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Abstract 

 

The importance of whole genome duplication (WGD) for evolution is controversial. Whereas 

some view WGD mainly as detrimental and an evolutionary dead end, there is growing 

evidence that polyploidization can help overcome environmental change, stressful conditions, 

or periods of extinction. However, despite much research, the mechanistic underpinnings of 

why and how polyploids might be able to outcompete or outlive non-polyploids at times of 

environmental upheaval remain elusive, especially for autopolyploids, in which heterosis 

effects are limited. On the longer term, WGD might increase both mutational and 

environmental robustness due to redundancy and increased genetic variation, but on the short 

– or even immediate – term, selective advantages of WGDs are harder to explain. Here, by 

duplicating artificially generated Gene Regulatory Networks (GRNs), we show that duplicated 

GRNs – and thus duplicated genomes – show higher signal output variation than non-

duplicated GRNs. This increased variation leads to niche expansion and can provide polyploid 

populations with substantial advantages to survive environmental turmoil. In contrast, under 

stable environments, GRNs might be maladaptive to changes, a phenomenon that is 

exacerbated in duplicated GRNs. We believe that these results provide new insights into how 

genome duplication and (auto)polyploidy might help organisms to adapt quickly to novel 

conditions and to survive ecological uproar or even cataclysmic events. 
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Significance statement 

 

Polyploid organisms abound, but long-term polyploid establishment is much rarer and likely 

not random. Hence, polyploidy is considered either an evolutionary dead end or a force that 

can help organisms survive environmental changes and stress. How and why polyploids, 

especially autopolyploids, might outcompete nonpolyploids during times of environmental 

upheaval is unclear. On a longer timescale, whole genome duplications may increase genetic 

robustness and variation, but their benefits on the short-term are harder to explain. We show 

that duplicating genomes and their encoded gene regulatory networks increase signal output 

variation, leading to niche expansion and increased potential for surviving environmental 

turmoil. These findings highlight how polyploidy might help organisms adapt to changing 

conditions and survive disruption but might be maladaptive under stable conditions. 
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Introduction 

 

Whole-genome duplication (WGD) leading to polyploidy is a common phenomenon that has 

been studied for over 100 years, especially in flowering plants (1). Because of the well-known 

detrimental effects arising from genome doubling, most WGD events are not successful. 

Genomic instability, mitotic and meiotic abnormalities, and minority cytotype exclusion are all 

expected to quickly remove new polyploids from the population (2-4). Nevertheless, there are 

numerous polyploid organisms around us. Furthermore, even those organisms that are currently 

considered ‘functional’ diploids usually bear signatures of a polyploid ancestry (5, 6). Several 

of these ancestral polyploidy events can be traced back to the origin and diversification of 

major phylogenetic lineages, including vertebrates, fishes, and flowering plants; and within 

flowering plants, core eudicots, monocots, orchids, grasses, composites, and legumes (6-8). 

 This phylogenetic signal of polyploidy success suggests an important role for WGD in 

promoting phenotypic diversity, with a subsequent facilitating role in speciation (9-11). 

Speciation typically occurs under restricted conditions where certain genotypes can exploit 

novel ecological opportunities under the presence of mating barriers with others (12). More 

importantly, polyploidisation is often associated with the expression of new, often exaggerated, 

phenotypes that have the potential to promote niche expansion and a subsequent radiation in 

novel environments. Doubling the amount of DNA does for instance necessitate larger cell 

nuclei and cell size and has already major consequences on organismal developmental and 

physiological responses (13, 14). Size independent phenotypic changes have been documented 

on stress physiology and other traits that provide advantages under extreme environments (15, 

16). It has been suggested that such potential niche expansion advantages in novel 

environments might be responsible for phylogenetic records showing a rise of polyploids at 

certain epoch boundaries, such as for instance the K-Pg boundary, a geological period 

characterized by major episodes of global climatic change and mass extinction (6, 17-22), or 

around recent glaciation maxima (23). Studies in yeast have shown that polyploidy can 

accelerate evolutionary adaptation to challenging environments, because WGD induced 

regulatory redundancy followed by divergence, allowing a wider range of phenotypic 

responses to environmental stresses (24, 25). 

 The increasing numbers of genes that diversify in function due to a relaxed functional 

constraint on one of both copies (i.e., sub- or neofunctionalization (26)), is likely not the sole 

explanation of WGD’s evolutionary success under stress. Doubling of gene regulatory 

networks may equally increase the frequency of beneficial mutations (24), and therefore 
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enlarge the genetic and phenotypic variation for selection to act on. In this respect, WGD can 

be seen as a complex super mutation of/within the genome. The increased genetic variation and 

the buffering effect of their duplicated genes has led to an increased recognition of the adaptive 

potential of polyploidy (6, 27, 28). 

 Recent work by some of us based on a computational framework aimed at mimicking 

biological evolution (29, 30) suggested that so-called digital organisms (DOs) with an 

unduplicated genome performed better - as in, adapted faster - than DOs with a duplicated 

genome in stable environments, while the opposite was true for unstable environments (31). 

