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Abstract: Hyperspectral remote sensing images, with their amalgamation of spectral richness and
geometric precision, encapsulate intricate, non-linear information that poses significant challenges to
traditional machine learning methodologies. Deep learning techniques, recognised for their superior
representation learning capabilities, exhibit enhanced proficiency in managing such intricate data. In
this study, we introduce a novel approach in hyperspectral image analysis focusing on multi-label,
patch-level classification, as opposed to applications in the literature concentrating predominantly
on single-label, pixel-level classification for hyperspectral remote sensing images. The proposed
model comprises a two-component deep learning network and employs patches of hyperspectral
remote sensing scenes with reduced spatial dimensions yet with a complete spectral depth derived
from the original scene. Additionally, this work explores three distinct training schemes for our
network: Iterative, Joint, and Cascade. Empirical evidence suggests the Joint approach as the optimal
strategy, but it requires an extensive search to ascertain the optimal weight combination of the loss
constituents. The Iterative scheme facilitates feature sharing between the network components from
the early phases of training and demonstrates superior performance with complex, multi-labelled data.
Subsequent analysis reveals that models with varying architectures, when trained on patches derived
and annotated per our proposed single-label sampling procedure, exhibit commendable performance.

Keywords: hyperspectral imaging; computer vision; deep learning; multi-label classification;
two-component neural network; deep auto-encoder; patch-level classification; training schemes

1. Introduction

Hyperspectral imaging technology combines the power of spectroscopy with digital
optical imagery. It offers the potential to explore the physical and chemical composition of
depicted objects that uniquely mark their behaviour when interacting with a light source at
different wavelengths of the electromagnetic spectrum. Historically, the technology was
introduced in the remote sensing field [1]. However, it quickly spread to numerous other
fields such as food quality and safety assessment, precision agriculture, medical diagnosis,
artwork authentication, biotechnology, pharmaceuticals, defence, and home security [2],
among others. Notwithstanding this richness of information, hyperspectral imaging does
come with considerable challenges. Those are mostly related to the high dimensional-
ity space of the images generated due to the presence of numerous contiguous spectral
bands, the large volume of data incompatible with the limited amount of the training data
available, and the high computational cost associated. Such challenges render traditional
computer vision algorithms insufficient to process and analyze such images [3]. The high
dimensionality problem of hyperspectral images motivated several works. In general, two
types of techniques were developed in this regard, in a supervised [4] or unsupervised
learning manner. These are band-selection techniques [5,6], which select the most informa-
tive subset of the bands, and feature extraction techniques [7] which transform the data to a
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lower dimension. In [8], a feature extraction method called improving distribution analysis
(IDA) is proposed which aims to simplify the data and the computational complexity of
the HSI classification model. Ref. [9] proposes a new semi-supervised feature reduction
method to improve the discriminatory performance of the algorithms. Because finding
a small number of bands that can represent the hyperspectral remote sensing images is
difficult, ref. [10] proposes a random projection algorithm applicable to large images that
maintain class separability. Driven by this progress, hyperspectral image classification
has received significant attention in recent decades leading to the development of high-
performing methods. In [11], a synthesis of traditional machine learning and contemporary
deep learning techniques are elucidated for the classification of hyperspectral images.
However, the need for large and expensive labelled training data has constrained many
deep learning methodologies to predominantly concentrate on the spectral dimension. The
presence of contiguous bands induces redundancy, making the inclusion of spatial features
paramount to achieving distinct separability among various classes. Several studies have
leveraged deep learning to exploit both spatial and spectral contexts, enhancing the classi-
fication performance of models in hyperspectral image (HSI) classification tasks. In [12],
the authors exploit deep learning techniques for the HSI classification task, proposing a
method that utilises both the spatial and spectral context to enhance the performance of
the models. Ref. [13] presents a joint spatial–spectral HSI classification method based on
a different-scale two-stream convolutional network and a spatial enhancement strategy.
Ref. [14] proposes an HSI reconstruction model based on a deep CNN to enhance the
spatial features. The use of Graph Convolutional Networks (GCN) [15] and multi-level
Graph Learning Networks (MGLN) [16] further underscores the diversity of approaches
in addressing HSI classification. Present research endeavours predominantly concentrate
on pixel-level, single-label classification, with a lesser emphasis on patch-level, multi-label
classification, thereby not fully harnessing the wealth of information encapsulated in hy-
perspectral images. Spectral unmixing algorithms [17] have been instrumental in refining
the HSI classification task by emphasising spectral variability. Several works [18,19] have
focused on isolating and distinguishing multiple spectral mixes, or endmembers within
individual pixels. To tackle the constraints imposed by the scarcity of labelled hyperspectral
data, ref. [20] proposes two methods specifically tailored for hyperspectral analysis. These
include an unsupervised data augmentation technique that performs data augmentation on
the spectrum of the image and a spectral structure extraction method. Both methods aim at
optimising classification accuracy and overall performance in situations characterised by
few labelled samples. Concurrently, in [21], challenges arising from limited and segregated
datasets are addressed by introducing a paradigm for hyperspectral image classification,
which allows a classification model to be trained on one dataset and evaluated on different
datasets/scenes. However, due to differences in the scenes, a gap in the categories of
the different HSI datasets exists. To narrow this gap, the authors utilise label semantic
representations to facilitate label association across a spectrum of diverse datasets, offering
a holistic approach to hyperspectral classification amidst data limitations.

In our study, we adopt a deep learning approach in a supervised learning framework,
focusing particularly on dissecting the spatial extent of images into patches of smaller
dimensions. Our model is designed to preserve and exploit the joint spatial–spectral
attributes, enabling the identification of multiple entities within a confined spatial area
through learned features. The learning process which enables the acquisition of this
knowledge is facilitated through a deep autoencoder followed by a classifier. Moreover,
given the likelihood of the co-occurrence of multiple objects/entities within a depicted
region, we formulate the prediction task as a multi-label prediction problem, ensuring the
robustness of the model to complex scenarios encountered in hyperspectral images. Various
classification networks with two components are evident in the existing literature; however,
the conceptualisation of the tasks of these networks predominantly concentrate on specific
aspects of data and training. Herein, data predominantly pertain to pixel-level, single-label
instances. Even when utilising patches from the source images as input data, these are
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densely sampled and attributed to a single label corresponding to the centre pixel of the
patch to maintain the original count of the labelled pixels. The training approach for such
two-component networks typically employs the Cascade training scheme, as used in [22].
Within the Cascade scheme, the feature extraction component of the network, specifically
the autoencoder, is subject to independent pre-training to produce accurate reconstructions
of the input. Subsequently, the decoder is substituted with a classifier which is then trained
to predict the pertinent label(s), whilst freezing the weights of the pre-trained encoder.

Additionally, the literature does reflect the presence of a Joint training scheme as seen
in [23]. However, the central objective of such studies remains primarily the analysis of the
reconstruction capability of the autoencoder, with less focus on classification tasks. The
Joint training approach implies a concurrent training process for both components. In each
epoch, the autoencoder strives for a precise reconstruction from a compressed, hidden
representation, whereas the classifier concurrently optimises to predict the accurate label(s)
utilising the hidden representation as its input. In our research, we have performed a
meticulous and systematic examination of the diverse procedures, or schemes, potentially
applicable for training such a two-component network. In this context, we have delineated
three distinct training methodologies for our network; namely, the Iterative, the Joint, and
the Cascade training schemes.

The contributions of this paper are twofold. First, this paper elevates the hyperspectral
image analysis by emphasising patches annotated with multi-labels, intending to resonate
more profoundly with the spatial–spectral characteristics and the richness of information
inherent in the images. This approach stands in stark contrast to the predominantly adhered-
to practice in the existing literature of focusing on single-pixel, single-label analysis. Our
observations highlight a perceptible decline in the performance of a pixel-level, multi-class
classifier when subjected to training on patches annotated with single labels, corresponding
to the centre pixel. It is concluded that leveraging the spatial–spectral extent available in
such images, in tandem with multi-labelled ground truth, enhances the learning capability
of the classifier of the latent, valuable features embedded within the hyperspectral images.
Second, we systematically explore three distinct training schemes within the paradigm
of multi-label prediction. The findings of our study hint at the predominance of the Joint
scheme, supported by the attained results. However, the Iterative scheme shows a promising
propensity for early sharing of learnable features between the feature extraction component
and the classifier. This attribute of the Iterative scheme translates to higher performance,
particularly in scenarios where data are characterised by complexity, and a mitigation
in overfitting. Furthermore, our results highlight the efficacy of this scheme over the
ubiquitously employed Cascade training scheme, especially evident in datasets marked by
an increased number of samples with multi-labelled ground truth, leading to enhanced
performance metrics. Those results are also observed in experiments we conducted on a
patch-level, single-label classification task.

