
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 1

Diktyo: Network-Aware Scheduling in
Container-based Clouds

José Santos∗, Member, IEEE, Chen Wang†, Member, IEEE, Tim Wauters∗, Filip De Turck∗, Fellow, IEEE
∗ Ghent University - imec, IDLab, Department of Information Technology, Gent, Belgium

Email: josepedro.pereiradossantos@UGent.be
† IBM Thomas J. Watson Research Center, New York, USA.

Abstract—Containers have revolutionized application deploy-
ment and life-cycle management in current cloud platforms.
Applications have evolved from single monoliths to complex
graphs of loosely-coupled microservices. However, the efficient
allocation of microservice-based applications is challenging due
to their complex inter-dependencies. Further, recent applications
are becoming even more delay-sensitive, demanding lower latency
between dependent microservices. Scheduling policies in popular
container orchestration platforms mainly aim to increase the
resource efficiency of the infrastructure, insufficient for latency-
sensitive applications. Application domains such as the Internet of
Things and multi-tier web services would benefit from network-
aware policies that consider network latency and bandwidth in
the scheduling process. Previous works have studied network-
aware scheduling via theoretical formulations or heuristic-based
methods evaluated via simulations or small testbeds, making
their full applicability in popular platforms difficult. This paper
proposes a novel network-aware framework for the popular
Kubernetes (K8s) platform named Diktyo that determines the
placement of dependent microservices in long-running applica-
tions focused on reducing the application’s end-to-end latency
and guaranteeing bandwidth reservations. Simulations show that
Diktyo can significantly reduce the network latency for various
applications across different infrastructure topologies compared
to default K8s scheduling plugins. Also, experiments in a K8s
cluster with microservice benchmark applications show that
Diktyo can increase database throughput by 22% and reduce
application response time by 45%.

Index Terms—Microservices, Container Scheduling, Kuber-
netes, Network-Aware

I. INTRODUCTION

Microservice architectures have gradually become the de-
facto paradigm for application deployment in modern cloud
platforms [1]. The traditional large monolith is decomposed
into multiple loosely-coupled microservices, implemented and
deployed independently. The increasing adoption of containers
calls for efficient orchestration strategies for microservice-
based applications in current cloud platforms (e.g., Kubernetes
(K8s) [2], Amazon AWS [3]). However, next-generation appli-
cations are pushing cloud infrastructures further by demanding
even lower latency between dependent microservices. Applica-
tion domains such as multi-tier web services [4], the Internet of
Things (IoT) [5], video streaming services [6], and databases
[7] are latency-sensitive, requiring sub-millisecond end-to-end
(E2E) latency for their proper operation. Current scheduling
methods in popular orchestration platforms focus mostly on

Manuscript received April 26, 2023

optimizing resource utilization in the infrastructure (e.g., CPU
and Memory), insufficient to satisfy the stringent requirements
of these applications, especially concerning latency and band-
width. K8s is currently the most popular container orches-
tration platform. It automates several processes through the
containerized applications’ life-cycle, including deployment
and scaling [8]. However, network-aware scheduling policies
are missing in K8s to enable the network-aware placement
of dependent microservices of long-running applications in
container clouds.

Latency reduction is a primary objective since users usu-
ally face latency issues when using multi-tier applications,
affecting the overall application performance [9]. These ap-
plications typically include tens to hundreds of microservices
with complex inter-dependencies. Network latency is usually
the primary culprit since these microservices are scheduled in
the infrastructure without latency awareness, resulting in large
distances between servers allocating dependent microservices.
Also, Bandwidth optimization plays a key role, especially for
those applications with high volumes of data transfers among
microservices. For example, multiple replicas in a database
application may require frequent copies to ensure data con-
sistency. Spark jobs [10] may have regular data transfers
between mappers and reducers. Insufficient network capacity
on links between nodes would lead to increasing delay or
packet drops, which would further degrade the application’s
Quality of Service (QoS). These applications would benefit
from network-aware scheduling policies that determine the
service placement based on latency and bandwidth metrics in
addition to computing resources (e.g., CPU and Memory). Net-
work latency and available bandwidth on links between cluster
nodes can vary according to their locations in the underlying
infrastructure. Deploying dependent microservices on different
nodes without latency and bandwidth awareness can drastically
impact the application’s response time and overall QoS. For
example, in the Redis cluster application [11] (Fig. 1a), master
nodes need to synchronize data with slave nodes regularly.
Dependencies between the masters and the slaves need to be
considered in the scheduling process. Otherwise, high latency
or low bandwidth between masters and slaves can lead to
slow Create, Read, Update, and Delete (CRUD) operations
[12]. Similarly, several dependencies exist in typical multi-
tier web applications as the Online Boutique e-commerce
application [13] (Fig. 1b). Deploying a microservice instance
far away from dependent microservices can impact the Online

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 2

Boutique’s E2E latency.
Previous works on network-aware scheduling focus mostly

on theoretical formulations (e.g., [14]–[16]) or heuristic-based
algorithms (e.g., [17], [18]) that usually are assessed via
simulations or small testbeds, limiting their applicability in
production systems. This paper presents a novel network-
aware scheduling framework, named Diktyo 1, for the K8s
platform inspired by its recent scheduling plugins architecture
[19]. Diktyo proposes additional scheduling plugins aiming to
determine low-latency deployment schemes for applications
scheduled on K8s clusters. The framework minimizes the
application’s E2E latency by selecting nodes with low network
costs for dependent microservices and with sufficient band-
width capacity based on previous microservice allocations.
Diktyo provides near-optimal container placement, considering
the application’s microservice dependencies and the underly-
ing infrastructure topology. Section V presents further details
about the Diktyo framework. To the best of our knowledge,
Diktyo goes beyond the current state-of-the-art since it is
the first attempt toward scalable network-aware placement of
dependent microservices in future cloud-native architectures.
The main contributions of the paper are the following:

• Diktyo framework: The design and implementation of
a network-aware scheduling framework that separates
the control plane (the scheduling logic) from the data
plane (i.e., the application microservice dependencies
and the cluster network topology). Two asynchronous
controllers manage two Custom Resources (CRs) defined
as Custom Resource Definitions (CRDs) [20] in K8s:
AppGroup CRD establishes application’s microservice
dependencies; NetworkTopology CRD caches and up-
dates network costs between regions and zones for the
underlying K8s cluster topology. The proposed frame-
work has already been accepted in the K8s scheduling
community open-source repository [21] as an alternative
scheduler. Researchers can use our framework to deploy
their applications with network awareness in a K8s cluster
and evaluate their performance against current mecha-
nisms.

• Mixed-Integer Linear Programming (MILP): The for-
mulation of a MILP model for the container scheduling
problem in K8s, including the specification of application
dependency graphs and the underlying cluster topology
with varying links in terms of network latency and band-
width capacity. K8s allows the dynamic configuration of
distinct plugins to achieve different goals concerning ap-
plication scheduling. Prior works have not studied the per-
formance of plugin combinations compared to an optimal
solution. We answer this important question by evaluating
an optimal scheme given by a MILP formulation, serving
as an ideal baseline to assess the performance of the
Diktyo framework and existing K8s scheduling plugins.
Simulations show that Diktyo significantly outperforms
current scheduling plugins concerning the application’s
E2E latency (Sec. VI-A).

1Diktyo means ”network” in Greek, as an analogy of Kubernetes (K8s),
which means ”pilot” in Greek.

(a) Redis Cluster application.

(b) Online Boutique application.

Fig. 1: Illustration of microservice dependencies [11], [13].

• Plugin implementation: Three scheduling plugins have
been designed for the Diktyo framework. The combina-
tion of these plugins aims to approximate the optimal
solution given by the MILP model focused on minimizing
the application’s E2E latency in a scalable manner. A
TopologicalSort plugin sorts microservices based on
topological information, a NodeNetworkCostFit plugin
filters out nodes based on microservice dependencies,
and a NetworkMinCost plugin scores nodes based on
network weights ensuring low latency between dependent
microservices. All plugins achieve logarithmic perfor-
mance over the number of nodes and microservices
(Sec. VI-B).

