in Figure 5. The results show that the maximum num-
ber of requests handled by the baseline without mon-
itoring is higher than all three other approaches. A
reduction of 4.8% can be measured in terms of maxi-
mum requests per second and a reduction of 1.2% can
be measured in the average requests per second over
the duration of the evaluation. Using a monitoring
solution slightly impacts the scalability of the appli-
cation. When comparing the three deployments with
monitoring however, the measurements do not differ
significantly.

6.2 Resource usage

As discussed in Section 4, the choice of architecture
impacts the resource usage of the application. To
evaluate the overhead introduced by the framework,
cAdvisor (Casalicchio and Perciballi, 2017) is used
to collect the CPU and memory usage in different de-
ployments. The results shown in Figure 6 indicate
that the sidecar architecture introduces no significant
CPU overhead. When using centralized Prometheus
monitoring, an increase of 10% can be noticed. This
increase is comparable to the 8% increase when using
the federated architecture. Both the centralized ap-
proach and the federated architecture are deployments



Figure 5: Scalability evaluation capturing the latency of the
requests during a load test.

where targets are scraped by a Prometheus server in-
stance, whereas in the sidecar architecture, targets are
scraped by the Deucalion sidecar. This increase could
therefore be assigned to the Prometheus server which
implements extra functionality, e.g., health checks.

Figure 6: Comparison in total CPU usage of the services
between a deployment without monitoring, with centralized
monitoring, using the sidecar architecture and using the fed-
erated architecture.

To provide an indication of the Deucalion side-
car container, a comparison is made with the Envoy
proxy sidecar used by Istio. The results are shown
in Figure 7. The average CPU time used by Deu-
calion sidecars is 3.03 (±0.572) milliseconds per sec-
ond while the Envoy proxies consume 21.8 (±0.467)
milliseconds per second. The applications at rest con-
sumed 16.5 (±5.16) milliseconds per second on aver-

Figure 7: Comparison in CPU usage between the Deucalion
sidecar container and the Envoy proxy used by Istio. To give
an indication of the overhead on the system, the CPU usage
for the application services is shown.

age, which is 5 times as much as the Deucalion side-
cars. This result shows that the impact of the frame-
work itself is considerably low when compared to the
CPU time consumed by the Envoy proxy and the ap-
plication. It should be noted that the deployed AD ser-
vice for the demo is a minimal application. Resource
usage will increase as the developed ML models in-
crease in complexity.

7 CONCLUSIONS AND FUTURE
WORK

This paper proposes two distinct architectures for
edge anomaly detection and distributed learning to re-
duce the overhead in network usage and latency in-
troduced by AIOps in cloud computing and IoT ap-
plications: (i) a sidecar architecture and (ii) a hier-
archical, federated architecture. It evaluates both ap-
proaches towards resource consumption and scalabil-
ity. The sidecar architecture yields the highest reduc-
tion of network traffic compared to state-of-the-art
centralized monitoring solutions, up to 98.3%, as it
deploys ML models as close as possible to the mon-
itored services and therefore minimizes the network
usage. Due to the ML models being deployed on
the edge devices, however, it introduces an increase
in resource usage. The sidecar architecture can there-
fore be optimally applied to a scenario where the edge
devices have sufficient resources and communication
over the network is costly. In case the sidecar archi-
tecture is not feasible, the federated architecture can
be adopted. This architecture hierarchically groups



the edge devices in federations. For each federation,
a monitoring service is deployed. The federated archi-
tecture can be configured with regard to the number of
federations and the size of each federation, and there-
fore can be used to reduce the resource usage while
still maximizing the reduction in network usage.

Based on the two architectures, this paper intro-
duces the Deucalion framework to support data scien-
tists and DevOps engineers during both the develop-
ment and the deployment stages of the AIOps mod-
els. This framework enables automated deployment
and orchestration of ML models at the edge with min-
imal configuration overhead. Furthermore, a Python
library is implemented to relieve data scientists of any
integration effort with monitoring solutions during the
development of real-time AD services.