This paper is organised as follows: Section 2 positions our work with respect to existing
efforts in the literature. Section 3 presents the inner workings of the proposed method
and the three training schemes considered in our analysis. Those are further validated in
Section 4. Finally, we put forward concluding remarks in Section 5.

2. Related Work

Our analysis is related to the hyperspectral patch-level, multi-label classification task
employing deep models. We position our work based on closely related axes.

Traditional machine learning as opposed to deep learning methods. A compendium
by the authors in [24] encapsulates the myriad challenges in hyperspectral image classifica-
tion that cannot be addressed by traditional machine learning methodologies. Zooming
in on Remote Sensing, ref. [25] provides an overview of prevalent deep learning models
tailored for hyperspectral image (HSI) classification. Further, ref. [26] puts forward a
comprehensive and systematic review comparing the traditional neural networks, and
deep learning methods, underlining the substantial advancements made by the latter in the
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realm of environmental remote sensing applications. These referenced studies primarily
direct their discourse and exploration towards methodologies which facilitate pixel-level
classification in a supervised context, encompassing deep belief networks, recurrent neural
networks, and convolutional neural networks. In [27], the authors discuss the integration of
traditional machine learning approaches with deep learning techniques by investigating the
application of Deep Support Vector Machines for HSI classification. The empirical evidence
compiled within these works accentuates the superiority of deep learning techniques over
traditional machine learning. Our work aligns with the prevailing paradigm, focusing on
the automatic and hierarchical extraction of representations from the data.

Multi-label Prediction. The domain of multi-label prediction in hyperspectral im-
age analysis is relatively under-explored, especially when compared to its single-label,
multi-class counterparts. Ref. [28] puts forth a method for pixel-level, multi-label HSI
classification, leveraging a Stacked Denoised Autoencoder (SDAE) in conjunction with
logistic regression. Their findings assert that assigning multi-labels to a pixel can elevate
classification performance beyond what is achievable with a single-label approach. Another
noteworthy contribution is by [29], introducing an algorithm for multi-label classification
based on the fusion of label-specific features. Additionally, ref. [30] investigates a feature
extraction process tailored for multi-label classification using multi-spectral images. Al-
though this study does not extend to an empirical evaluation of hyperspectral images, it
emphasises the pivotal role of multi-label classification in land cover delineation within
spectral imagery.

Our work aligns with this approach, emphasising multi-label predictions in hyper-
spectral imagery. However, we aim to classify hyperspectral images using patches as input
samples, a choice that amplifies the complexity of the task. Given the intricate nature and
inherent variations in hyperspectral data, simply assigning a single label to each patch does
not offer a realistic or satisfactory solution.

Autoencoders as feature extraction method. Autoencoders have gained recognition
in several notable works [31,32], highlighted as a successful representation learning method
that improves the overall performance in HSI classification tasks. Ref. [33] utilises a Stacked
Denoised Autoencoder (SDAE) for feature extraction, followed by a logistic regression,
fine-tuned for classification. In [34], a spectral–spatial method is proposed that modifies
the traditional autoencoder through majorization minimization using multi-scale features.
Furthermore, ref. [35] introduces a methodology based on multi-view deep neural networks
to integrate spectral and spatial features using a small number of labelled samples.

This process begins with the extraction of spectral and spatial features using a simple
deep autoencoder to reduce spectral dimensionality while preserving the spatial prop-
erty of hyperspectral images. Next, it is followed by the utilisation of a multi-view deep
autoencoder model, enabling the fusion of spectral and spatial features extracted from
the hyperspectral image into a joint latent representation space. Subsequently, a semi-
supervised graph convolutional neural network is trained on these fused latent representa-
tions to perform HSI classification. Similarly, our work aligns with these advancements by
utilising a deep autoencoder for feature extraction to distil relevant information from high-
dimensional data. Diverging from the aforementioned studies, we harness this information
for multi-label classification.

Patch-based input data. The utilisation of patch-like input data samples with spatial
extent smaller than the original hyperspectral remote sensing scenes is documented in
the existing literature. However, our approach stands out due to its distinctive feature
of annotating these patches with multi-labels. This differs from methods that assign
single labels corresponding to the pixel located at the centre of the patch. In this context,
ref. [36] introduces a Convolutional Neural Network (CNN) tailored for hyperspectral
image data. This method extracts spectral–spatial features from the original scene. It
starts from a target pixel and proceeds to densely sample neighbouring pixels to form a
patch of dimensions n× n× bands. Subsequently, a single label is assigned, corresponding
to the centre pixel of the designated neighbourhood/patch. This sampling mechanism
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ensures the preservation of the labelled pixels inherent in the original remote sensing
scene. From this process, several one-dimensional feature vectors are derived using a three-
dimensional convolutional layer. These vectors are then reshaped into a two-dimensional
image matrix and fed into a standard CNN for further analysis. In [37], a hybrid spectral
CNN (HybridSN) combines 3D and 2D CNN layers for hyperspectral image classification.
This process involves Principal Component Analysis for dimensionality reduction, followed
by the segmentation of the data cube into overlapping 3D patches of size 25× 25, with
labels assigned based on the central pixel. In [38], the authors propose a parallel multi-
input mechanism, exploiting the inherent spectral–spatial information in HSIs. It employs
parallel convolution branches with varying kernel sizes (7, 5 × 5, 3 × 3, and 1 × 1) to
extract multi-scale spatial features post-dimensionality reduction. The image is divided
into neighbouring blocks or patches for this analysis. Lastly, in [39], a multi-scale 3D-
CNN-based HSI classification approach is proposed called Tri-CNN. It segments data
into patches and employs 3D-CNNs to extract both spectral and spatial information. The
dimensionality-reduced HSI data are segmented using varying window sizes (e.g., 11× 11
for the Salinas dataset and 13× 13 for PaviaU). The method involves a three-branch feature
fusion network, combining spatial, spectral-spatial, and spectral-only extractors. Each
branch will generate a feature map. The three maps will be fused to produce the final
classification results.

3. Materials and Methods

In this section, we present the proposed model to perform the patch-based
multi-label classification.

Figure 1 illustrates the model architecture and data flow route. It is composed of two
main components, an autoencoder and a classifier. Patches of reduced spatial and full
spectral dimensions are sampled from the original remote sensing scene and passed into
the network.

Figure 1. Two-componenthyperspectral image classification network composed of a deep autoen-
coder that feeds its hidden representation into a classifier.

Although the autoencoder reduces the dimensionality and preserves the essential
features of the data to perform the reconstruction task, the classifier will highlight the
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discriminatory aspects in the hidden representation of the autoencoder to identify different
classes (multi-labels) present in one patch.

3.1. Model Architecture and Description
3.1.1. Input Data

The input data, in our implementation, are structured as X ∈ Rh,w,c, where h, w,
and c represent the height, width, and the number of spectral bands, respectively. Our
methodology starts with a full scene from which we extract small patches of size x ∈ Rh′ ,w′ ,c.
We do that by cropping the original scene using a window of size (3, 3) and applying a
stride of 3 to prevent overlapping of our patches while preserving the spectral depth.
Next, we annotate these patches with multiple labels representing the inherent classes
within each patch. For further processing, we encode our multi-labels into one hot encoded
vector where 1 indicates the presence of the classes associated with each patch. This
spatial dimensionality reduction combined with the unique approach of annotation by
assigning multi-labels, is a pivotal divergence from the prevalent methodologies in the
literature, which predominantly assign a single label corresponding to the pixel located
at the centre of the patch. It also optimises the process for handling the intricacies of
multi-label hyperspectral images, an approach seldom addressed in the existing literature.
Furthermore, the multi-label annotation approach is crucial in extracting more granular
nuanced information from hyperspectral images (Sections 4.2 and 4.5). It offers a robust
solution to address the challenges posed by the multifaceted nature of such data, thereby
standing out from the existing state-of-the-art methodologies.

3.1.2. Autoencoder

The autoencoder plays a crucial role in extracting and preserving essential information
embedded within the spatial–spectral dimensions of the input data. The encoder, which
comprises the first component of the autoencoder, receives and processes the patches before
relaying them to the subsequent component or group of layers. The hidden representation
of the autoencoder represents the output of the encoder. It is a compressed version of
the input data encoded in the form of a vector of size h ∈ Rh′ ,w′ ,c′ , where c’ denotes the
reduced number of spectral bands. This output is then passed to the decoder, the second
component of the autoencoder, which undertakes the task of deconvolving the compressed
data culminating in a fully reconstructed input instance. This reconstruction ensures the
preservation of essential spatial–spectral information inherent in the original data.

In addition to dimensionality reduction, the autoencoder reduces redundant informa-
tion by eliminating redundant neighbouring spectral bands. Those bands do not offer any
additional discriminatory information, yet they contribute to the high volume/dimension
of the hyperspectral data.