• Evaluations with microservice applications: The eval-
uation considers real-world applications typically used as
microservice benchmarks: a multi-tier web application
named Online Boutique [13], and a database application
named Redis cluster [11]). Experiments in a distributed
K8s cluster show that Diktyo increases throughput by
22% for Redis and reduces the application’s response
time on average by 45% for Online Boutique (Sec. VI-C).

II. RELATED WORK

This section addresses current literature on network-aware
scheduling. Section II-A presents prior works related to
network-aware placement or topology-aware scheduling. Sec-
tion II-B reviews research on current open-source projects
related to container scheduling, including production-ready
plugins focused on microservice dependencies.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 3

A. Network-aware and Topology-aware scheduling

Theoretical formulations have been the most applied
method to solve network-aware allocation in the last few
years [14]–[18], [22], [23]. These proposals typically focus
on Integer Linear Programming (ILP) models to find the
optimal allocation scheme based on a particular objective.
The main drawback of these modeling approaches is that they
cannot find a feasible solution within an acceptable time, thus
limiting their applicability in operational environments. How-
ever, the modeling can always provide an optimal benchmark
for heuristic-based algorithms. Containerized applications
have been recently studied [24]–[30]. These works focus
on optimizing container placement by addressing different
challenges, including the efficient resizing of containers [29],
multi-tenant fair scheduling [26], reducing E2E tail latency
[30], and reducing the network latency [25]. Microservice
dependencies have also been addressed mainly in the field of
batch job scheduling systems [31]–[36]. Most efforts focus on
improving resource efficiency [32], [35], characterizing inter-
job dependencies [34], reducing the makespan of jobs [33],
or improving the system’s throughput [31]. The considered
dependencies usually are temporal [34], [35], meaning later
running jobs depend on the successful completion of earlier
ones. However, the microservice dependencies considered in
this paper are spatial, meaning all containers need to com-
municate with others and run as a whole for the application.
Neglecting the impact of dependent containers during schedul-
ing can impact the performance of the whole application.

Topology-aware scheduling has also been studied lately
[37]–[41]. These efforts focus on placing microservices based
on cluster topology information or application characteristics.
Authors aim to improve performance by focusing on the
heterogeneity of resources [40], the cluster energy efficiency
[38], or the node Non-Uniform Memory Access (NUMA)
topology [42]. However, most works do not address both
the application characteristics and the infrastructure network
topology for long-running applications with several microser-
vices as typical K8s workloads. Data Centers (DCs) are also
an important scenario where network-aware scheduling has
been studied in recent years [18], [43]–[48]. These works
focus on optimizing network bandwidth to reduce traffic con-
gestion [44], reducing the average task completion time [43],
improving performance focused on resource dependencies
[47], or priority-based flow-aware scheduling [48]. However,
practical implementations of these methods are missing since
most network-aware algorithms are evaluated via simulations.
In addition, most efforts focus on Virtual Machine (VM)
placement and only a few address container allocation [18].
Nevertheless, network latency is usually overlooked in current
network-aware approaches for DC topologies since network
bandwidth is their primary goal. Geo-distributed clouds also
impose several challenges toward network-aware deployment
schemes [22], [27], [28], [49]–[51]. Recent works [27], [28]
model application dependencies as service chains to optimize
service scheduling in edge-fog computing scenarios [52]. High
latency is a major concern for many applications (e.g., IoT and
video streaming) in these distributed topologies. These efforts

have shown the benefits of network-aware placement methods
concerning the application’s response time and throughput.

B. Open-Source Projects

The Volcano project [53] provides several plugins for
K8s focused on microservice dependencies. The Gang [54]
plugin considers tasks running in different containers as a
group. It ensures that a minimum number of containers in
the group can be deployed as a whole based on the cluster
resource availability. The Task Topology [55] plugin groups
containers into buckets based on task affinities and anti-
affinities. It minimizes data transmissions between tasks in
the same bucket, thus decreasing transmission delay in the
overall job execution time. Latency is not addressed since tasks
are only placed according to the created buckets. Additional
plugins in the Volcano project such as the Binpack [56] and
the DRF [57] focus on improving resource utilization and
preventing small job starvation [58]. The Scheduler Plugins
repository [19] also provides additional plugins for the K8s
platform. It is worth mentioning the CoScheduling [59] and the
Topology-aware [60] plugins focused on microservice depen-
dencies. CoScheduling operates similarly to the Gang plugin
provided by Volcano. It ensures that a minimum number of
microservices belonging to the same PodGroup are scheduled
as a whole. The main difference between Diktyo plugins and
CoScheduling is that Diktyo supports complex dependencies
between heterogeneous containers. The Topology-aware [60]
plugin focuses on performance issues concerning memory, and
CPU accesses in NUMA nodes [61] based on node topologies
specified in NodeResourceTopology CRs. In contrast, Diktyo
considers both microservice dependencies and the underlying
cluster network topology.

In summary, Table I shows a comparison of all plugins
listed above with the proposed Diktyo framework concerning
the plugin’s extension point, scheduling goals, and network
awareness. Diktyo goes beyond the current literature since
it considers the applications’ microservice dependencies and
the underlying network topology to determine low-latency
deployment schemes in K8s clusters. Prior works focus mostly
on theoretical models and heuristics evaluated via simulations
or small testbeds, limiting their applicability in large-scale
production clusters.

III. MICROSERVICE SCHEDULING IN KUBERNETES (K8S)

Microservices in K8s are often tightly coupled into a group
of containers called a pod. A pod is the smallest working
unit in K8s representing the collection of containers and
volumes (storage) running in the same execution environment
[2]. K8s schedules a given pod on a node based on the pod
deployment requirements and the cluster’s available resources.
The component responsible for scheduling operations is called
Kube-Scheduler (KS), the default scheduler in K8s. The KS
chooses a node for the pod deployment based on a two-step
operation. Firstly, the KS checks if nodes can run the pod
based on a set of filters, also known as predicates. These filters
focus mostly on the pod’s resource requirements (e.g., CPU
and Memory) and check if the node has enough capacity to

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 4

TABLE I: Comparison among different scheduling plugins.

Plugin / Framework Project Extension
Point

Scheduling
Goal

Service
Topology

Microservice
Dependencies Latency Bandwidth

Gang V PF AP & R ✕ ✕ ✕ ✕
Task Topology V QS & PF & S T & R ✓ ✕ ✕ ✕

Binpack V S R ✕ ✕ ✕ ✕
Dom. Res. Fairn. (DRF) V QS & PF R ✕ ✕ ✕ ✕

CoScheduling S QS & PF AP ✓ ✕ ✕ ✕
Topology-aware S F R & T ✓ ✕ ✕ ✕

Diktyo D QS & F & S L & B ✓ ✓ ✓ ✓

Project: V = Volcano, S = Scheduler Plugins, D = Diktyo framework.
Extension Point: QS= QueueSort, PF = PreFilter, F = Filter, S = Score.
Scheduling Goal: R = Resources, AP = App. Dependencies, T = Topology-aware, L = Latency, B = Bandwidth.
Service Topology, Microservice Dependencies, Latency, Bandwidth: ✓= addressed, ✕= not considered.

meet those. Secondly, the KS applies node priority calculation
by ranking each remaining node based on a set of scoring
algorithms, also called priorities. Then, KS selects the highest-
scoring node for the pod deployment. To ease the develop-
ment of further filter and scoring functions, K8s released a
scheduling framework [62] so that developers can implement
their algorithms and contribute to the K8s project. The K8s
scheduling framework implements several extension points
for the KS. The framework allows developers to implement
their algorithms as plugins without interfering with the main
scheduling components. The framework currently exposes the
following main extension points, responsible for:

• QueueSort: sort pods in the scheduling waiting queue.
• Filter: filter out nodes that cannot run the pod.
• Score: rank nodes that have passed the filtering phase.
• NormalizeScore: modify scores before final ranking.