Somewhat similar observations were made with populations of so-called ‘virtual cells’ (32, 

33). These insights were generated by the implementation of WGD as a series of random 

mutations of large – adaptive or maladaptive – effect. Gene regulatory networks (GRNs) shape 

the mechanistic pathway between genotype and phenotype. We build on the observation that 

duplicated GRNs seem to have magnified impact (31) and hypothesize that the phenotypic 

variance generated by such networks exceeds the one of the ancestral simpler networks. The 

eventual propagation of information through (artificial) networks, and thus the eventual 

distribution of output signals is uncertain. Signal propagation across a network can be 

considered as a sum of different node values. The eventual variance of the distribution of output 

signals in such systems with a double number of nodes will then be the sum of the variances 

of the distribution of output signals across all nodes and their (doubled) covariance. Hence, 

increasing the number of nodes, and given covariances not being strongly negative, variance 

of the distribution of output signals of the population of doubled networks should always 

increase. To what extent the duplicated structure of the network results in a different signal 

propagation relative to the non-duplicated version, or to networks with the same number of 

nodes but with random structure, remains understudied. Few studies thus far considered the 

duplication of entire GRNs, both in silico or in vivo and previous research on the effect of 

network duplication focused almost exclusively on the rewiring of the network after (gene and 

genome) duplication or on processes buffering the ‘immediate’ effects of duplication (34-42). 

 The rewiring of networks, (re)diploidization and fractionation (gene loss and genomic 

rearrangements) have important consequences for adaptation at the longer term as they 

generate new functions and phenotypes. Immediate consequences of WGD on evolvability are 

also expected from the doubling of both genes and their connections within the gene regulatory 

network. Because this obvious route for polyploid evolutionary success has not been explored, 

we use extensive simulations to test how the duplication of artificial ancestral (further also 

referred to as ‘simple’) gene regulatory networks (aGRNs) of different sizes and shapes impacts 



6 
 

 

the standing phenotypic variation for selection to act on. We generated aGRNs that represent 

scale-free genetic networks with general output functions that translate the aGRN to a gene 

product that is considered as the relevant phenotypic trait of interest under environmental 

change. We demonstrate that WGD increases phenotypic variation more than can be expected 

from doubling the number of genes alone. Importantly, this increased variation results from a 

non-random expansion of the phenotypic space by the proliferation of trait values along the 

same direction as the ancestral state. WGD therefore ‘magnifies’ or ‘exaggerates’ the 

phenotypic profile of the simple networks. Finally, by explicitly linking phenotype to fitness, 

we show these amplified phenotypes to be only adaptive during sudden environmental changes 

or periods of rapid extinction. WGD does impose a direct rescuing mechanism by enlarging 

the phenotypic space for selection to act on during episodes of strong environmental turmoil. 

 

 

Results 

 

Previous simulation studies showed that digital organisms (DOs) with one genome copy 

generally adapted faster than DOs with a duplicated genome in relatively stable environments, 

but not in unstable environments (31). Furthermore, if DOs with duplicated genomes did adapt 

to stable(r) environments, they did so with a restricted number of mutations, compared to DOs 

with one genome copy. By contrast, if DOs with single copy genomes adapted to more 

drastically changed environments, they needed more mutations to adapt than the DOs with 

duplicated genomes. From this observation, i.e., fewer mutations being allowed and fewer 

mutations with a higher impact in duplicated genomes (and their encoded GRNs) (31), we 

assumed that changes in duplicated GRNs, either through mutations or sensed input cues 

changing node ‘values’, have an enhanced impact. Therefore, here, we tested different ways to 

evaluate the dynamics of signals sent through the networks and how they translate in output 

generated by the nonduplicated and duplicated networks. Different signals sent through the 

network mimic different environmental cues, such as, for instance, differences in temperature, 

where greater differences in values represent greater environmental turmoil (see Methods). 

 

The increased phenotypic variance of network duplication. Examples of ‘simple’ and 

‘duplicated’ artificial Gene Regulatory Networks (aGRNs) can be found in Figures 1 and 2 

(see Methods). For information on how these are constructed and used in the current study, we 

refer to Methods and SI Appendix. 
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 Figure 3A shows a Phenotypic Trajectory Analysis (see Methods) of a population of 

simple (10 nodes) and duplicated networks in a single environment. It provides an example of 

the increase in the phenotypic variation of the duplicated population compared to the simple 

(ancestral) ones. Although the phenotypic effect of WGD depends on the network’s topology 

(i.e., the genotype), the average phenotypic value of the duplicated networks is on average 

more extreme than that of the simple networks. It is noteworthy to mention that the phenotypic 

variance of duplicated networks is on average significantly larger than that of simple networks 

with the same number of nodes, but not having the typical ‘duplicated’ network structure (Fig. 