Equations (1) and (2) present the formal definition underpinning the functionality of
the autoencoder layers.

h = f (Wh × x + bh) (1)

Equation (1) represents the transformation of the data in each layer of the encoder
component of the autoencoder. The output of the encoder component, h, the hidden
representation or encoded data, is a compressed version of the input x. The matrix Wh
represents the weights of the encoder layer, and bh is the bias term, both optimised during
the training process. The function f (.), the Rectified Linear Unit (ReLU) activation function,
introduces non-linearity.

x̂ = g(Wx̂ × h + bx̂) (2)

Equation (2), represents the transformation occurring in the layers of the decoder com-
ponent of the autoencoder. x̂ represents the output of the autoencoder, i.e., the reconstructed
input. The matrix Wx̂ and bx̂, are the weight and bias for the decoder layer, respectively,
optimised during the training process. The function g(.) is also a ReLU activation function,



Remote Sens. 2023, 15, 5656 7 of 30

performing the same non-linear transformation as in the encoder component, allowing the
model to reconstruct the input accurately from the compressed representation h.

Objective Function—Mean Squared Error (MSE). Once the input has been reconstructed,
we measure the reconstruction error. Towards that end, the Mean Squared Error (MSE)
serves as our objective function, measuring the average of the squares of the errors between
the reconstructed and original input.

MSE =
1
N

N

∑
i=1

(xi − x̂i)
2 (3)

where N refers to the number of data points, xi is the original input data point, and x̂i is the
reconstructed output data point. By minimizing this loss, we optimise the reconstruction
capability of the autoencoder, ensuring the preservation of essential information embedded
in the spatial–spectral dimension of the input data.

3.1.3. Classifier

The multi-label prediction classifier is designed to learn a mapping function from
an instance x = {x1, x2, · · · , xn} ∈ X to a subset l ∈ Rc, where c represents the entire
classes in the labelled dataset. Consequently, the space of labels is defined as y = {0, 1}c.
Worth noting that in our case, the input data to the classifier are the h ∈ Rh′ ,w′ ,c′ which
represents the hidden representations generated by the autoencoder component of our
two-component model.

The architecture of the classifier is composed of four fully connected layers. Patches
are channeled through the encoder in batches, resulting in a compressed version of each
patch. These compressed patches are then flattened, h ∈ Rh′×w′×c′ , prior to being pushed
to the classifier to predict the label(s) of classes inherent in the input patch. ReLU activation
function is employed along with a dropout regularisation method in each sequential layer
during the training phase.

The output layer will generate logits. Predictions ŷ are obtained by applying sigmoid
function to these logits. As indicated in Equation (4), values exceeding 0.5 will indicate the
presence of the corresponding classes represented at that position.

ŷ = [ŷci > 0.5] where i ∈ {1, · · · , N} (4)

Objective Function—Binary Cross Entropy (BCE). We optimise the performance of the
classifier by employing Binary Cross Entropy with Logits Loss as the objective function
(see Equation (5)).

This function combines the Binary Cross Entropy (BCE) loss, employed for binary
classification with a sigmoid activation, σ(x) = 1

1+e−x as opposed to a softmax activation

σ(xi) = exi

∑c
j=1 exj for i = 1, 2, · · · , c. BCE with sigmoid produces a probability score for

each label. The computed loss is independent for each label and remains unaffected by the
loss computed for another label, aligning logically with the multi-label classification where
classes are not mutually exclusive.

ln,c = −wn,c[pcyn,c × log σ(xn,c) + (1− yn,c)× log(1− σ(xn,c))] (5)

Here, c denotes the class number, n represents the sample number in the batch and
pc is the weight of the positive response for the class c. The loss for the nth sample related
to the cth class is represented by ln,c. In the context of multi-label prediction, this would
mean the computed loss for how well the model is predicting the presence or absence of
class c in sample n.

Tables 1 and 2 illustrate the layers of each network component, offering specifics
related to the shapes of the input and output of each layer. The final layer of the classifier is
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designated to output the predictions, factoring in the number of classes in each dataset and
the the particularities of the conducted experiment.

Table 1. Autoencoderarchitecture.

Layer Input Shape Output Shape

Encoder:
Linear⇒ dropout⇒ relu [1, 3, 3, bands] [1, 3, 3, 96]
Linear⇒ dropout⇒ relu [1, 3, 3, 96] [1, 3, 3, 64]
Linear⇒ relu [1, 3, 3, 64] [1, 3, 3, 32]
Decoder:
Linear⇒ dropout⇒ relu [1, 3, 3, 32] [1, 3, 3, 64]
Linear⇒ dropout⇒ relu [1, 3, 3, 64] [1, 3, 3, 96]
Linear [1, 3, 3, 96] [1, 3, 3, bands]

Table 2. Classifier architecture.

Layer Input Shape Output Shape

Classifier:
Linear⇒ dropout⇒ relu [1, 288] [1, 3000]
Linear⇒ dropout⇒ relu [1, 3000] [1, 1512]
Linear⇒ dropout⇒ relu [1, 1512] [1, 512]
Linear⇒ dropout⇒ relu [1, 512] [1, 28]
Linear⇒ relu [1, 28] [1, classes]

3.2. Training and Validation Process

Networks with two-component architectures conventionally utilise one of two training
schemes: Joint or Cascade. This paper analyses a third scheme, the Iterative training scheme,
while ensuring progressive and separate training of both components. This scheme allows
the early sharing of features.

Joint scheme. In this scheme, both the autoencoder and the classifier components work
in tandem to create a unified algorithm, as shown in Figure 2. This collaborative approach
allows those two elements to train simultaneously. The autoencoder is responsible for
generating two outputs, (1) a reconstructed version of the input, and (2) an intermediate,
compressed representation, often referred to as the hidden representation. The classifier
uses the latter to make predictions, specifically for multi-label output in this case. The inter-
mediate, compressed representation is a critical component, acting as the conduit between
the autoencoder and the classifier, and ensuring seamless integration and flow of informa-
tion. In this scheme, the loss objective is formulated as a weighted combination of the loss
objectives of both the autoencoder (Equation (3)) and the classifier (Equation (5)). Through
extensive experimentation, we established that a total loss combination comprising 30%
of the classifier loss and 100% of the autoencoder loss yields optimal performance. This
combination was arrived at after experimenting with numerous pairs of weights, meticu-
lously fine-tuning each to ascertain the most effective balance that maximises the efficacy
of the model. During the backpropagation pass, both the autoencoder and the classifier are
trained simultaneously; the autoencoder is refined to generate superior reconstructions,
and the classifier is optimised to enhance the accuracy of its predictions.

Cascade scheme. Under this scheme (Figure 3), the autoencoder as the feature extraction
component undergoes separate training to reconstruct the input, after which the trained
weights are saved. Subsequently, the pre-trained autoencoder is loaded, and the encoder
part is connected to the classifier. The weights of the pre-trained encoder remain frozen
during this phase, allowing only the classifier to undergo training. This approach contrasts
sharply with the Iterative scheme, where the training of each component occurs alternately.
In the Cascade training, each training epoch involves the completion of one forward pass
and one backward pass. However, during the backward propagation phase, only the
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gradients related to the weights of the classifier are updated, given that the weights of the
encoder part, which have been pre-trained, are frozen.

Figure 2. Joint training scheme.

Figure 3. Cascade training scheme.

Iterative scheme. This scheme is inspired by the training process followed for Generative
Adversarial Networks (GANs) [40,41]. In our implementation, Figure 4, the autoencoder
and the classifier are two separate architectures, each governed by a different objective
function. Training is performed in iterations, for a predetermined set of epochs, alternating
between both architectures. We initialise the autoencoder, allow it to train for several
epochs, and subsequently save it. Next, we initialise the classifier, load the partially trained
and saved autoencoder, and pass its encoder part to the classifier. To this end, we freeze the
parameters of the encoder to preclude further training. The classifier is then trained for a
series of epochs. This process is repeated iteratively throughout the training phase of the
network. Under this scheme, having a partially trained encoder alongside the classifier at
every training step improves the performance of the classifier. Early in the training process,



Remote Sens. 2023, 15, 5656 10 of 30

the classifier will learn key features identified by the autoencoder as being informative for
the reconstruction task. Leveraging those features will enhance the predictive capabilities
of the classifier.

Figure 4. Iterative training scheme.

Under each scheme, we adopted the same architecture for the autoencoder and the
classifier regarding the number of layers and input dimensions. However, we applied
different hyperparameters per scheme and dataset used. Those hyperparameters were
tuned to achieve the optimal performance under each setting. We incorporate L2-norm
weight regularisation to the classifier loss in all three schemes. Consequently, the original
loss function of the classifier, as represented by Equation (5), is extended to incorporate a
regularisation term forming a new loss function.

ln,c = −wn,c[pcyc,n × log σ(xn,c) + (1− yn,c)× log(1− σ(xn,c))] + λ
n

∑
i=1
||w2

i || (6)

In Equation (6), λ is a scaling hyperparameter, determining the degree of penalty
induced by the regularisation. The purpose of this regularisation is to control the magnitude
of the weights of the model, thereby simplifying the model and mitigating the risk of
overfitting. This regularisation not only helps in curtailing the complexity of the model
but also contributes to enhancing its generalisation capability, ensuring more reliable and
robust performance across unseen data.