K8s is currently the de facto standard for deploying ap-
plications in the cloud, widely used by most companies, and
currently lacks network awareness in application scheduling.
We tackle this challenge by proposing the Diktyo framework
that applies these extension points to include bandwidth and
latency in the K8s scheduling process, which will significantly
impact most industries. Instead of exploring novel designs that
can take years to impact the current systems, we focus on
solving this issue by designing missing components based on
readily available features in K8s since network awareness is
an urgent need [63]. Sec. V details the proposed framework,
while the next section presents a MILP model for the K8s
deployment scheme, where pods are placed on nodes based on
resource constraints and focused on minimizing the network
latency between dependent microservices. The model provides
a benchmark for the Diktyo framework and existing plugins to
compare their sub-optimal allocation schemes with an optimal
solution.

IV. MIXED-INTEGER LINEAR PROGRAMMING (MILP)
APPROACH

This section presents the MILP formulation for the network-
aware approach in K8s scheduling, which places pods on
nodes to both maximize the total number of applications
admitted and minimize the applications’ network latency.

TABLE II: Input variables of the MILP model.

Symbol Description
N The set of nodes on which pod instances are executed.

A
The set of applications a ε A. Each application a consists in
a group of different pods with established dependencies.

P The set of pods p ε P .
Z The set of cluster zones where applications can be deployed.
Rp The requested number of replicas for each pod p ε P .

Rmax The maximum number of replicas for each pod p.

Ia,p
The Instance matrix (binary). If Ia,p = 1, the pod p belongs
to application a.

Ωn[c]
The capacity vector of node n. c denotes resources as CPU
(in vcpu), memory (in Mi), and bandwidth (in Mbps).

ωp[d]
The demand vector of pod p. d denotes resources as CPU (in
vcpu), memory (in Mi), and bandwidth (in Mbps).

Bn1,n2

The network bandwidth matrix. Bn1,n2 indicates the band-
width capacity (in Mbps) between node n1 and node n2.

τn1,n2

The network latency matrix. τn1,n2 indicates the latency (in
ms) between the node n1 and the node n2.

Cpi,pj

The pod communication matrix. It indicates the minimum
bandwidth (in Mbps) demand of the network flow between
the pod pi (source) and pj (sink).

En,z
The zone matrix (binary). If En,z = 1, the node n is at the
cluster zone z.

αpi,pj
The application matrix (binary). If αpi,pj = 1, the flow
bandwidth between the pods pi and pj must be guaranteed.

TABLE III: Decision variables of the MILP model.

Symbol Description

Ga
The acceptance matrix (binary). If Ga = 1, the
application a is deployed.

Ga,p
The pod acceptance matrix (binary). If Ga,p = 1,
the pod p for the application a is allocated.

Pa,p
r (n)

The placement matrix (binary). If Pa,p
r (n) = 1, the

replica r of pod p from application a is executed
on node n.

F
a,pi,ri
pj ,rj (n1, n2)

The flow matrix (binary). It indicates that the rep.
ri of pod pi is allocated on node n1 and the rep.
rj of pod pj is deployed on node n2 for app. a.

Λa
The App. latency matrix. It indicates the total net-
work latency (in ms) expected for app. a.

A. Model Description & Variables

The main advantage of MILP is the flexibility to analyze
NP-hard problems [64] as the K8s deployment model and
provide a benchmark for developed heuristics [65]. The MILP
model formulates the pod placement problem in K8s as an
optimization problem subject to several constraints. Table II
lists input variables, and Table III presents decision variables.
The model decomposes an application aεA in a set of different
pods p ε P . The maximum number of allowed instances per

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 5

pod is given by Rmax. These pods have a specific number
of requested instances (Rp) that need to be deployed in the
cluster, subject to multiple constraints. Nodes have limited
capacities in terms of CPU, memory, and bandwidth resources
(Ωn[c]); communication links have limited bandwidth capacity
(Bn1,n2

), and pod dependencies directly affect the application
latency (Λa).

The MILP model determines a node for the placement of
each pod replica depending on the considered objective. The
objectives considered in the model are the following:

1) Maximization of Application Deployments (MAX AD).
2) Minimization of the Network Latency (MIN NL).
These objectives are executed iteratively, meaning that a

different optimization is applied in each iteration. First, the
acceptance of application deployments is maximized, and then,
in the second iteration, the network latency is minimized.
An additional constraint is added to the model to retain the
objective value obtained in the first iteration to ensure the
number of admitted applications remains after applying the
second objective. Thus, the second iteration refines the previ-
ously obtained allocation scheme by considering an additional
objective. A multi-objective function in a single iteration is a
viable alternative that can be considered. However, it has been
favored the consideration of two objectives in different itera-
tions since the multi-objective function would have become a
highly complex objective, making it difficult to interpret the
model results. Further explanations concerning all variables
are given in the next section, where constraints are detailed.

B. Constraints

The placement of an application needs to satisfy multiple
constraints. First, all pods of the application need to be
deployed as a whole. An indicator constraint (1) states that
an application a is deployed (i.e., Ga = 1) if all pod instances
belonging to the application have been deployed. Also, a given
pod p is scheduled (i.e., Ga,p = 1) if all pod replicas have been
instantiated as shown in (2). Further, pods are only deployed
on nodes with enough computing resources (3).

∀a ε A :
∑
p ε P

Ga,p =
∑
p ε P

Ia,p if Ga = 1 (1)

∀a ε A, p ε P :∑
r ε Rmax

∑
n ε N

P a,p
r (n) = Ia,p ×Rp if Ga,p = 1 (2)

∀n ε N :
∑
a ε A

∑
p ε P

∑
r ε Rmax

P a,p
r (n)× ωp[d] ≤ Ωn[c] (3)

The application flow matrix F is subjected to various
constraints to accurately represent network flows. Pod depen-
dencies are expressed by the Flow Factor Υpi, pj as shown
in (4) by using the App. matrix αpi,pj . Bandwidth limitations
(5) ensure the infrastructure capacity is respected, while flow
conservation constraints (6) and (7) ensure no flow is lost
within the network. The total network latency (in ms) of each

application (Λa) can be derived from the application flow
matrix F as shown in (8).

Υpi,pj = Ia,pi × Ia,pj × αpi,pj (4)

∀n1, n2 ε N :
∑
a ε A

∑
pi,pj ε P

∑
ri,rj ε Rmax

Υpi, pj × Cpi,pj
× F a,pi,ri

pj ,rj (n1, n2) ≤ Bn1,n2

(5)

∀a ε A, pi, pj ε P, ri, rj ε Rmax,∀n1, n2 ε N :

F a,pi,ri
pj ,rj (n1, n2) = 0 if P a,p1

ri (n) = 0 ∨ P a,pj
rj (n) = 0

(6)

∑
a ε A

∑
pi,pj ε P

∑
ri,rj ε Rmax

∑
n1,n2 ε N

F a,pi,ri
pj ,rj (n1, n2) =

=
∑

pi,pj ε P

αpi,pj ×Rpi ×Rpj

(7)

∀a ε A : Λa =
∑

pi,pj ε P

∑
ri,rj ε Rmax

∑
n1,n2 ε N

τn1,n2
× F a,pi,ri

pj ,rj (n1, n2) (in ms)
(8)

In addition, two constraints have been added to represent
topology preferences [66]. Pod anti-affinity rules (9) ensure
replicas of the same pod are allocated on different nodes, and
zone anti-affinity rules (10) spread pod replicas across different
zones in the cluster.

∀n ε N,∀a ε A, ∀p ε P :
∑

r ε Rmax

P a,p
r (n) ≤ 1 (9)

∀aεA,∀pεP,∀zεZ :
∑
n ε N

∑
r ε Rmax

P a,p
r (n)×En,z ≤ 1 (10)

C. Objectives

The first objective (i.e., MAX AD) is expressed in (11) by
using the acceptance matrix Ga. The second objective (i.e.,
MIN NL) is expressed as shown in (12), where the model
determines an allocation scheme based on the applications’
dependency graph. The application latency matrix (i.e., Λa)
is an auxiliary decision variable since its value depends on
which nodes dependent pods are deployed. The exact loca-
tion of these replicas directly affects the application latency
formulation, as shown in (8). Dependent pods are allocated
close to each other to reduce the expected network latency
while respecting all constraints. As mentioned, an additional
constraint (13) ensures the objective value of the first iteration
is kept while executing the second iteration.

max
∑
a ε A

Ga (11)

min
∑
a ε A

Λa (12)

∑
a ε A

Ga = obj1

obj1 = Objective value obtained in the first iteration
(13)

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 6

Fig. 2: Illustration of the Diktyo framework and the Kubernetes scheduling workflow.