3B, comparing, for instance, the mean variances of the output nodes from the 20-node 

duplicated networks with those of simple 40-node networks (red arrows) (see also SI Appendix, 

Fig. S3.2). Similarly, the average phenotypic variance σ as measured by multiplying variance 

of both (mean) output node values of populations (1000) of simple networks of 10 nodes and 

their duplicated networks is more than four times higher for duplicated (σ=0.176) compared to 

single networks (σ=0.041; Fig. 3C). For each pair of simulated simple-duplicated networks, the 

phenotypic vector length increases by about 30% (average vector length for single networks: 

0.77±0.31; for duplicated networks: 1.00±0.30). Furthermore, this increase in phenotypic value 

(trait) is in the same direction as the phenotype of the single network. The relative angle 

between both vector angles is 0°±5° (Fig. 3D). For instance, if we consider gene expression as 

a trait, when gene expression is at a certain ‘high level’ in a simple network, gene expression 

will generally be further increased in the duplicated network. The same is true for repression 

of gene expression: in the duplicated network, gene repression will be higher/stronger. Of 

course, there are exceptions to the rule, indicated by vectors that point in contradictory 

directions, such as vectors in the lower left quadrant that point upwards rather than downwards 

(Fig. 3A). This pattern holds true for networks of all sizes and initialization conditions (see SI 

Appendix S2 and S3), but the dispersion of the relative angles slightly increases in larger 

networks. Genome doubling thus affects the phenotypic trait in the same ‘direction’ as in the 

nonduplicated ‘ancestral’ network, in a multiplicative manner, but the directionality, and thus 

predictability of the trait change decreases when networks increase in size. The duplication of 

the particular structure of a genetic network, rather than the sole increase in nodes, therefore 

underlies the observed pattern of phenotypic (or niche) expansion. Thus, WGD seems to 

systematically ‘exaggerate’ the obtained phenotypic value of the single network rather than 

driving it into a random direction. 
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Selection along environmental gradients. The relative fitness between the simple and 

duplicated networks, as for instance expressed in differential survival or reproduction, is higher 

for phenotypes generated by simple networks in the reference environment, and when 

deviations between the new and reference environment are small. In contrast, when 

environmental change is large(r), the fitness of the duplicated networks exceeds that of the 

simple networks (Fig. 4, A and C). By comparing differential fitness between single and 

duplicated networks, (wduplicated –wsingle)/wsingle, it becomes obvious that even small mismatches 

between the environment and phenotype impose a strong selection against the duplicated 

genomes (Fig. 4, B and D). With increasing environmental change, the fitness of the duplicated 

networks exceeds that of the simple networks, indicating that they will be favored compared to 

the non-duplicated networks. Fitness differences decrease with an increased number of nodes 

in the single network. When environmental change is too large, fitness differences equalize at 

zero since none of the networks can persist. This pattern is not qualitatively affected by the 

number of nodes in the single network. 

 

Discussion 

 

The longer-term consequences of WGDs have been discussed at large. Whole genome 

duplications increase both mutational and environmental robustness due to redundancy and 

increased genetic variation (6, 14-16, 27, 28). Many studies have reported on the co-option of 

extra duplicates specifically retained following WGD in different biological processes or 

pathways, increasing biological complexity or creating biological novelty (43-46). However, 

losing and retaining (a selection of) genes, the rewiring of gene interactions, and/or the 

functional divergence of genes takes time and selective advantages of WGDs on the short – or 

even immediate – term, often remain elusive. We have previously wondered about the 

‘conundrum’ between the many examples of recurrent polyploidy and the existence of many 

polyploids of recent origin, which seem to contrast with the evidence of relatively few 

polyploidy events that have been established on the long-term, certainly within the same 

evolutionary lineage (6, 47, 48). The long-term fixation of polyploidy does not seem to occur 

randomly in space and time. One notable example is the biased distribution of ‘survived’ WGD 

events across independent plant lineages at the Cretaceous–Paleogene or K-Pg boundary, about 

66 million years ago (Mya) (22). Other ‘waves’ of WGDs may correlate with periods of global 

climatic change during the Paleocene–Eocene, ca. 56–54 mya (18), or the last glaciations (23). 

The possible correlation between the ‘establishment’ of WGDs at times of environmental 
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upheaval is interesting, but, although some interesting hypotheses have been put forward (49, 

50), remains to be explained. The fact that polyploids can survive drastically changing 

conditions or cataclysmic impacts while their diploid progenitors cannot, suggests a short-term, 

perhaps even immediate, evolutionary advantage for polyploids. 

 Some of the immediate consequences of polyploidy have been well described (13, 14, 

27). One of the most consistent effects of WGD is an increase in cell size, but physiological 

effects have also been often observed. For instance, first-generation autotetraploids of 

Arabidopsis thaliana instantaneously enhanced their salt tolerance when compared to their 

diploid ancestors (51). Neo-autotetraploid Arabidopsis lines were shown to experience a 

tradeoff, demonstrating lower fitness compared to diploid progenitors under non-saline 

conditions, but higher fitness in response to saline challenge. The authors proposed that in 

conditions of salinity stress the autopolyploid lineages would benefit from a fitness advantage 

that could contribute to their establishment and persistence. In turn, autotetraploid Arabidopsis 

had been shown to be also more drought tolerant (52). Tetraploid rice (Oryza sativa) and 

citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.) too, have an increased tolerance 

to salt and drought stress because of WGD, which affects the expression of genes involved in 

stress and phytohormone response pathways (53, 54). Similarly, tetraploid rootstock-grafted 

watermelon (Citrullus lanatus) plants are more tolerant to salt stress than are diploid plants 

(55). Although such physiological and cellular responses to stress have thus been frequently 

documented for polyploids (16), the exact molecular processes underlying these responses 

remain obscure (56). Both the ‘gigas’ effect shown by polyploids, as well as observations in 

shifts in photosynthetic rates or stress tolerance, are in line with our findings when considering 

polyploidy at the genomic and gene regulatory network level. The established extreme 

phenotypes in nature are merely the result from selection on the expanded phenotypic variation 

following WGD, incidentally improving fitness under novel environmental conditions (57), 

rather than the outcome from any directional and deterministic trait change in response to 

environmental change (which may increase polyploidization rates by itself (58)). As shown in 