3.3. Implementation Details

We trained, validated, and tested a multi-label prediction model on hyperspectral
images of low spatial dimensions. These images have a height and width of 3 pixels,
respectively, and a depth equivalent to the number of bands of the entire original scene
they were sampled from. Height and width lower than 3 × 3 produced many patches with
only one class. The larger size resulted in a reduced number of patches. We normalised the
values of our data by applying z-score normalisation such that the mean and the standard
deviation of our data are approximately 0 and 1, respectively. We applied the Adam
optimisation algorithm [42].

Depending on the experiment conducted, we also selected and tuned a set of hyperpa-
rameters, such as learning rate, batch size, and drop-out rate, for training the autoencoder
and the classifier. The learning rate in this context ranged from 1× 10−5 to 1× 10−2 and
the batch size ranged between 100 to 240.
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Both the autoencoder and the classifier utilise a learning rate scheduler, a mechanism
applied during training to promote faster convergence. Learning rates are reduced at a
step size corresponding to a predefined number of epochs, with a multiplicative factor
denoted by γ = 0.9. Training the network generates a variable number of trainable param-
eters. Specifically, the autoencoder has between 35,615 and 56,108 trainable parameters. In
contrast, for the classifier, trainable parameters range from 6,193,822 to 6,194,025. These
observed variations stem from modifications introduced to the architectures of each com-
ponent to account for intrinsic data features, particularly the number of classes and the
number of spectral bands.

3.4. Datasets

Our method was evaluated in two publicly available datasets of remote sensing
scenes [43], (Figure 5). The Pavia University Scene (PaviaU) is a hyperspectral scene
acquired by the ROSIS sensor at the University of Pavia in Italy. It has 103 spectral bands
ranging from 0.430 µm to 0.86 µm in wavelength, a spatial size of 610 × 340 pixels, and
a geometric resolution of 1.3 m. The ground truth comprises nine different classes, such
as trees, asphalt, and meadows, among others. Additionally, there is an undefined class
labelled “background”. Only 20.6% of the pixels have labels corresponding to the 9 classes,
the rest are background. The Salinas Scene, a hyperspectral scene collected by the AVIRIS
sensor over Salinas Valley, California. It has a spatial size of 512 × 217 pixels and a spatial
resolution of 3.7 m. The original scene had 224 spectral bands ranging from 0.4 µm to
2.5 µm in wavelength but 20 water absorption spectral bands have been discarded. The
ground truth contains 16 classes including vegetables and vineyard fields among others.
Additionally, there is an undefined class labelled “background”. Only 48.7% of the pixels
have labels corresponding to the 16 classes, the rest are background.
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Figure 5. Hyperspectral remote sensing scenes: (a) Pavia University Scene and (b) Salinas Scene.

3.5. Patch Extraction and Label Assignment

We transformed the scenes, from the aforementioned datasets, by performing a crop-
ping operation across the columns and rows. We have conducted that without allowing
any overlapping and while preserving the original depth of the scene, i.e., the number of
spectral bands. The result is low spatial dimension patches of size (3, 3, bands). Next, we
adopted two different approaches to assign labels to patches.
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In our study, the selection of a 3× 3 patch size was tailored to the specific characteristics
of the PaviaU and Salinas scenes. We acknowledge, however, that the determination of the
optimal patch size is intrinsically linked to various factors, such as the size of the image,
spatial resolution, and the spectral complexity of the scene under study. It is important
to emphasise that this choice, although suitable for our application, may not universally
apply to all hyperspectral image analysis scenarios. This can be seen in domains such as
terrain and urban landscape analysis, where very high-resolution hyperspectral images are
acquired and used.

This underscores the necessity for a flexible approach in selecting patch sizes, tailored
to the unique requirements of each application. It is imperative for future research in
this field to consider these variables when determining the optimal patch size for their
specific applications. Our study serves as a reference point, demonstrating the effectiveness
of a 3× 3 patch size for certain types of hyperspectral imagery, but it should be viewed
in the context of the specific characteristics of the datasets we analysed. Although our
choice of patch size was well-suited for the datasets used in our research, we admit
the need for adaptability in patch size selection to suit different types of hyperspectral
imagery, especially as spatial resolution and image complexity continue to evolve with
advancing technology.

3.5.1. Multi-Label Sampling

In multi-label sampling, labels were assigned to the patches based on the classes
present in each patch. Patches made up fully of pixels that belong to the background class
were ignored. However, if the background class exists in a patch together with other classes,
the patch is preserved and the label would include the background class. The resulting
data contained a mix of patches with multi-labels and uniform patches consisting of pixels
belonging to the same class.

3.5.2. Single-Label Sampling

In single-label sampling, patches were assigned labels corresponding to the centre pixel
of the patch regardless of the classes of the surrounding pixels. In this scenario, patches
where the centre pixel represented the background class were ignored. The resulting
datasets are classified as either multi-labelled or single-labelled, depending on the sampling
method used. However, the patches exhibit two distinct pixel distributions: (1) uniform
patches, where all pixels belong to the same class, and (2) mixed patches, where pixels
belong to multiple classes, including the background. Notably, for single-label sampling,
the centre pixel is never of the background class.

Table 3 provides a detailed breakdown of the resulting patches and their label counts.
It is crucial to note that, in alignment with our experimental framework, the background
class was not ignored in our multi-label predictions. This goes in contrast with the approach
taken in single-label prediction experiments where the background class was systematically
excluded. Under the single-label approach, excluding the background class, facilitates the
comparison with methods in the literature where the background is mostly ignored. The
composition of the output layer is adapted based on the necessities of each experiment to
include or omit the background class inherent in each dataset.

Table 4 provides a comparative summary of the PaviaU and Salinas datasets, focusing
on the distribution of the multi-labelled patches according to the number of classes they
contain and offering a clear view of the variability and complexity inherent in each dataset.
For the PaviaU dataset, a significant proportion of patches contain either one or two classes.
In contrast, the Salinas dataset shows a higher prevalence of patches with a single class, as
seen in Table 3, suggesting a more distinct separation of classes within this dataset.

Finally, we split the data under both approaches into train, valid, and test sets adhering
to approximately 80%, 10%, and 10% ratios, respectively, (Table 5). The data, model
architecture, and code used in our experiments will be publicly released upon acceptance
of this submission.
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Table 3. Patches sampled from PaviaU and Salinas datasets using multi-label and single-label
sampling procedures.

PaviaU % Salinas %

Multi-Label Sampling
multi-labels mixed 3774 55% 1442 21%
single-labels uniform 3125 45% 5289 79%
Total 6899 100% 6731 100%

Single-Label Sampling
single-labels mixed 1742 36% 721 12%
single-labels uniform 3097 64% 5290 88%
Total 4839 100% 6011 100%

Table 4. Cumulative counts of patches per number of classes they contain under both PaviaU and
Salinas datasets.

Dataset One Class Patches Two Classes Patches Three Classes Patches

PaviaU 3125 3772 2
Salinas 4689 1466 16

Table 5. Train, valid, and test split of patches dataset.

Multi-Label Patches Single-Label Patches

Train Valid Test Train Valid Test

PaviaU 5588 621 690 3919 436 484
Salinas 5451 606 674 4868 541 602

In the realm of hyperspectral image analysis, it is indeed common to find the literature
employing training percentages ranging from 1% to 30%. When applied to the two datasets
in question, PaviaU and Salinas, this translates to data ranges of approximately 428 to 12,832
and 541 to 16,239, respectively. However, the appropriateness of these percentages largely
hinges on the method employed, the preprocessing of the data, the available labelled data,
and the computation power needed. It is pertinent to note that single-label classification, a
predominant focus in this domain, utilises both the pixel-level and the patch-level analysis.
Typically, in the case of patch-level analysis in the existing literature, it is predicated on
densely sampling pixels from the original scene and assigning the label corresponding to
the centre pixel to maintain a consistent volume of labelled data. Furthermore, in many
cases, preprocessing in terms of dimensionality reduction often occurs before the training
process, thus reducing the complexity of the data and the computational operations.

In our study, the decision to adopt an 80%, 10%, and 10% split for training, validation,
and testing, respectively, was primarily guided by the unique characteristics of our dataset
and the architecture of our method. In Sections 3.5.1 and 3.5.2, we elaborate on how our
dataset was curated using multi-label and single-label sampling schemes with a stringent
non-overlapping constraint. This approach significantly reduced the number of labelled
patches available for use compared to the standard datasets commonly referenced in the
literature. Specifically for multi-label tasks, the PaviaU and Salinas datasets comprised
6899 and 6731 patches, respectively. In contrast, for single-label classification tasks, these
figures were 4839 and 6011 (Table 4). This context is crucial as it indicates that our dataset is
considerably smaller—ranging between 6 and 9 times less—than those typically mentioned
in the relevant literature.