V. DIKTYO FRAMEWORK: SYSTEM DESIGN

A. System Overview

Fig. 2 shows an overview of the Diktyo framework and the
typical K8s scheduling workflow, including Diktyo schedul-
ing plugins. Bandwidth resources are advertised to the K8s
Application Program Interface (API) to consider the node
available bandwidth in the scheduling process 1⃝. The frame-
work introduces two CRs: AppGroup and NetworkTopology
to maintain both the application dependency information 2⃝
and the infrastructure network topology 3⃝. Diktyo considers
both application dependencies and the cluster network topol-
ogy when scheduling pods in K8s. The NetworkTopology
controller updates network weights between cluster nodes
across regions and zones based on a netperf component. Dik-
tyo provides network-aware algorithms implemented as three
scheduling plugins based on the K8s scheduler framework
[19]: TopologicalSort, NodeNetworkCostFit and Network-
MinCost. First, pods are sorted based on their established
dependencies 4⃝. Then, nodes are filtered out based on the
pod’s AppGroup requirements 5⃝, and finally, nodes are scored
based on network weights ensuring low network costs between
dependent pods 6⃝. Further explanations are given below on
how these plugins interact with both CRs.

B. Bandwidth Enforcement

In K8s, the node’s available bandwidth can be defined via
extended resources [67]. A bandwidth component [68] has
been developed to send HTTP requests to the K8s API to
advertise the node’s (physical) bandwidth based on its network
interface speed. The label network.aware.com/bandwidth has

been created to specify the node’s available bandwidth and to
request bandwidth resources in pod deployments. This allows
performing default filtering and scoring algorithms based on
bandwidth resources (e.g., MostRequested, BalancedAlloca-
tion) and not only on CPU and memory resources. We ac-
knowledge the difficult task of specifying accurate bandwidth
resources since it relies on the knowledge of the application
developer to provide accurate numbers. This is a known
concern today for CPU and memory resources since demand
changes over time, thus the number of resources needed. A
potential research direction is the development of softwarized
components that keep track of the resource usage of containers.
These components could provide historical reports to the sys-
tem and ultimately recommend accurate numbers for resource
requirements based on the container’s usage report. However,
this is out of the scope of this paper.

In addition, the bandwidth CNI plugin [69] can enforce
network bandwidth allocations for pods. It supports ingress
and egress traffic shaping to limit the pod bandwidth. Pods
share the host network bandwidth when deployed on the
same node. Limiting Pod bandwidth can prevent mutual in-
terference and improve network stability [70]. The addition
of kubernetes.io/ingress-bandwidth and kubernetes.io/egress-
bandwidth annotations to the pod deployment file ensures
bandwidth limitations are respected.

C. Application Group CRD & Controller

An AppGroup CRD [71] has been created to describe the
application’s pod dependencies. Fig. 3 shows an example
of an application composed of three pods in K8s and the
corresponding dependency graph. Developers need to specify

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 7

Fig. 3: Example of application’s pod dependencies in K8s.

TABLE IV: Topological sorting for Online Boutique.

Algorithm Topological order
Kahn [P1, P10, P9, P8, P7, P6, P5, P4, P3, P2, P11]
Alt. Kahn [P1, P11, P10, P2, P9, P3, P8, P4, P7, P5, P6]
Rev. Kahn [P11, P2, P3, P4, P5, P6, P7, P8, P9, P10, P1]
Tarjan [P1, P8, P7, P5, P4, P2, P11, P9, P10, P6, P3]
Alt. Tarj. [P1, P3, P8, P6, P7, P10, P5, P9, P4, P11, P2]
Rev. Tarj. [P3, P6, P10, P9, P11, P2, P4, P5, P7, P8, P1]

all pod dependencies (i.e., which pods communicate with
another pod) so that the Diktyo framework can find the
optimal allocation scheme focused on low latency. Also,
two additional requirements can be added to the specified
dependencies helping to fine-tune the behavior of the Diktyo
framework. First, the minbandwidth requirement defines the
minimum bandwidth between two pods belonging to the
same AppGroup. Thus, nodes with insufficient bandwidth that
cannot respect the specified bandwidth requirements cannot be
selected for the pod deployment. Second, the maxNetworkCost
requirement determines the maximum network cost between
two pods. If the network cost between two nodes is higher
than the specified maxNetworkCost, Diktyo does not place
these two pods on these nodes. Another important concept
is a K8s Service [72], an abstract way to define a logical
set of pods and expose the applications running on them.
K8s services make load-balancing a straightforward process
since pods have their own IP address, and a single Domain
Name System (DNS) name exists for a set of pods. The
rationale behind this abstraction is that pods are not permanent
resources, being terminated and redeployed constantly in the
cluster. Thus, certain pods are terminated, and new ones are
deployed without users’ awareness. The proposed AppGroup
selects pods based on their corresponding K8s service.

An application might consist of several pods with depen-
dencies. The tighter constraints a pod has, the more likely the
pod cannot find a node that satisfies all constraints. Scheduling
the pod with tighter constraints earlier would be preferred, so
it would not be blocked later, leading to starvation. However,
it is not straightforward to determine which pod has tighter
constraints. Thus, the developed AppGroup controller [73]
calculates the preferred scheduling order for the AppGroup via
six heuristic topological sorting algorithms [74]: Kahn [75],
Tarjan [76], AlternateKahn, AlternateTarjan, ReverseKahn,
ReverseTarjan. Alternate Kahn modifies the order given by
Kahn by selecting the first element of Kahn as its first element,
the last of Kahn as its second, the second of Kahn as its

third, and so on. AlternateTarjan follows the same pattern as
AlternateKahn and modifies the order of Tarjan. ReverseKahn
and ReverseTarjan essentially reverse the preferred order given
by Kahn and Tarjan, respectively. For the previous AppGroup
example, the topology order for Kahn would be P1, P2, P3,
and P3, P2, P1 for ReverseKahn. Also, a highly-complex App-
Group is the Online Boutique application previously shown in
Fig. 1b. It consists of eleven pods, named from P1 to P11.
Table IV presents the preferred order for all sorting algorithms.
As shown, significant differences in the preferred order are
obtained depending on which topology algorithm is selected.

D. Network Topology CRD & Controller

A networkTopology CRD [77] has been created to define
the K8s infrastructure topology. A networkTopology CR stores
network costs between all pair-wise nodes in the cluster based
on their zones and regions. As an initial design, network
weights can be manually defined in a networkTopology CR
where network costs between zones and between regions are
specified. In addition, to accurately measure the latency in the
cluster, a netperf component [78] has been developed for
the Diktyo framework. Netperf tests [79] are executed based
on the infrastructure, allowing the estimation of the latency
between cluster nodes, especially different latency percentiles
(i.e., 50th, 90th, and 99th percentile). These measurements are
recorded in a configmap [80] as key-value pairs with origin
and destination as labels. Then, the developed networkTopol-
ogy controller [81] accesses the configmap to extract the
netperf measurements and calculates accurate network costs
across regions and zones in the cluster. Then, the network-
Topology controller dynamically updates the CR accordingly,
so Diktyo plugins can apply updated network weights instead
of the one-time manually configured weights. The periodical
probing of the network latency via the netperf component is
only necessary for one pair of nodes between zones/regions.
One-time probing between a single pair of nodes is sufficient
if nodes within a zone have similar connections. Thus, the
probing is limited, avoiding significant overhead for large-
scale clusters. The netperf component currently supports two
execution modes. The basic mode runs a netperf test from a
node to another one (i.e., in total N tests, being N the number
of cluster nodes), while the full mode runs a test from all nodes
to every other node in the cluster (i.e., N × (N − 1) tests).
Bandwidth measurements (Table V) based on the testbed
infrastructure (Fig. 15) shown in Sec. VI-C demonstrate that
the developed netperf component is still lightweight for small
to medium-sized clusters. Also, the networkTopology con-
troller can work with any customized software components
that update the configmap. Cloud administrators can apply
various methods to update the network costs according to their
preferences.