Figure 3, simply considering the particular structure of duplicated networks, these networks 

show greater variation in trait values, solely likely being able to explain observations such as 

increased drought and salt tolerance. In an elegant simulation experiment in yeast, van Hoek 

and Hogeweg (59) showed that WGD can lead to increased fitness under conditions that require 

elevated fluxes for certain pathways by increasing the absolute dosage of all the genes in a 

pathway. 
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 Direct comparison of our results with experimental data on autotetraploid transcriptional 

regulation is not straightforward. First, experimental data consist of transcript/protein or 

metabolite numbers relative to transcriptome size, cell number, or dry weight, whereas our 

output represents up- or downregulation compared to the population mean. Second, as with all 

models, our model is a crude simplification of reality, in which full dosage compensation is 

assumed, while dosage compensation in real GRNs is not well understood. There is some 

evidence that real biological networks have built-in structural mechanisms to deal with dosage 

shifts (60), but here again the variation between cells and genotypes will be considerable. 

Finally, experimental studies on the effects of genome duplication on transcription are rare, 

especially those focusing on the immediate effects of autopolyploidy. WGD increases the 

transcriptome size, but the degree of change depends on the genotype, and dosage changes of 

individual genes are variable (61). Gene expression differences normalized with transcriptome 

size and cell number are limited and the exact quantity depends on the genotype. Even different 

Arabidopsis ecotypes (thus with a slightly different genetic makeup) have been shown to have 

significantly different transcriptome responses for many genes in newly synthesized tetraploids 

(60). Thus, this study supports the notion that the response to polyploidy is (highly) variable 

and depends on the genomic composition, and indirectly corroborate our findings that even 

small changes in simple GRN networks can lead to quite different responses in their duplicated 

counterparts (Fig. 3). It is also interesting to note that gene expression alterations in the 

autotetraploids used (62) were developmentally stage specific, implicating that certain GRNs 

were active or inactive during different times or conditions, as expected. Gene expression 

alterations have been associated with trait changes that might be adaptive and therefore 

polyploidy might confer an immediate advantage, depending on the environmental conditions 

and the GRNs active (and useful) at a certain moment in time. 

 In stable, non-changing environments, polyploidy will often be disadvantageous, as 

shown by our simulations, but also observed in vivo. For instance, in Heuchera cylindrica, an 

herbaceous perennial plant, increased nutrient requirements following polyploidy constrain the 

ability of new polyploids to establish in the nutrient-poor habitats the diploid progenitors thrive 

in (63). Similar observations were made for the autopolyploid complex Dianthus broteri, 

where, although higher ploidies have developed specific photochemical processes to survive 

in extremely warm conditions, the reduced performance of higher cytotypes render them less 

competitive in the ‘normal’ (non-stressed) environment (64). Differential fitness is a first and 

foremost criterion underlying adaptive dynamics theory (65). Our simulation results suggest 

that duplicated networks – or their hosts - will be able to coexist to eventually replace their 
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simple progenitors only under substantial environmental change (Fig. 4), for instance, when 

they end up in contrasting environments, or when the environment is quickly changing. 

Developmental stochastic noise increases persistence in moderately fluctuating environments 

(66, 67), but exaggerated phenotypic changes are essential to persist when changes of the 

adaptive landscape occur from major disturbances. During such events, any mutation must, by 

necessity, shift the value towards that new fitness peak if they are to increase fitness (Fig. 5). 

Or, in other words, when the original adaptive peak is sinking, overshooting is necessary to 

reach the new rising adaptive peak under discontinuous and/or fast environmental change (Fig. 

5).  

 We need to notice that, in contrast to our approach here, polyploids are continuously but 

in low frequencies produced by their non-duplicated ancestors. Polyploids emerge from 

meiotic failures that lead to unreduced gametes, which are documented to occur in low 

frequencies, i.e., 0.1 to 2% in vascular plants (68). This implies that every 1/1000 to 2/100 

offspring (seeds) will experience this potential niche expansion. This number probably 

increases during times of environmental stress (16, 58). Given high fecundity in most (WGD) 

plants, our assumption of a one-to-one doubling event is thus not too far from reality. This 

implies that any potential for establishment will depend on their fitness advantage compared to 

their ancestors and the level of standing genetic variation of the ancestor population. Since we 

show polyploids to have ‘exaggerated’ traits of their ancestors, fitness advantages are to be 

expected when rapid and drastic environmental change is already in line with earlier ambient 

selection. For instance, when ancestor populations evolved under continuous warming, 

extreme heat waves will promote polyploid invasion. If such a period of warming would be 

followed by extreme cold, fitness advantages would disappear because the extreme phenotype 

would then exaggerate evolved maladaptations. On the other hand, we do observe - albeit much 

rarer - cases where the orientation of vectors in trait-space (Fig. 3, A and D), describing the 

relative contributions of the output traits to divergence between simple and duplicated 

networks, are almost opposite. In such cases, even when the fitness landscape changes more 

drastically, causing niche shifts rather than niche expansion, polyploids might be the ‘hopeful 