Unlike plenty of work in the literature, we do not preprocess the data upfront. A
common practice we notice is to apply dimensionality reduction techniques to reduce the
spectral depth of the data prior to training or even prior to sampling the spatial context
from the original data. This preprocessing step is part of the method we propose. In
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our patch-based datasets, though small in terms of spatial context, given the 3× 3 spatial
window chosen, we maintained the full spectral depth and fed our cubes to the method
for the dimensionality reduction to be implemented by the network. Such disparities in
terms of size and the processing of the large volume of data add a layer of complexity to
our methodology,

Adhering to the literature norm of 1% to 30% for training would yield an excessively
small training set for our methodology, insufficient to ensure adequate generalisation in
the learning process. It is crucial to underscore that our method’s ability to produce the
reported results, using our proposed sampling methods, adeptly addresses the inherent
challenge of hyperspectral images manifested in high dimensionality coupled with the
limited availability of labelled training data. Thus, the higher proportion of training data
in our case is not just a methodological deviation but a necessity dictated by the specific
constraints and goals of our research.

4. Results
4.1. Multi-Label Classification: Performance across Training Schemes

This experiment compares the results of the three schemes presented in Section 3.2
in the context of the task at hand, i.e., multi-label classification on hyperspectral image
patches. Since our task is that of multi-label classification, we adopted the standard multi-
label evaluation metrics as in [44]. More specifically, the Accuracy, the Hamming Loss, the
Precision, and the Recall. According to [44], in the context of multi-label classification, the
accuracy metric accounts for partial correctness, whereby the accuracy for each instance
is the proportion of the predicted correct labels to the total number (predicted and actual)
of labels for that instance. Overall accuracy is the average across all instances. Since we
also experiment with single-label, multi-class classification, we focused our attention on
Accuracy to perform a comparison among the different experiments we conducted.

Results: Tables 6 and 7 present an overview of the results achieved by each scheme
based on the test split of the PaviaU and Salinas patches datasets. We observe that the
Cascade scheme underperformed the other two schemes even with the Salinas dataset, which
contains a significant number of uniform patches. Considering that the Cascade scheme is
one of the commonly followed training schemes in the literature, ref. [22,33], this comes
as a surprise. Moreover, Joint training outperformed the other two schemes in making
predictions of multiple labels, mainly when tested on the PaviaU dataset. Comparing results
between the two datasets, we recognise that all three schemes had a lower performance
under PaviaU in making predictions of multiple labels than under Salinas. It is worth
noting that the PaviaU patches dataset contains double as many instances with multiple
labels as Salinas, (Table 3).

Table 6. Multi-label classifier: accuracy performance (in %) evaluated on multi-label patches test
dataset sampled from PaviaU.

Iterative Joint Cascade

Accuracy 84.03% 86.14% 83.5%
Hamming Loss 0.037 0.029 0.04
Precision 0.88 0.91 0.87
Recall 0.89 0.93 0.87

Table 7. Multi-label classifier: accuracy performance (in %) evaluated on multi-label patches test
dataset sampled from Salinas.

Iterative Joint Cascade

Accuracy 87.61% 86.40% 86.47%
Hamming Loss 0.015 0.017 0.02
Precision 0.89 0.89 0.88
Recall 0.93 0.90 0.92
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4.2. Effect of Ground-Truth Annotations on Performance

This experiment is conducted to investigate the observations made in Section 4.1. The
results from this experiment were categorised based on the number of ground-truth labels
assigned to each patch in the test set. In this context, the term multi refers to those patches
that were obtained through the multi-label sampling approach (Section 3.5.1), resulting in
annotations that contain several labels reflecting the various classes identified within the
patch. Conversely, the term single refers to patches that, although sampled using the same
approach, contain pixels from only one class, yielding a single label in the annotation.

In this experiment, we mainly focus on classification accuracy as a performance metric,
with results founded on the analysis of patches in the test sets derived from PaviaU and
Salinas, respectively.

Despite previous experiments suggesting that the performance of the classifier, as
gauged by average accuracy, was inferior on the PaviaU dataset patches compared to the
Salinas patches, Table 8 provides a more comprehensive insight. This table breaks down
the average accuracy by label type and delves into the findings presented in Tables 6 and 7.

Table 8. Multi-label classifier: accuracy performance (in %) based on multi-label and single-
label patches.

Iterative Joint Cascade

multi single multi single lmulti single
PaviaU 84.75% 83.03% 86.29% 85.74% 84.31% 83.16%
Salinas 70.61% 92.40% 74.55% 89.73% 67.79% 91.73%

For the PaviaU dataset, which is predominantly composed of multi-label patches, all
schemes display better performance on multi-label patches than on single-label patches. The
Joint scheme consistently stands out as the best performer within this multi-label context.
However, a contrasting trend is evident for the Salinas dataset. Given its characteristic of
mainly having patches that are uniform (containing a single class), all three schemes achieve
significantly higher accuracy on these patches. However, their performance diminishes
considerably on multi-label patches.

In essence, this experiment shows that when the dataset is rich in multi-label patches,
i.e., mixed patches, such as PaviaU, the Iterative and Joint schemes demonstrate superior
accuracy in predicting those multi-labels, albeit with a slight margin. Conversely, when the
dataset leans heavily towards single-label patches, as seen in Salinas, all schemes exhibit
a marked improvement in performance on the uniform patches. The Cascade scheme,
although generally lagging behind the other two schemes, also follows this trend.

Furthermore, when examining the training and validation loss patterns, Figure 6, we
find that the Iterative scheme converges slower to lower loss values. Nevertheless, it does
not expose the model to overfitting, as is the case with the Cascade scheme. Even though
the loss function optimised under the Joint training scheme is not directly comparable to
the loss function optimised for the Iterative scheme, the former depicted better behaviour
when it comes to faster convergence and lower loss values.

It is worth indicating that the total loss of the Joint scheme contains only 30% of
the standalone classifier loss. We can also see the impact of such a contribution on the
average accuracy performance of the Joint training in Figure 7. We observe broad and dense
oscillations. Those oscillations indicate that the autoencoder has not learned the features
that can help the classifier make a correct decision consistently. Examining the classifier
loss component separately, we notice that it exhibits a more significant overfitting trend
whose impact is diluted in the overall loss due to the low contribution of the classifier loss.
If we choose another pair of weights, performance will also change, not necessarily for the
better. This renders the process sensible to changes caused by other hyperparameters.
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Figure 6. Multi-label classifier: train and valid loss under the three schemes. (above): PaviaU,
(below): Salinas.

Figure 7. Multi-label classifier: average accuracy performance. (above): PaviaU, (below): Salinas.

4.3. Single-Label Classification: Performance across Training Schemes

This experiment examines the classification performance of our network under the
three training schemes using single-labelled patches. We sampled those patches under
the single-label sampling approach described in Section 3.4. To this end, we implemented
several changes to adapt the three schemes to the new type of labels.

First, we adjusted the output layer of the classifier to reflect the number of classes after
ignoring the background class. Second, we tuned a new set of hyperparameters for each
method and under each dataset. Third, we adjusted the loss function to fit the new task
of single-label multi-class classification. For such a task, the Cross-Entropy Loss function
applies (Equation (7)).

l = −
C

∑
c=1

yn,c log(pn,c) (7)
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where l is the loss value computed for a given input instance n. C is the total number of
classes in the multi-class classification problem. c is the index of a specific class that ranges
from 1 to C. yn,c represents the true label for class c for the nth instance. pn,c represents
the predicted probability that the nth instance belongs to class c. It is obtained from the
output generated by the model, typically via a softmax function, ensuring the probabilities
sum to 1 across all classes. Finally, for evaluation, we adopted the single-label multi-class
accuracy metric calculated as the proportion of all correct predictions to the total number
of data instances tested.

Under this experiment, we also applied the weight regularisation L2-norm to the
classifier loss in all three schemes. Accordingly, the loss function of the classifier, as shown
in Equation (7), becomes new loss function as presented in Equation (8).

l = −
C

∑
c=1

yn,c log(pn,c) + λ
n

∑
i=1
||w2

i || (8)

Results: Table 9 presents the accuracy obtained across the different schemes per each
dataset. The Joint scheme achieved the highest accuracy of 94.65% and 93.35% on the testing
sets from PaviaU and Salinas, respectively. It was followed by the Iterative scheme on both
datasets. Similar to the multi-label classification task, the Cascade scheme came third with
87.73% and 90.34%, respectively.

Table 9. Single-label classifier: accuracy performance (in %) evaluated on single-label patches test
datasets sampled from PaviaU and Salinas.