The networkTopology controller also maintains the available
bandwidth (i.e., bandwidthAllocatable) between regions and
zones in the cluster. The networkTopology controller keeps a
record of the allocatable bandwidth in the cluster so that pods
are not scheduled on nodes where the available bandwidth
between zones or regions is minimal. The goal is to avoid

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 8

TABLE V: The traffic generated by the netperf component in
a 16-node K8s cluster.

Mode Number of
measurements

Avg. received
traffic (in Mbps)

Avg. transmitted
traffic (in Mbps)

Basic 16 12.96 Mbps 13.44 Mbps
Full 240 33.52 Mbps 35.20 Mbps

Fig. 4: Illustration of a Network Topology CR.

Fig. 5: Example of the TopologicalSort plugin operation.

network congestion in the K8s cluster infrastructure by placing
pods on nodes with enough bandwidth for dependent pods
and creating pod eviction events [82] in case bandwidth-
constrained zones or regions are detected. Pod allocations and
corresponding dependencies are read from an AppGroup lister
[83], and bandwidth reservations are saved in the network-
Topology CR based on current pod deployments. Fig. 4 shows
a graphical representation of a networkTopology CR with two
regions (us-west-1 and us-east-1) and four zones (z1, z2, z3,
z4) detailed in [84].

E. Diktyo Scheduling Plugins

This section presents further details on the scheduling
plugins designed and implemented for the Diktyo framework
[85]. First, the TopologicalSort Plugin (QueueSort) sorts
pods belonging to an AppGroup based on the topology order
calculated by the AppGroup controller. It prioritizes pods
based on the preferred allocation order. If pods do not belong
to an AppGroup or belong to different AppGroups, the plugin
follows the strategy provided by the QoS plugin [86]. For

Fig. 6: Example of the NodeNetworkCostFit plugin operation.

Fig. 7: Example of the NetworkMinCost plugin operation.

instance, consider the Online Boutique application and the
correspondent topology order based on the KahnSort algo-
rithm shown previously in Table IV. Depending on the two
pods from Online Boutique considered for deployment in the
scheduling queue, the result of the TopologicalSort plugin can
be significantly different, though it favors low indexes (Fig. 5).

Second, the NodeNetworkCostFit Plugin (Filter) respects
pod dependencies established in the AppGroup CR. The imple-
mentation currently focuses on maxNetworkCost requirements,
filtering out nodes that would generate higher network costs
than the specified threshold. Since applications usually include
multiple pods with inter-dependencies, the pods deployed later
may have constraints not fully respected. Thus, the plugin
filters out nodes that cannot support most dependencies of
already deployed pods. The goal is to reduce the number of
nodes to score, avoiding a large set of candidate nodes in
the scheduling workflow that would cause high network costs.
Fig. 6 shows an example of the NodeNetworkCostFit plugin
operation by deploying a pod from the AppGroup A1 shown
previously in Fig. 3 and the network topology infrastructure
shown in Fig. 4.

Lastly, the NetworkMinCost Plugin (Score) favors the
node with the lowest aggregated network cost to nodes allocat-
ing dependent pods. The aggregated network cost is calculated
based on pod dependencies maintained by the AppGroup
CR. The cost per dependency is the network weight between
zones or regions available in the networkTopology CR of the
nodes allocating dependent pods. Scheduled pods of a certain

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 9

TABLE VI: The hardware configuration of each node based
on Amazon EC2 On-Demand Pricing [88].

Topology Node Amazon
Image

CPU
(cpu)

RAM
(Mi)

Band.
(Gbps)

Multi-Region

Cloud a1.4xlarge 16.0 32.0 40.0
Fog Tier 2 a1.2xlarge 8.0 16.0 10.0
Fog Tier 1 a1.xlarge 4.0 8.0 5.0

Edge a1.large 2.0 4.0 1.0
Cluster Fog Tier 1 a1.xlarge 4.0 8.0 1.0

Data Center Fog Tier 1 a1.xlarge 4.0 8.0 1.0

AppGroup are retrieved via a pod lister [87] from the K8s API.
Thus, the plugin calculates the aggregated cost to schedule a
pod on a particular node based on previous pod placements.
For the first pod deployment in the AppGroup, the plugin
favors all candidate nodes equally. Also, this plugin normalizes
scores between 0 and 100 based on all candidate nodes’
maximum and minimum scores. Nodes with lower costs are
favored since it also corresponds to lower latency. The plugin
can be combined with other scoring functions (e.g., Bal-
ancedAllocation, LeastRequestedPriority), but a higher weight
should be attributed to the NetworkMinCost plugin to prefer
latency-aware scheduling schemes. Fig. 7 shows an example of
the NetworkMinCost plugin operation by sequentially running
the scoring plugin after the previous filter example.

VI. EVALUATIONS

This section presents the experiments conducted to evaluate
the performance of the Diktyo framework. Sec. VI-A presents
a simulation environment used to validate the proposed ap-
proach, and Sec. VI-B shows the scalability benchmarks of
the implemented Diktyo plugins. Lastly, Sec. VI-C presents
the testbed experiments performed in a distributed K8s cluster
to assess the implemented framework.

A. Simulation Environment

1) Infrastructure Topologies & Input Variables: Fig. 8
shows the three evaluated infrastructure topologies. First,
Fig. 8a represents a highly available cluster with nodes de-
ployed across zones. Second, Fig. 8b illustrates a DC with
nodes connected via a fat-tree network topology [89]. Lastly,
Fig. 8c shows a Multi-Region (MR) edge cluster with nodes
distributed across several zones and regions. Nodes provide
computing resources to allocate pods in the infrastructure.
Table VI presents the nodes’ hardware configurations for each
topology. The bandwidth matrix Bn1,n2

is based on the link’s
available bandwidth and the latency matrix τn1,n2

is calculated
based on the shown latency values.

The described MILP model has been implemented in Python
using the IBM ILOG CPLEX ILP solver [90]. As previously
stated, the model considers two consecutive objective func-
tions: the maximization of application deployments (i.e., MAX
AD) and then the minimization of the network latency (i.e.,
MIN NL). The model has been executed on a 6-core Intel i7-
9850H CPU @ 2.6 GHz processor with 16 GB of memory. The
model and the scheduling algorithms are executed 50 times,
and the results are shown with a 95% confidence interval.

(a) Cluster infrastructure.

(b) Data Center (DC) fat tree topology.

(c) Multi-Region (MR) scenario.

Fig. 8: Illustration of the three evaluated topologies.

2) Applications & Scheduling algorithms: Table VII shows
the experimental settings for the three evaluated applications.
The Basic (a1) application provides a naive application com-
posed of three pods previously shown in Fig. 3 to demonstrate
the viability of the MILP model. Then, two use cases based
on real-world applications are assessed: the Redis Cluster
(a2) database and the Online Boutique (a3) application as
illustrated previously in Fig. 1. The simulation compares four
scheduling algorithms focused on their network awareness:
the MILP’s optimal allocation scheme, the Volcano Binpack
plugin, the Volcano Task Topology plugin, and the Diktyo
framework. The simulation does not include a scenario in
which applications cannot be all deployed in the cluster. As
a result, all algorithms are able to maximize the number of
accepted applications (i.e., MAX AD). Thus, results on the
acceptance rate are not shown. Though, we acknowledge the
importance of analyzing how these algorithms would behave
when available resources are not enough to handle all requests.
These constrained scenarios are planned as part of future work.