monsters’ being able to adapt, where their diploid progenitors go extinct (Fig. 5). As the overall 

observed directionality in trait expression after doubling decreases with increasing network 

size (see SI Appendix), we can expect WGD to provide more fuel for selection in organisms 

with more complex genomes under severe, but unpredictable, environmental changes. This 

way, whole genome duplication or polyploidy might even explain large ‘jumps’ in evolution, 

or so-called saltational evolution (69). We here deliberately use a narrative of a single tangible 
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trait (phenotype) responding to a unidirectional environmental change but would like to 

emphasize that our model is equally valid for more complex multifactorial environmental 

changes that provoke selection on a restricted set of genes. Evidently, when multiple genes 

interact in more complex networks, trade-offs and pleiotropic effects might eventually provoke 

maladaptive dynamics under such conditions and lead to failure of establishment because 

optimal phenotype-environment matching cannot be reached (70). 

 We thus show that, at least in theory, immediate consequences of polyploidy can be 

significant, but it remains to be further tested whether they can indeed explain the preferential 

survival of polyploids over diploids during periods of sudden environmental change or times 

of extinction, as previously suggested (6, 48, 71). Reconstructing what occurred tens of 

millions of years ago, such as during the K/Pg extinction event, remains extremely challenging. 

Nevertheless, genomes of extant organisms might hold some clues. For instance, Yu et al. (20), 

showed that, based on the analysis of 25 plant genomes, genes functioning at low temperature 

and in darkness and been duplicated through WGDs at around the K/Pg boundary, have been 

subsequently selected for retention following duplication. Immediately after the Chicxulub 

asteroid impact, global cooling and darkness have been shown to be the two main stresses (72). 

One can imagine that increased expression of genes functioning in shade avoidance and/or 

cold-responsive pathways, thereby enhancing the perception of light signals and/or increasing 

cold stress tolerance, might have increased the chance of survival directly after the cataclysmic 

events responsible for the K/Pg extinction. Continued selection on such highly expressed genes 

might then explain their retention on the longer-term. 

 Evolution experiments with real biological organisms might be another means to get 

further insights into the mechanistic underpinnings explaining why duplicated GRNs might 

confer a selective advantage for polyploids during stressful times. By ‘replaying the duplication 

tape of life’, fitness of nonpolyploid and polyploid species can be evaluated under normal and 

stressful conditions (24, 73-76). Transcriptomes can be sequenced, and phenotypic and 

physiological responses measured and linked to the duplication of genomes and gene 

regulatory networks. Finally, a more explicit eco-evolutionary modeling approach building on 

the work presented here but also considering the history of selection, multidimensionality, 

magnitude, frequency, and direction of environmental change is needed. This too remains the 

topic of future work. 

 

Methods 
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Defining and initializing aGRNs. In the current study, we consider artificial gene regulatory 

networks (aGRNs), mimicking gene regulatory networks in the traditional sense i.e., a set of 

genes or proteins that interact with each other to define and control a specific function (42, 77-

80). For instance, such networks can transduce signals from environmental cues into a proper 

phenotypic behaviour that allows an organism to respond to environmental changes. In our 

aGRNS, we discriminate between ‘regulatory’ genes or proteins (like transcription factors, 

TFs), regulating the activity of other genes or proteins, and so-called ‘output’ genes or proteins, 

which produce an ‘output’, such as a structural protein or a metabolite. We also consider so-

called ‘input’ genes or proteins, which can ‘sense’ the environment, and which can receive an 

input value. All these different genes or proteins form the nodes of the network, while edges 

between nodes represent their interactions. Furthermore, the following rules apply: 1) networks 

have a fixed number of nodes and are built by a preferential attachment algorithm and thus 

have properties that are close to scale-free networks, and 2) all edges are directed and have 

weights to mimic the strength of regulation (interaction). For instance, a weight can be 

considered as the strength with which a regulator binds to its target, or alternatively, as the 

strength with which it induces - or represses - expression of its target. It should be mentioned 

that all ‘simple’ or ‘single’ (non-duplicated, ancestral) networks have two output nodes (while 

the duplicated network has four output nodes). As a result, for better interpretation of the 

outcomes, plots are two-dimensional (see below). 

 Although there is still debate as to what extent biological networks are truly ‘scale-free’ 

(81), there are reasons to believe that many biological networks at least have certain features 

similar to scale-free networks, such as a high diversity of node degrees and absence of nodes 

in the network that could be used to characterize the rest of the nodes (82). Therefore, here, we 

consider directed, weighted, scale-free networks as our initial networks. To generate these 

directed scale-free networks, we used the ‘Preferential Attachment’ algorithm (83-85). Using 

this algorithm, nodes have a higher chance to connect with nodes with a higher degree (more 

connections) compared to other nodes (‘rich get richer’) (85). Another significant characteristic 

of real biological GRNs is the high number of feed-forward loops (FFL; A regulates B, B 

regulates C, A regulates C)(86, 87). To enrich our aGRNs with FFLs, we used the algorithm 

of Herrera and Zufiria (88). By using this algorithm, the clustering coefficient of the network 

increases which in turn causes an increase in the number of triadic motifs in the network. Then, 

by controlling and changing the direction of edges, we can easily raise the number of FFL 

motifs in the network. It should also be noted that, for computational reasons, generated 

networks containing feedback loops (never-ending loops; A regulates B, B regulates C, and C 
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regulates A, or self-regulation like A regulating A) are discarded. Besides, although such motifs 

do occur in real biological networks, they are rare (89). 