Iterative Joint Cascade

PaviaU 90.71% 94.65% 87.73%
Salinas 91.19% 93.35% 90.34%

Figures 8 and 9 illustrate the loss and accuracy performance of each scheme on both the
PaviaU and Salinas datasets. Combined with the results presented in Table 9 and despite
the overall generalisation of the three schemes, the Iterative and Joint schemes exhibited
overfitting and stagnation during the learning process. Additionally, this performance
was obtained faster and in the earliest epochs for the Joint training scheme. The total loss
optimisation under the Joint training scheme contributes to the divergence of the validation
loss. The observed reduction in the performance of the classifier during validation can
be attributed to higher influence given to the autoencoder in the computation of the total
loss. This reduced performance indicates that the network is predominantly optimising the
hidden representation for accurate reconstruction of the input data potentially neglecting
the essential features useful for the classifier. The Cascade scheme, by contrast, converged
better than the rest, yet it required a much lower learning rate 1× 10−5 , justifying the
convergence of loss and rise in accuracy only towards the last 50 epochs of the training.

Furthermore, the Iterative scheme exhibited similar behaviour as the Joint scheme in
terms of divergence of the validation loss. However, since the architecture of the Iterative
scheme permits indirect interaction between the learned weights of the autoencoder and
the classifier early on, we observe that the divergence between training and validation loss
does not occur immediately and it maintains a flat level going further.

For the case of the Salinas dataset, a higher percentage of the sampled patches are
uniform patches consisting of one class only. Labels, however, correspond to the centre
pixel of the patch. We notice in Figures 8 and 9 that again smoothed by the weighted sum
of the loss functions of the individual components (the mean squared error and the binary
cross entropy), the Joint scheme total loss creates a smooth convergence to a low loss level.
Based on the accuracy achieved employing the Joint scheme on the validation set, it appears
that the single-label classifier was stable and consistent in capturing the learned features
when making its decision at every epoch. This contrasts with the performance of the same
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scheme on PaviaU and within the multi-label experiment (Figure 7). Moreover, when
making its predictions, the classifier trained by the Iterative scheme shows a consistent
learning process as reflected by the minimal oscillations of the accuracy curves in Figure 9.
We link that primarily to the complex progressive nature of learning between the two parts
of the network. Because uniform patches are dominant in the Salinas patches dataset, the
learning process of the feature representations by the classifier seems to be easier than in
the case of PaviaU.

Figure 8. Single-label classifier: train and valid loss of the three methods. (above): PaviaU,
(below): Salinas.

Figure 9. Single-label classifier: average accuracy performance. (above): PaviaU, (below): Salinas.

4.4. Single-Label Classification: Qualitative Results

In this section, we provide a qualitative comparison showing the predictions (in a
class map format) produced by the three schemes.

Figures 10 and 11 provide a visualisation of the predicted classes under the single-label
classification framework. To produce this visualisation we modified our approach to patch
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generation. Initially, patches were generated with a stride of three to prevent pixel overlap.
However, for this visualisation, we adjusted the stride to one, allowing pixel overlap. This
adjustment aligns the number of patches with the number of labelled pixels available
under both datasets, PaviaU and Salinas. We segregate the scene into three categories:
(1) Background (assigned the colour black); (2) Correct Predictions (assigned the colour
white); and (3) Incorrect Predictions (assigned the colour grey). Then, we pushed the full
dataset of patches and collected the predicted labels. The results follow the trend we saw
in our results in Table 9 where the Joint training scheme performed the best among the
three. However, we notice a decline in the performance. Our initial results were based
on a non-overlapping testing dataset. In this experiment, we opted for the overlapping
approach to be able to reconstruct the original scene from the patches. This disparity in
performance is primarily attributed to the variations in data volume and representation
caused by the overlapping condition imposed in this experiment. Despite the fact that
the data originated from the same scene and was captured by the same sensor, implying
no inherent differences in the pixel data, the manner in which the patches are densely
sampled leads to a distinct spatial arrangement of the classes. This variation could lead
to a domain shift. Specifically, during the model’s training phase, it was exposed to a
certain spatial distribution of classes within the patches. However, during the inference
phase, the model encounters a different distribution, which diverges from the training data.
Such a discrepancy in data distribution will likely result in reduced model performance
when applied to new datasets. This is because the model’s learned patterns and features,
optimised for the training data, may not generalise well to the newly encountered class
distributions in the test data. Additionally, an analysis of the class distribution in our
generated datasets of non-overlapping patches indicates the presence of an imbalance
in class representation, which is inherent in the class distribution in the original data. If
some classes were more abundant at the training level, they would benefit from the dense
sampling, and their count would rise compared to others. This factor will exacerbate the
issue as the model may not have learned to correctly classify under-represented classes due
to their scarcity in the training data, contributing to increased complexity in the training
process of the schemes and leading to further discrepancies in performance. Both PaviaU
and Salinas share these factors. Tables 10 and 11 provide a detailed comparison of the patch
datasets for PaviaU and Salinas. They show the number and percentage of patches created
under the non-overlapping single-label sampling condition and compare these with the
distribution of labelled samples in the original scenes.

Table 10. PaviaU patch dataset: non-overlapping single-label sampling of patches per class and
ground truth classes for the PaviaU scene with their respective sample numbers.

Class Name Count (Patch Data) % (Patch Data) Count (Original) % (Original)

Asphalt 844 17.44 6631 15.50
Meadows 2048 42.32 18,649 43.60
Gravel 232 4.79 2099 4.91
Trees 339 7.01 3064 7.16
Painted Metal Sheets 152 3.14 1345 3.14
Bare Soil 561 11.59 5029 11.76
Bitumen 147 3.04 1330 3.11
Self Blocking Bricks 412 8.51 3682 8.61
Shadows 104 2.15 947 2.21
Total 4839 100.00 42,776 100.00
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Table 11. Salinas patch dataset: non-overlapping single-label sampling of patches per class and
ground truth classes for the Salinas scene with their respective sample numbers.

Class Name Count (Patch Data) % (Patch Data) Count (Original) % (Original)

Brocoli_green_weeds_1 223 3.71 2009 3.71
Brocoli_green_weeds_2 414 6.89 3726 6.88
Fallow 220 3.66 1976 3.65
Fallow_rough_plow 151 2.51 1394 2.58
Fallow_smooth 303 5.04 2678 4.95
Stubble 440 7.32 3959 7.31
Celery 394 6.55 3579 6.61
Grapes_untrained 1248 20.76 11,271 20.82
Soil_vinyard_develop 687 11.43 6203 11.46
Corn_senesced_green_weeds 365 6.07 3278 6.06
Lettuce_romaine_4wk 119 1.98 1068 1.97
Lettuce_romaine_5wk 213 3.54 1927 3.56
Lettuce_romaine_6wk 103 1.71 916 1.69
Lettuce_romaine_7wk 118 1.96 1070 1.98
Vinyard_untrained 816 13.58 7268 13.43
Vinyard_vertical_trellis 197 3.28 1807 3.34
Total 6011 100.00 54, 129 100.00
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Figure 10. PaviaU: class map visualisation of predictions on (a) Iterative Scheme, (b) Joint Scheme,
(c) Cascade Scheme.

4.5. Single-Label Classification: Impact of Domain Shift on Performance

To further examine the performance of the single-label classifier, we tested the classifier
that was trained in Section 4.3 on two new subsets of PaviaU and Salinas. We assem-
bled those subsets from the patches generated under the Multi-label sampling approach
(Section 3.4) that are uniform, i.e., containing only one class as opposed to patches contain-
ing mixed classes. Consequently, we assigned the single labels of those patches based on
the classes occurring in the patch and not based on the class corresponding to the centre
pixel. It is worth noting that the centre pixel procedure for the label assignment charac-
terises the data that initially trained our single-label classifier. Therefore, this experiment
aims at assessing the effect of this disparity arising from training the single classifier on a
combination of mixed and uniform patches, yet testing it on only uniform patches.
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Figure 11. Salinas: class map visualisation of predictions on (a) Iterative Scheme, (b) Joint Scheme,
(c) Cascade Scheme.

Results: Table 12 summarises the results. At first sight, the drop in performance is
noticeable compared to the results reported in Table 9. For the case of the PaviaU dataset,
we notice a drop of 12.31%, 2.42%, and 9.56% across the Iterative, Joint, and Cascade schemes,
respectively. For the Salinas dataset, we notice an improvement in the performance of
1.44%, 2.60%, and 3.85% across the three schemes. These differences might be attributed
to the level of disparity (domain shift) introduced by the type of patches (uniform only).
As 88% of Salinas patches that our single-label classifier originally trained upon were
uniform, the domain shift was relatively lower when the classifier was tested on uniform
patches. Consequently, the classifier performed better on the new data and across all three
schemes. The performance was reduced on the subset of the uniform patches dataset taken
from PaviaU since the uniform patches generated from this scene accounted for 64% of
all patches. In comparison to Salinas, this suggests a more significant domain shift. The
observations above are critical if we consider that this uniform-patch setting is the simplest
scenario for a single-label prediction classifier. Moreover, it shows that the common practice
of assigning the centre pixel label to a patch has high costs in performance and is a practice
that should be discouraged.