3) Simulation Results: Fig. 9a and Fig. 9b compare the
execution time of the four scheduling algorithms to obtain
the pod placement scheme for the Basic application on both

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 10

TABLE VII: Deployment properties of the evaluated applica-
tions.

App. Pods & Number of
Pod Replicas

CPU
(cpu)

RAM
(Mi)

Band.
(Mbps)

Basic
(a1)

P1 (p1): [1 to 5]
1.0 1.0 500P2 (p2): [1 to 5]

P3 (p3): [1 to 5]

Redis
Cluster

(a2)

Master 1 (p1): [1]

1.0 1.0 250

Master 2 (p2): [1]
Master 3 (p3): [1]

Slave 1 (p4): [1 to 5]
Slave 2 (p5): [1 to 5]
Slave 3 (p6): [1 to 5]

Online
Bout.
(a3)

Frontend (p1): [1,2]

1.0 1.0 250

Cart (p2): [1,2]
Product (p3): [1,2]

Currency (p4): [1,2]
Payment (p5): [1,2]
Shipping (p6): [1,2]

Email (p7): [1,2]
Checkout (p8): [1,2]
Recom. (p9): [1,2]

Ad (p10): [1,2]
Redis (p11): [1,2]

2 4 6 8 10 12 14 16
Total Number f P d replicas

10−2

10−1

100

101

102

103

104

Ex
ec
ut
i
n
Ti
m
e
(l

g
se
c
nd

s)

30 min limitati n
MILP
Binpack
Task T p l gy
Dikty

(a) Execution time (Cluster).

2 4 6 8 10 12 14 16
Total Number f P d replicas

10−2

10−1

100

101

102

103

104

Ex
ec
ut
i
n
Ti
m
e
(l

g
se
c
nd

s)

30 min limitati n
MILP
Binpack
Task T p l gy
Dikty

(b) Execution time (MR).

Fig. 9: The MILP model requires 12 and 30 minutes for
15 pods in the cluster and MR infrastructures for the basic
application.

the cluster topology and the MR scenario. The MILP model
provides an optimal solution that typically cannot be applied
in practice, as its execution time increases significantly as

3 6 9 12 15
Number of deployed pods

0

5

10

15

20

25

30

35

40

45

Ne
tw
or
k
La
te
nc
y
(in

 m
s)

MILP
Binpack
Task Topology
Diktyo

(a) Network latency (Cluster).

3 6 9 12 15
Number of deployed pods

0

5

10

15

20

25

30

35

40

45

Ne
tw
or
k
La
te
nc
y
(in

 m
s)

MILP
Binpack
Task Topology
Diktyo

(b) Network latency (MR).

Fig. 10: The Diktyo framework reduces the expected network
latency by up to 34% compared to existing plugin algorithms.

the number of pods in the application increase. As it is not
acceptable to run scheduling methods for a long time in
production systems, a 30-minute limitation has been added to
the MILP model. Though the execution time of all algorithms
increases due to the increasing number of pods, the evaluated
heuristic-based algorithms only increase the execution time
slightly compared to the MILP model. The MILP model
requires 12 minutes and over 30 minutes to place 15 pods
for the Basic application on the cluster and MR topologies,
respectively. In contrast, Diktyo requires only 0.01 seconds
for both topologies, similar to the execution times of the
Binpack and Task Topology algorithms. This occurs because
all network weights are pre-calculated beforehand, and no
recalculation occurs in the Diktyo plugins. In addition, Diktyo
considerably reduces the expected network latency compared
to the Binpack and Task Topology algorithms, as shown in
(Fig. 10a and Fig. 10b). It achieves reductions of up to
34% and 26% for the MR scenario with 15 pods compared
to Binpack and Task Topology, respectively. Compared to
the optimal solution given by the MILP model, Diktyo only
increases the average network latency by 20% and 15% for
9 and 15 pods, respectively. However, it provides a scalable
solution due to its lower execution time.

Fig. 11 evaluates the network latency in box plots for the
Redis Cluster application under different topology constraints.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 11

No Topology Constraints Pod Anti-affinity Pod & Zone Anti-affinity
Topology Constraints

0

10

20

30

40

50

Ne
tw
or
k
La
te
nc
y
(in

 m
s)

MILP
Binpack
Task Topology
Diktyo

(a) Network Latency (Cluster).

No Topology Constraints Pod Anti-affinity Pod & Zone Anti-affinity
Topology Constraints

0

10

20

30

40

50

Ne
tw
or
k
La
te
nc
y
(in

 m
s)

MILP
Binpack
Task Topology
Diktyo

(b) Network Latency (DC).

Fig. 11: Deployment of the Redis cluster application (12 pods)
with different topology constraints.

The zone/region anti-affinity constraints are usually applied
to provide high availability for Redis clusters. No particular
topology sorting algorithm is applied in this scenario since all
pods depend on all others in the Redis Cluster application.
As shown, latency reductions by the Diktyo framework are
more noticeable when pod and zone anti-affinity rules are not
considered. Diktyo reduces the latency up to 34% in the cluster
(Fig. 11a) and up to 77% in the DC topology (Fig. 11b)
compared to Binpack and Task Topology. Compared to the
MILP model, Diktyo increases the average network latency
by 37% in the cluster topology and reduces it by 22% in
the DC topology as the MILP model fails to find the optimal
solution within 30 minutes. Furthermore, even with additional
topology constraints, Diktyo can still reduce the latency by
up to 20% in the cluster topology and by up to 38% in
the DC topology compared to Binpack and Task Topology
algorithms. The MILP model cannot find the optimal solution
for both scenarios and obtains similar results to the Binpack
algorithm due to the increased complexity of additional anti-
affinity constraints.

Fig. 12 evaluates the impact of different topology sorting
algorithms for scheduling the Online Boutique application.
The first scenario (Fig. 12a) considers 11 pods, in which
the application’s network latency has only one possible path
since there is only one replica per pod type. As expected, the

Kahn Rev. Kahn Alt. Kahn Tarjan Rev. Tarjan Alt. Tarjan
Evaluated Sorting Algorithms

0

25

50

75

100

125

150

175

200

225

Ne
tw
or
k
La
te
nc
y
(in
 m
s)

MILP
Binpack
Task Topology
Diktyo

(a) Network Latency (11 pods).

Kahn Rev. Kahn Alt. Kahn Tarjan Rev. Tarjan Alt. Tarjan
Evaluated Sorting Algorithms

0

25

50

75

100

125

150

175

200

225

Ne
tw

or
k

La
te

nc
y
(in

 m
s)

MILP 30 min
MILP 6 hours
Binpack
Task Topology
Network-Aware Framework

(b) Network Latency (22 pods).

Fig. 12: Deployment of the Online Boutique application (clus-
ter topology) for different sorting algorithms.

MILP model obtains the lowest latency (28 ms) while Diktyo
produces a placement scheme 50% worse on average when
combined with Alt. Kahn and Alt. Tarjan sorting algorithms.
Nevertheless, Diktyo can still reduce the latency up to 34% on
average compared to Binpack and Task Topology algorithms.
The second scenario (Fig. 12b) considers 22 pods, in which
several paths are possible due to two replicas per pod type.
Two allocation schemes are obtained from the MILP model:
the first experiment runs the model for up to 30 minutes
and the second for up to 6 hours to search for the optimal
placement scheme. However, the MILP model cannot find the
optimal solution within 6 hours due to the highly complex
pod dependency graph for the Online Boutique application
with 22 pods. Diktyo reduces the network latency by up
to 30% compared to the MILP 30-minute model. Also, it
significantly reduces the expected latency compared to Bin-
pack and Task Topology algorithms. It only increases the
latency by up to 13% compared to the MILP 6-hour model.
Furthermore, Diktyo provides a more scalable solution as
it solves the scenario on average in about 0.015 seconds.
Concerning sorting, Diktyo achieves lower latency for Kahn,
Alt. Kahn and Alt. Tarjan for the Online Boutique application.
Based on our experiments, Diktyo plugins produce deployment
schemes with lower latency for the alternate versions of the
sorting algorithms since pods with several dependencies are

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 12

2000 4000 6000 8000 10000
Total N mber of cl ster nodes

10−4

10−3

10−2

10−1

100

101

Ex
ec
 t
io
n
Ti
m
e
(lo

g
se
co
nd

s)

1 sec.
Score
Filter

(a) Execution Time.