 As stated above, in our aGRNs, three different kinds of nodes are distinguished (Fig. 1). 

Nodes with zero in-degree and non-zero out-degree are referred to as input nodes. The number 

of input nodes is variable and depends on the preferential attachment algorithm, but usually 

lies between 20% and 40%. Nodes with non-zero in-degree and non-zero out-degree represent 

regulators, affecting other nodes (genes), such as transcription factors. Finally, nodes with non-

zero in-degree and zero out-degree are output nodes defining the ‘phenotype’ or ‘behaviour’. 

To allow analyses of the phenotypic effects in an easily conceivable two-dimensional space 

(see further), the number of output nodes is artificially set to 2. In practice, this means that, for 

a network with n nodes, the network is built on n-2 nodes, and after the n-2 network has been 

built, the last two nodes are added. These two nodes cannot connect to others, but others can 

connect to them, again by applying the preferential attachment algorithm. Every edge has a 

weight corresponding to the ‘strength’ of the regulatory interaction between genes. The weight 

of the edges is determined randomly by a standard Normal Distribution, generating values 

between -1 and 1, with positive values indicating stimulation, and negative values repression. 

After initialization of the network, the weights of the edges are fixed. However, to model 

changes in the network after receiving different values of input nodes, i.e., mimicking 

environmental cues, we have defined an ‘activation level’ for each node. Initially, activation 

levels of all nodes are set to 0, but during simulation, the input signal will determine the 

activation level of the input node(s), which will then be propagated through the network 

changing the activation level of each downstream node in function of all incoming edge 

weights and the activation level of all previous nodes (90). Concretely, this way, when the 

value/expression of one node/gene is increased (or decreased), this would lead to increased (or 

decreased) dosage of a regulator, in turn being responsible for the increased (or decreased) 

production of its target, and so on. 

 

Network duplication. To mimic WGDs, we simply duplicate all nodes of the network. 

However, this means that, if a regulator A regulates nodes B and C, its duplicate A’ regulates 

the duplicated targets B’ and C’, but also the original targets B and C. In turn, the original 

regulator A also regulates all four targets, B, B’, C, and C’ (Fig. 2). The edge weights between 

corresponding nodes in the non-duplicated (A-B) and duplicated (A-B, A’-B’, A’-B, A-B’) 

network remain unaltered. It should be noted that such operation mimics only part of the effects 

of a polyploidisation event, i.e., the effects of genome doubling (autopolyploidy) and not those 
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of genome merging (allopolyploidy). As a result, throughout the paper, we will only consider 

autopolyploidy, where the ‘own’ genome gets duplicated, rather than allopolyploidy, where the 

duplicated genome is obtained from the merging of genomes of different species. Although 

there is still discussion on the ratio of autopolyploids versus allopolyploids in the polyploid 

realm, there is reason to believe that autopolyploids are much more frequent than previously 

thought (91). We are aware of the fact that, in autopolyploids, unlike in allopolyploids, the 

duplicated genes might be seen more as different alleles of the same gene, rather than as 

different genes, but we feel this will not have a major effect on our conclusions, because even 

when considered only different alleles, it will affect certain traits (e.g., due to dosage effects) 

(13, 14, 16), and when there is no recombination, they can be considered separate genes. 

 

Signal propagation in the network. One of the main purposes of our simulations is to see 

how signals, such as environmental cues, propagate over simple (non-duplicated) versus 

duplicated networks, the hypothesis here being that, because of the specific structure and a 

denser wiring of duplicated networks (Fig. 2), greater parts of the network – and thus more 

genes - are affected, with consequently, greater variation in output values. As far as we know, 

this has not been studied in a biological context, and certainly not in the context of duplicated 

networks and polyploidy or genome duplication. Signal propagation functions in the network 

(see further) will determine the output values, and thus the phenotype. We evaluated output 

changes by using constrained propagation using the hyperbolic tangent function (tanh) with the 

max value of “+1” and min value of “-1” (eq. 1). This function is typically used to determine 

the activation level of nodes in neural networks (90, 92, 93). Similar ‘sigmoid’ functions have 

also been used previously to study signal processing in complex regulatory gene networks (40, 

94): 

𝐴𝑎 = 𝑡𝑎𝑛ℎ(∑ 𝐴𝑖  × 𝑊𝑖→𝑎𝑖𝑁𝑔 )        (Eq. 1) 

where 𝐴𝑎 is the activation level of node 𝑎, 𝑊𝑖→𝑎 is the weight of the edge from node 𝑖 to node 

𝑎, and 𝑁𝑔 is the list of nodes that are connected to node 𝐴. 