Table 12. Single-label classifier: accuracy performance (in %) on uniform single-label patches.

Iterative Joint Cascade

PaviaU 78.40% 92.32% 78.17%
Salinas 92.63% 95.95% 94.19%

4.6. Multi-Label versus Single-Label Classifiers: Impact of Extended Annotations on Learning
Feature Representation

The goal of this experiment is to determine whether it is possible to improve represen-
tation learning by considering richer annotations in the form of multiple labels. In order to
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answer this question, we compared the performance of the two models, the multi-label and
the single-label classifiers. Both models were trained on patch-based datasets, however,
one model restricted its predictions to a single label by using more constrained single-label
annotations. Towards this goal, we modified our single-label classifier to provide multiple
labels as outputs. More specifically, given an input, we selected the class labels correspond-
ing to the top-k logits. Here the number of k selected logits is equivalent to the number
of outputs produced by the multi-label classifier when processing the same input. It is
worth indicating that this experiment is conducted using the multi-labelled data defined in
Section 3.4 after removing the background class that is one of the classes included in the
case of the multi-label classification. This is performed to ensure a fair comparison with
the results generated from the single-label classification, which ignores the background
class. Table 13 presents the average accuracy that both classifiers achieved across the three
schemes; Iterative, Joint, and Cascade.

Table 13. Single-label vs. multi-label classification: accuracy performance (in %) on patches with
extended annotations.

Iterative Joint Cascade
Classifiers Classifiers Classifiers

multi-label single-label multi-label single-label multi-label single-label
PaviaU 90.86 87.07 94.24 95.76 91.10 84.32
Salinas 90.55 90.83 90.49 92.33 89.03 92.60

From the results in Table 13, we can observe that the Joint scheme achieved high
performance under both classifiers and both datasets. However, the improvement in
performance is noticeable when the results of the single-label classifier are compared to
those reported under Section 4.3, Table 9. It is evident that the single-label classifier trained
using the Joint scheme learned a representation sufficiently accurate to achieve better results
when we do not limit its prediction to the highest logit generated.

Under the Cascade scheme, the behaviour of both the multi-label and the single-label
classifiers was related to the nature of the data. Considering the multi-label context, the
Cascade scheme performed better under PaviaU than under Salinas. Most remarkably, the
multi-label classifier performance under the Cascade scheme was better when ignoring the
background class compared to the results presented in Section 4.1, Tables 6 and 7.

When examining the results of the single-label classifier trained using the Iterative
scheme, we notice that it achieved lower accuracy compared to the results of Section 4.3,
Table 9. In other words, when the prediction of the single-label classifier in this context
was not limited to the highest logit, it had lower performance. Such result indicates
that the classifier trained using the Iterative scheme was only successful in learning the
representations related to the centre pixel of the patch (the one to which the label of the
patch corresponds) and failed to learn representations related to the full patch.

4.7. Training Schemes: Accuracy per Class

This experiment highlights how accurate each classifier is in predicting the correct
class considering the three training schemes. We base our evaluation on the patches test
dataset sampled from both PaviaU and Salinas scenes.

4.7.1. Single-Label Classifier

Table 14 presents the accuracy of the single-label classifier in predicting the classes of
the PaviaU scene. The per-class accuracy results confirm the rankings defined based on
the global performance observed in the previous experiments. The Joint training scheme
detected 77.78% of the classes with an accuracy of 90% and above. The Iterative training
scheme detected 55.56% of the classes with an accuracy exceeding 90% whereas the Cascade
training scheme detected 44.45% of the classes with an accuracy exceeding 96%.
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Table 14. Single-label classifier: per-class accuracy results, arranged in descending order of Frequency,
measured on the PaviaU patches test dataset. The term Frequency denotes the count of patch instances
labelled with the corresponding class.

# Class Frequency Iterative Joint Cascade
% % %

1 Meadows 214 100.00 98.13 96.73
2 Asphalt 84 78.63 86.33 80.95
3 Soil 46 90.60 100.00 76.09
4 Brick 43 83.23 90.70 88.37
5 Trees 33 95.85 100.00 100.00
6 Gravel 20 100.00 90.00 60.00
7 Metal Sheet 18 93.72 100.00 100.00
8 Bitumen 13 87.63 84.62 53.85
9 Shadows 13 74.47 100.00 100.00

Furthermore, Table 15 displays the performance of the single-label classifier on the
Salinas dataset and across three schemes. The classifier equally predicted 100% of the
correct instances of 9 out of the 16 classes available in the Salinas dataset. The Joint scheme
eventually outperformed both the Iterative and the Cascade schemes in predicting 4 out of
the remaining 8 classes positioning it at the highest rank in terms of accuracy-per-class
performance among the three schemes.

Table 15. Single-label Classifier: Per-class accuracy results, arranged in descending order of Frequency,
measured on the Salinas patches test dataset. The term Frequency denotes the count of patch instances
labelled with the corresponding class.

# Class Frequency Iterative Joint Cascade
% % %

8 Grapes 119 73.95 91.60 71.43
15 Vinyard 88 85.23 72.73 81.82
9 Soil 67 100.00 100.00 100.00
2 Brocoli_2 49 100.00 100.00 100.00
6 Stubble 45 100.00 100.00 100.00
7 Celeray 41 100.00 100.00 100.00
10 Corn 34 85.29 88.24 85.29
1 Brocoli_1 25 78.63 86.33 80.95
5 Fallow_s 24 100.00 100.00 100.00
16 Vinyard-Vert 24 100.00 100.00 100.00
3 Fallow 25 96.00 100.00 96.00
12 Lettuce_5 15 100.00 100.00 100.00
4 Fallow_r 17 100.00 100.00 100.00
11 Lettuce_4 11 81.82 81.82 81.82
13 Lettuce_6 10 90.00 100.00 100.00
14 Lettuce_7 8 100.00 100.00 87.50

4.7.2. Multi-Label Classifier

Table 16 summarises the performance of the multi-label classifier tested on the multi-
label patches test dataset sampled from PaviaU. Based on the results, the three schemes led
to models with similar predictive performance. In predicting the background class, both
the Joint and Cascade schemes performed slightly lower compared to the Iterative variant.
However, the performance of the three schemes in this class was lower compared to their
performance in the remaining classes. Approximately 20% of the background labels were
incorrectly predicted by the classifier. This explains why in Section 4.6 we noticed the
improvement in the overall performance of the multi-label classifier when we ignored the
Background class. Table 17, presents the per-class performance for each scheme on the
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Salinas multi-label patches test dataset. Apart from the results on the Background class, the
three schemes have relatively close and high accuracy rates.

Table 16. Multi-label classifier: per-class accuracy results on the PaviaU test set, arranged in descend-
ing order of Frequency. The term Frequency denotes the occurrences of each class in the multi-labels
assigned to the patches, not the count of the patches whose labels correspond to a particular class.

# Class Frequency Iterative Joint Cascade
% % %

0 Background 400 81.45 78.99 79.13
2 Meadows 237 95.51 98.55 96.52
1 Asphalt 118 97.54 97.68 97.54
4 Trees 88 98.70 98.84 98.70
8 Brick 85 97.54 97.10 97.10
6 Soil 50 96.52 99.71 97.54
3 Gravel 47 97.83 97.39 97.83
9 Shadows 26 99.86 100.00 100.00
7 Bitumen 20 98.41 98.99 98.84
5 Metal Sheet 19 100.00 100.00 100.00

Table 17. Multi-label classifier: per-class accuracy results on the test set, arranged in descending order
of Frequency. The term Frequency denotes the occurrences of each class in the multi-labels assigned to
the patches, not the count of patches whose labelled with the respective class.

# Class Frequency Iterative Joint Cascade

0 Background 148 87.39 87.39 85.02
8 Grapes 140 93.77 93.77 92.58
9 Soil 82 99.70 99.70 99.41
15 Vinyard 83 93.92 94.21 93.03
2 Brocoli_2 49 100.00 100.00 100.00
6 Stubble 48 99.85 99.85 99.85
10 Corn 42 98.22 98.81 98.67
7 Celeray 35 99.70 99.56 99.85
5 Fallow_s 37 99.56 99.56 99.70
1 Brocoli_1 26 100.00 99.85 100.00
12 Lettuce_5 22 99.70 99.41 99.41
3 Fallow 22 99.70 99.85 100.00
14 Lettuce_7 19 99.56 99.56 99.70
11 Lettuce_4 18 99.70 100.00 99.26
4 Fallow_r 20 99.85 99.70 99.70
16 Vinyard-Vert 16 99.85 100.00 100.00
13 Lettuce_6 15 99.85 99.85 99.85

4.8. Comparison with Existing Work

In this section, we quantitatively compare the performance obtained in our study with
two related methods from the literature. This is conducted on two fronts. First, at the data
level, we trained and tested the HSI-CNN method developed in [36] using the single-label
patches dataset we sampled. Second, at the training scheme level, we trained in a joint
manner and tested the two-branch autoencoder method (TBAE) developed in [23] using the
patches dataset and compared the performance with that of our two-component network,
(Section 3).