10 100 500 1000 2000 3000 5000 10000
Total number of cluster nodes

0

5000

10000

15000

20000

25000

To
ta
l n

um
be

r o
f O

pe
ra
tio

ns

Network Min Cost
Node Network Cost Fit

(b) Number of Operations.

Fig. 13: The benchmark shows that the execution time of both
plugins (Filter and Score) increases logarithmically over the
number of nodes.

intercalated with pods with few dependencies.
In conclusion, the results show that Diktyo can significantly

reduce the expected network latency in K8s clusters. The per-
formance of Diktyo has been compared against two available
scheduling algorithms, Binpack and Task Topology, showing
that these plugins are not latency-aware. The MILP model
shows that finding the optimal network-aware placement
scheme is a highly complex optimization problem, requiring an
unacceptable execution time. Thus, MILP methods are useful
benchmarks but cannot be deployable in production systems.
The Diktyo framework achieves similar execution times to
Binpack and Task Topology by pre-calculating all network
weights beforehand. Diktyo obtains sub-optimal solutions on
average 10% to 30% worse than the MILP model but provides
a significantly scalable method.

B. Plugin Evaluation

The Go [91] testing package provides an integration testing
utility that can benchmark the performance of the Diktyo
scheduling plugins. Integration tests have been implemented
to assess the scalability of all plugins, including NodeNet-
workCostFit and NetworkMinCost. Fig. 13 shows the plugins’
execution time over the number of cluster nodes. Each test
must run the code N times. During its execution, N is adjusted

2000 4000 6000 8000 10000
Total Number of Pod

10−5

10−4

10−3

10−2

10−1

100

101

Ex
ec

ut
io
n
Ti
m
e
(lo

g
 e

co
nd

)

1 ec.
Topological Sort

(a) Execution Time.

10 100 500 1000 2000 3000 5000 10000
Total number of Pods

0

20000

40000

60000

80000

100000

To
ta
l n

um
be

r o
f O

pe
ra
tio

ns

Topological Sort

(b) Number of Operations.

Fig. 14: Benchmark of the QueueSort plugin. The execution
time increases logarithmically over the number of pods.

until the benchmark function lasts long enough to be timed
reliably. Thus, the following output: 25093 - 44.8 ns/op means
that the operation (i.e., plugin function) executed for 25093
times at a speed of 44.8 ns per operation. Though the execution
time of both plugins increases logarithmically over the number
of nodes, the execution time for 10000 nodes is still below
1 second. It confirms that accessing network weights via
CRs does not add significant overhead in terms of execution
time to the K8s scheduling process. Also, the TopologicalSort
plugin has been evaluated based on the number of pods in
the sort queue as shown in Fig. 14. Results indicate a similar
pattern (i.e., logarithmic time) as the other two plugins. This
benchmark highlights that the plugins designed for the Diktyo
framework do not introduce significant overhead over the
scheduling process and are scalable for clusters with 10000
nodes/pods.

C. Testbed Evaluation

1) Testbed Infrastructure: A K8s cluster is set up using
Kubeadm [92] on VMs created with IBM Cloud [93]. It
consists of 16 nodes (1 master and 15 workers), each labelled
with region (i.e., topology.kubernetes.io/region) and zone (i.e.,
topology.kubernetes.io/zone) labels. Since the cluster belongs
to a single region in the IBM cloud, varying delays are
emulated on network connections via Traffic Control (TC)

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 13

Fig. 15: Illustration of the testbed infrastructure.

TABLE VIII: Software Versions of the Testbed Infrastructure.

Software Version
Kubeadm / Kubectl v1.22.4
Go go1.16.10
Docker docker://20.10.10
Linux Kernel 5.4.0-80-generic
Operating System Ubuntu 20.04.2 LTS

SET GET HSET LPOP LPUSH LR-100 LR-500
Operation

0

20000

40000

60000

80000

100000

120000

140000

Th
ro
ug

hp
ut
 (r

eq
/s

)

KS
Volcano
Diktyo

Fig. 16: Diktyo increases the throughput of the Redis Cluster
application by up to 22% for most operations.

[94] to assess a complex infrastructure concerning low-latency
container allocation. Network connections between VMs are
illustrated in Fig. 15. In the considered scenario, all nodes
belong to the same region (i.e., r1), but each node is in a
different zone (i.e., master, z1, .., z15). These topology labels
are important to evaluate the scheduling behavior of Diktyo.
The netperf component is deployed to estimate the latency
between nodes in the cluster and caches the measurements
in a configmap object. Then, the networkTopology controller
calculates the network weights between zones based on the
measurements in the configmap. Thus, the Diktyo plugins can
apply accurate network weights instead of manually defined
weights. Table VIII lists the software versions of all the
components used to set up the K8s cluster.

2) Testbed Results: The considered applications represent
typical and often used cloud-native applications requiring high
bandwidth (Redis Cluster - Fig. 1a) or low latency (Online
Boutique - Fig. 1b). These applications are often applied in
microservice research in academic and industry settings (e.g.,
[95]). The first experiment consists in deploying the Redis

initial scale_up scale_down
Scenario

0

500

1000

1500

2000

2500

Re
sp
on

se
 T
im

e
(m

s)

KS
Volcano
Diktyo

(a) Diktyo reduces the response time by at least 60% for
GET requests compared to KS and Volcano.

initial scale_up scale_down
Scenario

0

500

1000

1500

2000

2500

Re
sp
on

se
 T
im

e
(m

s)

KS
Volcano
Diktyo

(b) Diktyo reduces the response time on average by 40%
for GET /cart requests. A higher reduction is achieved
compared to the KS.

Fig. 17: The response time of the Online Boutique application
for GET requests deployed with different schedulers.

TABLE IX: The resource consumption of the different
scheduling mechanisms.

Scheduler CPU usage (in millicpu) Memory usage (in MiB)
KS 9.41m 83.5 MiB

Volcano 76.6m 72.0 MiB
Diktyo 6.19m 82.7 MiB

Cluster application with different schedulers. The goal is to
assess the performance of the Redis cluster application when
scheduled with the Diktyo framework. The K8s deployment
consisted of five master pods and five slave pods. The Redis-
benchmark utility [96] has been applied to generate a total of
250K database queries from 50 emulated clients. Fig. 16 shows
the throughput obtained with different schedulers for several
database operations. The Diktyo framework achieves higher
throughput on average by 22% compared to KS and Volcano
since it deploys master and slave pods close to each other
based on the dependencies established in the Redis AppGroup
CR [97]. With the proper specification of pod dependencies,
Diktyo can produce an optimized low-latency placement for
typical database applications than KS and Volcano, leading to
higher throughput for various database operations.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 14

initial scale_up scale_down
Scenario

0

2500

5000

7500

10000

12500

15000

17500

20000

Re
sp
on

se
 T
im

e
(m

s)
KS
Volcano
Diktyo

(a) Diktyo considerably reduces the response time,
achieving at least 50% reductions for POST /cart/checkout
requests in the ScaleUp phase.

initial scale_up scale_down
Scenario

0

500

1000

1500

2000

2500

Re
sp
on

se
 T
im

e
(m

s)

KS
Volcano
Diktyo

(b) Diktyo reduces the response time on average by 45%
for POST /setCurrency requests.

Fig. 18: The response time of the Online Boutique application
for POST requests deployed with different schedulers.