 Depending on the different input signals, different outputs will be reached. This 

constrained implementation mimics biological networks in that it considers minimal and 

maximum values for, for instance, an increase in gene expression (increase in gene expression 

is not unlimited). We additionally provide a sensitivity analysis for an unconstrained linear 

propagation algorithm in SI Appendix, Text S1. 
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 Environmental changes, such as for instance changes in temperature, are mimicked by 

changing the signal values of input nodes (input values are drawn from a uniform distribution 

between -1 and +1) and following their propagation over the network. Values from the two 

output nodes, o1, o2, are interpreted as a phenotype in a two-dimensional (2D) trait space 

(hence the two output nodes). Since we have four output nodes for duplicated networks, like 

o1, o2, and o1’ and o2’, each output value is calculated as the average of the corresponding 

output nodes, e.g. (o1+o1’)/2. We thus consider a conservative but realistic full dosage 

compensation of the gene expression after WGD (27). This representation allows us to quantify 

phenotypic changes by means of Phenotypic Trajectory Analysis, PTA (95, 96). In brief, this 

approach allows us to understand whether evolutionary divergence between pairs of 

populations, here the ancestral (single/simple) and duplicated networks, is parallel, convergent, 

divergent, or random (97). To this end, vectors �⃗�[𝑜1, 𝑜2] are drawn from the ‘phenotype/trait 

value’ (e.g., positions of the two output nodes in a 2D space, see Fig. 3A) of an ancestral simple 

network to the ‘phenotype/trait value’ of its duplicated counterpart. Changes in the vector 

length demonstrate how much the eventual trait value (the phenotype produced by the 

duplicated genome) is changing compared to the initial value of the simple aGRN. The 

distribution of these differential vector lengths therefore identifies the strength of the 

phenotypic (and putative niche) shifts, and thus the strength of the divergence due to genome 

doubling. The orientation of a vector in trait-space describes the relative contributions of the 

output traits to divergence between that pair of populations. Changes in angular dispersion 

between the ancestral and duplicated phenotype indicate whether phenotypic changes among 

all independent network doubling events occur in parallel for all doubling events (absolute 

angles in the trait space similar, hence showing directional or parallel evolution), in the same 

direction of the initial phenotypic position (relative angles between the ancestral and doubles 

genotypes are zero, showing niche expansion), or completely random (both absolute and 

relative angles randomly distributed across trait space). We calculated overall phenotypic 

variation at the population-level (hence a population of 10K single versus doubled genomes 

generated by the same initialization) by calculating the variance of the mean of the two output 

nodes, and by multiplying the variance of the two output values. Artificial gene regulatory 

networks consisting of 10, 20, 40, 60, 80, and 100 nodes were generated and exposed to 10,000 

environmental conditions by drawing the input values (activation levels for the input nodes) 

from a uniform distribution between -1, and +1, as stated previously. We report these variances 

for 400 populations of 10K networks per category (e.g., number of nodes in the single network; 

Fig. 3B). We specifically test how doubling of simple scale-free networks of size n affects 
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phenotypic variation relative to the variation generated by randomly selected scale-free 

networks with the same number of nodes (2n) but the same parameter distributions. Unless 

explicitly mentioned, we present data for ancestral (simple) networks consisting of 10 nodes 

and node/edge values initiated from the uniform distribution. We tested the robustness of our 

analysis by sensitivity analyses for the full range of node numbers (SI Appendix, Text S2) and 

network initialisation from Gaussian N(0,1) and mixed uniform U[-1,1]-Gaussian N(0,1) 

distributions (see SI Appendix, Text S3). 

 

Linking phenotypes to the environment: fitness. Besides studying theoretical phenotype-

WGD mapping, we moved one step further and tested the hypothesis that duplicated genomes 

provide fitness benefits under larger environmental changes. To this end, we simplified the 

two-dimensional phenotype vector �⃗�[𝑜1, 𝑜2] towards its one-dimensional average value [�̅� =

(𝑜1 + 𝑜2)/2] as it was shown to generate qualitatively similar insights (Pearson correlation r 

between 0.45-0.52). We start from a population of simple networks that are well adapted to 

their environment and assume that the individual phenotypes are all centred around the fitness 

optimum. We simulated a genome doubling effect of all simple genetic networks and quantified 

the mean fitness �̅� of both the simple and duplicated populations in the reference environment 

and under environmental changes of different magnitudes. 

 For each size of simple networks (resp. 10, 20, 40, 60, 80, and 100 nodes), we constructed 

10,000 simple and their duplicated networks as described above. All these 10K networks have 

different topologies and different edge weights. For all these simple and duplicated networks, 

we here provide insights from simulations with an input value of 0.01, creating a large 

compilation of networks with different output values centered around 0 (see above). This 

specific input value represents our ‘reference environment’ and guarantees that the average 

phenotype of the population is close to the fitness optimum (0.01), when we assume that fitness 

w is inversely proportional to the difference between input and output value. To assess fitness 

in the reference environment and how it is affected by the underlying fitness function, the 

performance of each network was calculated using both a negative linear and a Gaussian fitness 

function.  

For the linear function, 𝒘 = 1 − |𝐴𝑖 − 𝐴𝑜| and 𝒘 = 0 when |𝐴𝑖 − 𝐴𝑜| > 1  (Eq. 2),  

while for the Gaussian function, 𝒘 =
1

√2𝜋
𝑒

−|𝐴𝑖−𝐴0|
2

2       (Eq. 3).  

Networks with a phenotype (output 𝐴𝑜) similar to the reference environment (input 𝐴𝑖) will 

have the maximal fitness, and this value decreases to zero under large deviation from the 
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reference environment. The mean fitness �̅� of the simple networks under this reference 

environment was set to the maximum of 1, to which all other measured mean fitness values 

were contrasted with. 