4.8.1. Single-Label Classifier Performance: Training Different Architectures Using
Patches Dataset

The experiment investigates whether the performance of the single-label classifier
trained with a smaller number of patches would differ given the different underlying
architecture employed for learning representations.
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In [36], the classification method is based on a convolutional neural network to perform
the hyperspectral image classification task, whereas our network adopts an architecture
of fully connected layers. Similar to our work, the HSI-CNN method is trained using
patches of n× n× bands extracted from the original remote sensing scene to preserve the
spatial–spectral aspect of the data. In addition, assigning labels to patches is based on
the label corresponding to the centre pixel, a protocol we also use for our single-labelled
patches. There is, however, one point to note. The sampling process originally followed
in [36] differs from ours. They perform a dense sampling that maintains the same count of
labels of the original remote sensing scene, whereas in sampling our patches we ensured
that no overlapping between the patches is allowed. This reduces the volume of the dataset
and the count of the labels. By doing so we reduce the computational time and the required
resources to conduct the experiments.

We based our experiment on the implementation of the HSI-CNN method provided
by [11] in their DeepHyperX toolbox (https://github.com/nshaud/DeepHyperX, (accessed
on 23 December 2022)) [45]. Given that the volume of the input data and the process of
sampling are different, training the model required tuning a set of hyperparameters that
is not completely identical. Similar to the DeepHyperX implementation, we used the
stochastic gradient descent (SGD) optimiser, a cross-entropy loss function and a learning
rate scheduler. Moreover, opposite to the mentioned implementation the scheduler differed
from one dataset to the other. For the PaviaU dataset, we used the step-learning rate
scheduler which enforces a reduction in the learning rate value at the end of a predefined
set of epochs. This learning rate adaptation, however, did not work for the Salinas dataset,
where we applied the reduce-on-plateau scheduler. When the model was trained on
patches extracted from the Salinas dataset, empirical evidence suggested that the learning
rate reduction pattern was not correctly captured using a predefined number of epochs.
In contrast, the reduced plateau scheduler allowed the model to automatically adjust
the learning rate when the validation loss performance stopped improving rather than
enforcing a fixed period to apply the change. All details related to the hyperparameters
can be found in the Supplementary Material.

Table 18 contrasts the results of training the CNN-HSI method using the non-overlapping
patches dataset sampled in our work against the results achieved by the DeepHyperX
implementation of the same method using the dense sampling process of patches proposed
by [36].

Table 18. Single-label classification: accuracy performance (in %) of the two-component network
under the three training schemes, the HSI-CNN method trained using the non-overlapping patches
dataset, the HSI-CNN method trained using densely sampled patches and the TBAE method trained
using the non-overlapping patches dataset.

Iterative Joint Cascade HSI-CNN HSI-CNN TBAE
Non-Overlapping Dense

Pavia 90.71 94.65 87.73 70.56 73.05 89.56
Salinas 91.19 93.35 90.34 87.33 69.05 91.96

Figures 12 and 13 contrast the performance of the DeepHyperX implementation against
our implementation of the HSI-CNN method using the dataset of patches that we originally
used to train our own two-component network. Both our results and those achieved by the
DeepHyperX implementation could not match those reported in [36]. This is not surprising,
given the fact that we are using a different dataset and a different set of hyperparameters.
Nevertheless, we did observe one similar behaviour in our implementation of the results
reported in the original paper: the progressive upward sloping of the accuracy curves.

https://github.com/nshaud/DeepHyperX
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Figure 12. Validation accuracy performance of the HSI-CNN method developed by [36] and im-
plemented by [11] using densely sampled patches from the remote sensing scenes. (a) PaviaU,
(b) Salinas.
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Figure 13. Validation accuracy performance of the method developed by [36] and implemented
by [11] that we amended to use our sampled non-overlapping patches dataset. (a) PaviaU, (b) Salinas.

In summary, the high correlation between a pixel and its neighbouring pixels, which
share common characteristics, can be captured when a model is trained using patches
datasets, as opposed to spectral-only pixels. The nature of patches can provide an option to
overcome the shortcoming of having limited labelled datasets. Hence, in the absence of
large labelled samples of remote sensing datasets, deep architectures like the one presented
in [36] can be easily and more efficiently trained on a smaller-sized dataset. One that pre-
serves both the spatial and the spectral dimensions and leverages the correlation between
the neighbouring pixels.

4.8.2. Single-Label Classifier Performance: Joint Training Scheme

Ref. [23] presents a semi-supervised method that extracts features from the unlabelled
data by training a single-layer autoencoder whose hidden layer inputs into a classifier
with a softmax layer. Simultaneously, the encoder and the classifier exploit the labelled
data to perform a classification task. In their analysis, they show the possibility of jointly
training the two-branch autoencoder (TBAE) model using a limited number of unlabelled
and labelled pixels of the remote sensing scenes. Their work appears to share structural
similarity with our work in terms of the two-component architecture encompassing an
autoencoder and a classifier and combined with the Joint training scheme. Based on that,
we reproduced their method and allowed the training to proceed using our single-label
patches dataset, sampled from PaviaU and Salinas in accordance to the Single-label sampling
approach described in Section 3.4.
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Figure 14 exhibits the results of the training conducted. Even with the shallowness
of the architecture, the joint training of the model allowed good performance in terms of
validation accuracy. The latter achieved on average 89.56% on the PaviaU patches dataset
and 91.96% on the Salinas patches dataset (Table 18). However, this performance fell short
when compared with the results achieved by our architecture (Section 3) trained using the
Joint scheme which was 94.65% and 93.35% on PaviaU and Salinas, respectively, (Section 4.3,
Table 9).
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Figure 14. Performance in terms of loss and accuracy on the method developed by [23] using
non-overlapping sampled patches. (above) PaviaU, (below) Salinas.

In our opinion, this is justified for two main reasons. First, the deeper architecture of
our two-component network allows the encoding of a richer representation. Second, the
different shape of the input data, i.e., the patches, which preserves the joint spatial–spectral
aspect of the original remote sensing scene. As opposed to the method from [23], which
was trained using pixels containing only spectral information. Furthermore, the results
demonstrate that our architecture is capable of learning intrinsic feature representations
embedded in the patches despite their limited volume.

5. Conclusions

In this paper, we developed a two-component network, consisting of an autoencoder
and a classifier, to perform a multi-label hyperspectral classification task. Diverging from
the conventional approach of utilising single-label pixel-level input data, we opted for
patches extracted from the hyperspectral remote sensing scenes. This approach leverages
the abundance of information and the intrinsic correlation among the pixels present in those
scenes. We rigorously trained our network and evaluated the performance of the classifier,
focusing on the assignment of multi-labels to patches instead of single labels. Beyond
the commonly used Joint and Cascade training schemes found in the literature for two-
component networks, we investigated the Iterative training scheme. Our evaluations, which
spanned two datasets and classification tasks (multi-label and multi-class classifications),
indicate that the Cascade scheme performs the least, whereas the Joint scheme stood out as
the most proficient across all scenarios. Nevertheless, it has the drawback of requiring an
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expensive parameter search procedure to determine the optimal weight combination of
the constituents of the total loss, risking overfitting. Such a combination might be optimal
given a specific data split and selected hyperparameters, but its generalisability under
varying conditions and hyperparameters is uncertain.

According to our experiments, the Iterative scheme, with its progressive learning
approach, permits the sharing of features between the two parts of the network from the
early stages of training. This scheme obviates the requirement for an intricate search for
specific hyperparameters that are not evident or principled and consistently yields good
results. This is noticeable, particularly with complex datasets containing numerous multi-
label patches that preserve the spatial and spectral characteristics of hyperspectral images.
Moreover, our results suggest that the common practice of assigning a label corresponding
to the centre pixel of a patch has high costs in predictive performance and should be
discouraged. Furthermore, our findings reveal that architectures, fundamentally different
in nature and deeper than our two-component network, could perform well when trained
on datasets smaller in volume yet more abundant in spatial–spectral information; namely,
the patches dataset used in our experiments. Our observations also showed enhanced
performance when employing the Joint scheme to train our two-component architecture
with patches, compared to training a shallower architecture with a small subset of labelled
pixels containing only spectral information. For future work, our study could be extended
by further validating the schemes and methods on other remote sensing datasets and
possibly other types of hyperspectral images. Recent learning techniques; such as self-
supervised learning, and modern architectures; such as transformers, will be considered to
further boost the performance of our classifier.
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