The framework is based on Kubernetes container
orchestration, which is commonly supported by many
cloud providers, preventing a vendor lock-in. Due to
the modular design of the framework, future work
includes extensions for different technology design
choices (e.g. Prometheus alternatives). Currently, the
framework focuses specifically on development and
deployment of the AD services. In the future, sup-
port for advanced MLOps can be integrated, enabling
maintenance and versioning of the different deployed
models. Collaboration between decentralized mod-
els, using federated learning, is a heavily researched
field. The control plane of the presented framework
can therefore be extended to support further orches-
tration between models and enable federated learning
while maintaining the automated deployment at the
edge.

REFERENCES

Becker, S., Schmidt, F., Gulenko, A., Acker, A., and Kao,
O. (2020). Towards aiops in edge computing environ-
ments. In 2020 IEEE International Conference on Big
Data (Big Data), pages 3470–3475. IEEE.

Calcote, L. and Butcher, Z. (2019). Istio: Up and running:
Using a service mesh to connect, secure, control, and
observe. O’Reilly Media.

Calo, S. B., Touna, M., Verma, D. C., and Cullen, A. (2017).
Edge computing architecture for applying ai to iot. In
2017 IEEE International Conference on Big Data (Big
Data), pages 3012–3016. IEEE.

Casalicchio, E. and Perciballi, V. (2017). Measuring docker
performance: What a mess!!! In Proceedings of the
8th ACM/SPEC on International Conference on Per-
formance Engineering Companion, pages 11–16.

Dang, Y., Lin, Q., and Huang, P. (2019). Aiops: real-
world challenges and research innovations. In 2019
IEEE/ACM 41st International Conference on Soft-

ware Engineering: Companion Proceedings (ICSE-
Companion), pages 4–5. IEEE.

Debauche, O., Mahmoudi, S., Mahmoudi, S. A., Man-
neback, P., and Lebeau, F. (2020). A new edge archi-
tecture for ai-iot services deployment. Procedia Com-
puter Science, 175:10–19.

Demeester, P., Van Daele, P., Wauters, T., and Hrasnica, H.
(2016). Fed4fire: the largest federation of testbeds in
europe. In Building the future internet through FIRE,
pages 87–109.

Di Stefano, A., Di Stefano, A., Morana, G., and Zito, D.
(2021). Prometheus and aiops for the orchestration
of cloud-native applications in ananke. In 2021 IEEE
30th International Conference on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises
(WETICE), pages 27–32. IEEE.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara,
M., Montesi, F., Mustafin, R., and Safina, L. (2017).
Microservices: yesterday, today, and tomorrow. In
Present and Ulterior Software Engineering, pages
195–216. Springer.

Goethals, T., Volckaert, B., and De Turck, F. (2021). En-
abling and leveraging ai in the intelligent edge: A
review of current trends and future directions. IEEE
Open Journal of the Communications Society.

Howard, M. (2022). Helm–what it can do and where is it
going? arXiv preprint arXiv:2206.07093.

Kubernetes (2022). Kubernetes documentation.
https://kubernetes.io/docs/home/. Accessed: 2022-
11-09.

Li, W., Lemieux, Y., Gao, J., Zhao, Z., and Han, Y. (2019).
Service mesh: Challenges, state of the art, and future
research opportunities. In 2019 IEEE International
Conference on Service-Oriented System Engineering
(SOSE), pages 122–1225. IEEE.

Pradeep, S. and Sharma, Y. K. (2019). A pragmatic evalua-
tion of stress and performance testing technologies for
web based applications. In 2019 Amity International
Conference on Artificial Intelligence (AICAI), pages
399–403. IEEE.

Raj, E., Buffoni, D., Westerlund, M., and Ahola, K. (2021).
Edge mlops: An automation framework for aiot ap-
plications. In 2021 IEEE International Conference on
Cloud Engineering (IC2E), pages 191–200. IEEE.

Sabharwal, N. and Pandey, P. (2020). Getting started
with prometheus and alert manager. In Monitoring
Microservices and Containerized Applications, pages
43–83. Springer.

Sheikh, O., Dikaleh, S., Mistry, D., Pape, D., and Felix, C.
(2018). Modernize digital applications with microser-
vices management using the istio service mesh. In
Proceedings of the 28th Annual International Confer-
ence on Computer Science and Software Engineering,
pages 359–360.