 Next, the populations of these simple and duplicated aGRNs were subjected to deviating 

environmental conditions as input Ai, our environmental change gradient, and w was again 

calculated according to the output phenotype 𝐴𝑜 as in Eq. 2 and Eq. 3. To this end, the input 

value 𝐴𝑖 of one randomly chosen input node is changed gradually with 𝛥𝐴𝑖. If there is more 

than one input node, which is always the case for duplicated networks, the input of the other 

input nodes is kept at zero. Given the fitness values w ranging between 0 and 1 under all 

conditions, it could be considered as a survival rate: networks with an output equal to the input 

have a survival of 100%, whereas those differing a lot will approach a survival rate of zero, 

pending the used fitness function (Eq. 2-3). The mean fitness over the 10K simple or duplicated 

networks (�̅�) then represents the average population-level survival rate. Given the choice of 

the reference environment, �̅� in the environment with input 0.01 is maximal for the simple 

networks and used as a baseline for the performance of doubled networks in this reference 

environment and for all simple and doubled networks in environments with a different input 

value, hence environmental change. We represent both the fitness relative to this baseline for 

networks of 10 nodes, and the differential fitness, 
�̅�𝒅𝒐𝒖𝒃𝒍𝒆−�̅�𝒔𝒊𝒎𝒑𝒍𝒆

�̅�𝒔𝒊𝒎𝒑𝒍𝒆
 for simulations of networks 

with different number of nodes. 

 

Data availability. Documentation and software to generate artificial scale-free gene regulatory 

networks and their duplicated versions simulating the result of whole genome duplication 

(WGD) can be found at: https://github.com/Mehrshad-Ebadi/SC-as-aGRNs. Examples of 

networks and their duplicated versions of different sizes can be found there as well. 
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FIGURE LEGENDS 

 

Fig. 1. Two examples of an aGRN of 10 nodes generated by the preferential attachment 

algorithm. All nodes represent regulatory genes or proteins, except nodes 8 and 9 in both 

networks, which are output nodes. Nodes 5 and 6 can act as input nodes since all edges are 

outgoing. Weight values are also indicated. Positive weight values represent induction, while 

negative weight values indicate repression (as for example in gene expression). The topology 

of a specific aGRN is unique and can be considered the genotype, while the output nodes or 

node values define the phenotype. See text for details 

 

Fig. 2. Example of a simple or ancestral (left) and duplicated (right) aGRN. 

 

Fig. 3. Phenotypic Trajectory Analysis (see Methods) comparing a population of single versus 

its duplicated networks. (A) The value of one output node is plotted against the value of the 

second output node for simple (blue dots) and duplicated (orange) networks for a simple GRN 

of 10 nodes. Thinning has been applied and from the 1,000,000 values only a fraction is shown, 

to facilitate interpretation. (B) The variance for simple and duplicated networks for networks 

of 10, 20, 40, and 80 nodes (400 networks consisting of 10K single/double networks per size 

category). Variance of the output is increasing with node additions, but duplicated genomes 

always have higher variance compared to their unduplicated counterparts. Red arrows denote 

the difference in variance between duplicated networks and random networks with an equal 

number of nodes but not having the typical duplicated topology (structure doubling versus node 

doubling) (C) Cumulative density function of the phenotypic variance σ as measured by 

multiplying variance of both (mean) output node values in the 10K simulated simple GRNs of 

10 nodes, and their duplicated counterparts. (D) Angular dispersion of the relative angles 

between the single and doubled networks for 10K simulations of simple GRNs of 10 nodes, 

and their duplicated counterparts. 

 

Fig. 4. Mean fitness �̅� of simple and duplicated networks relative to the fitness of the 

population of simple networks in the reference environment, as a function of different input 

values, assuming a Gaussian fitness function (eq. 3) (A) and a linear fitness function (eq. 2) 

(C). Differential fitness as a function of different input variables that represent environmental 

change with fitness modelled by a Gaussian (B) and linear function for networks of different 
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size (D). Note that we only report relative �̅� for input values leading to non-zero values for the 

single network. 

 

Fig. 5. 3D representation of fitness landscapes in which hills, corresponding to local adaptive 

peaks, are surrounded by valleys or depressions, corresponding to regions of the phenotype 

space where no survival is possible. Polyploidy may allow a wider and faster exploration of 

phenotypic space, ultimately conferring a potential adaptive advantage under challenging 

environmental conditions. Blue-green dots are individuals that can survive, red dots denote 

organisms that cannot survive. In a stable environment (top left panel), non-polyploid 

organisms are expected to have reached their local adaptive peaks. WGD results in an 

expansion of the phenotypic space covered by the population, although some polyploid 

genotypes might survive, most polyploids cannot survive in this environment (bottom-left 

panel). Adaptive landscapes are readily distorted by environmental challenges, such as 

cataclysmic or extinction events (right panels), resulting in shifts in the relative locations of 

their adaptive peaks. Under these conditions, although most diploids are expected to perish (top 

right panel), some polyploid organisms (which could be referred to as ‘hopeful monsters’), 

featured by wider accessible phenotype space (see text for details), have better chances to fall 

near the peak of a newly formed adaptive hill and thus to acquire the necessary evolutionary 

innovations to colonize novel niches (bottom right panel). 