The second experiment consists of the deployment of the
Online Boutique application. The goal is to evaluate the per-
formance of the Online Boutique application when scheduled
with Diktyo concerning the application’s response time. Also,
this scenario considers pod terminations and rescheduling,
showing how Diktyo finds near-optimal schemes even in these
dynamic conditions. The declarative nature of K8s makes
rescheduling a simple task. If failures happen, Diktyo de-
ploys new pod instances as new pods requiring allocation. In
addition, dynamic changes (i.e., latency and bandwidth) are
detected via the networkTopology Controller since violations
are observed based on CRs. Surpassing thresholds evicts pods,
making Diktyo schedule new pod instances that satisfy these
thresholds. An Online Boutique AppGroup [98] composed
with several pod dependencies has been submitted to the
K8s cluster, ensuring Diktyo has the needed pod dependency
graph to find a near-optimal pod placement scheme. A load
generator based on the locust load tool [99] has been used
to assess the performance via different GET and POST re-
quests. The experiment consists of three scenarios: the Initial
phase corresponds to the deployment of one pod instance per
workload, then in the ScaleUp scenario, all workloads are

scaled up to four replicas, and lastly, in the ScaleDown phase,
all workloads are scaled down, resulting on the termination
of two instances per workload. Diktyo reduces the Online
Boutique response time for most requests, as shown in Fig. 17
and Fig. 18. The red squares represent outliers present in the
experimental runs. Diktyo reduces the response time by at least
45% on average. Diktyo obtains even higher reductions for
the GET and POST /cart/checkout requests. Volcano achieves
slightly lower latencies compared to KS, the default scheduler
in K8s. This result highlights the main advantage of the
Diktyo framework since it allocates pods with established
dependencies close to each other, resulting in lower latency.

Regarding resource consumption, Diktyo performs similarly
to KS as shown in Table IX. The components developed for the
Diktyo framework are fully integrated with the K8s ecosystem
since the development focuses on the available scheduling
plugins framework, thus achieving similar CPU and memory
usage compared to the KS. In fact, the CPU usage is slightly
lower since the number of enabled plugins in Diktyo is smaller
than the default configuration of KS since Diktyo consists
mainly of the three presented scheduling plugins (i.e., Topo-
logicalSort, NodeNetworkCostFit, and NetworkMinCost). In
contrast, Volcano requires higher CPU resources but needs
slightly lower memory usage.

In summary, the achieved results show the benefits of the
proposed Diktyo framework. By specifying pod dependencies
in K8s clusters, scheduling algorithms can make informed
decisions regarding latency and bandwidth. Developers need
to know their application dependencies to define their App-
Group properly. With proper application and network topology
information, the proposed Diktyo framework produces a near-
optimal placement scheme aiming to minimize the network la-
tency concerning complex application and topology constraints
in logarithmic time. The combination of the three developed
plugins for the Diktyo framework approximates the optimal
solution given by the MILP model. However, Diktyo does not
guarantee a tolerance regarding the MILP since it depends
on the status of the cluster. The experiments show that Diktyo
can increase database throughput and reduce the response time
for typical web-based applications in a distributed K8s cluster
compared to the existing KS and Volcano schedulers.

VII. CONCLUSIONS

This paper presents a network-aware scheduling approach
for the K8s platform based on its recent scheduling plugin
architecture. The aim is to tackle the challenge of design-
ing and implementing scalable and efficient network-aware
scheduling algorithms capable of delivering low latency to
end-users without compromising the system performance.
Most efforts available in the literature require an unacceptable
execution time to find proper allocation schemes. Results
obtained from detailed experiments and realistic scenarios
show the advantages of the Diktyo framework compared to
default schedulers. Diktyo can increase the throughput by
22% for typical database applications and reduce the expected
response time by 45% in web-based applications. The work
is an important step toward efficient application placement in
future cloud-native architectures.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 15

ACKNOWLEDGMENTS

The authors would like to thank the Kubernetes sig-
scheduling community for their valuable feedback. José Santos
is funded by the Research Foundation Flanders (FWO), grant
number 1299323N.

REFERENCES

[1] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert, “Mi-
croservices,” IEEE Software, vol. 35, no. 3, pp. 96–100, 2018.

[2] B. Burns, J. Beda, and K. Hightower, Kubernetes: up and running: dive
into the future of infrastructure. O’Reilly Media, 2019.

[3] A. AWS, “Amazon web services,” accessed on 28 March 2022. [Online].
Available: https://aws.amazon.com/.

[4] O. Adam, Y. C. Lee, and A. Y. Zomaya, “Stochastic resource pro-
visioning for containerized multi-tier web services in clouds,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 7, pp.
2060–2073, 2016.

[5] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim,
“Internet of things (iot) for next-generation smart systems: A review
of current challenges, future trends and prospects for emerging 5g-iot
scenarios,” Ieee Access, vol. 8, pp. 23 022–23 040, 2020.

[6] X. Li, M. Darwich, M. A. Salehi, and M. Bayoumi, “A survey on cloud-
based video streaming services,” in Advances in Computers. Elsevier,
2021, vol. 123, pp. 193–244.

[7] S. Halfpap and R. Schlosser, “A comparison of allocation algorithms
for partially replicated databases,” in 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 2019, pp. 2008–2011.

[8] M. Luksa, Kubernetes in action. Simon and Schuster, 2017.
[9] D. Popescu, N. Zilberman, and A. Moore, “Characterizing the impact

of network latency on cloud-based applications’ performance,” 2017.
[10] K. Aziz, D. Zaidouni, and M. Bellafkih, “Leveraging resource manage-

ment for efficient performance of apache spark,” Journal of Big Data,
vol. 6, no. 1, pp. 1–23, 2019.

[11] Redis, “Redis, an open source in-memory data structure store.” accessed
on 28 March 2022. [Online]. Available: https://redis.io/.

[12] Y. Mansouri, V. Prokhorenko, and M. A. Babar, “An automated im-
plementation of hybrid cloud for performance evaluation of distributed
databases,” Journal of Network and Computer Applications, vol. 167, p.
102740, 2020.

[13] O. Boutique, “Online boutique, a cloud-native microservices demo
application.” accessed on 28 March 2022. [Online]. Available: https:
//github.com/GoogleCloudPlatform/microservices-demo.

[14] L. A. Rocha and F. L. Verdi, “A network-aware optimization for vm
placement,” in 2015 IEEE 29th International Conference on Advanced
Information Networking and Applications. IEEE, 2015, pp. 619–625.

[15] M. A. Abdelaal, G. A. Ebrahim, and W. R. Anis, “Network-aware re-
source management strategy in cloud computing environments,” in 2016
11th International Conference on Computer Engineering & Systems
(ICCES). IEEE, 2016, pp. 26–31.

[16] F. Larumbe and B. Sansò, “Elastic, on-line and network aware virtual
machine placement within a data center,” in 2017 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM). IEEE, 2017, pp.
28–36.

[17] M. Barshan, H. Moens, S. Latre, B. Volckaert, and F. De Turck,
“Algorithms for network-aware application component placement for
cloud resource allocation,” Journal of Communications and Networks,
vol. 19, no. 5, pp. 493–508, 2017.

[18] L. R. Rodrigues, M. Pasin, O. C. Alves, C. C. Miers, M. A. Pillon,
P. Felber, and G. P. Koslovski, “Network-aware container scheduling
in multi-tenant data center,” in 2019 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[19] K. Scheduler Plugins, “Repository for out-of-tree scheduler plugins
based on the scheduler framework.” accessed on 28 March 2022. [On-
line]. Available: https://github.com/kubernetes-sigs/scheduler-plugins.

[20] Kubernetes, “Custom resources,” accessed on 28 March 2022. [On-
line]. Available: https://kubernetes.io/docs/concepts/extend-kubernetes/
api-extension/custom-resources/.

[21] J. Santos, C. Wang, T. Wauters, and F. De Turck, “Pr for inclusion of the
networkaware plugins,” accessed on 27 September 2022. [Online]. Avail-
able: https://github.com/kubernetes-sigs/scheduler-plugins/pull/432.

[22] A. Santoyo-González and C. Cervelló-Pastor, “Network-aware place-
ment optimization for edge computing infrastructure under 5g,” IEEE
access, vol. 8, pp. 56 015–56 028, 2020.

[23] Y. Wu, W. Zheng, Y. Zhang, and J. Li, “Reliability-aware vnf placement
using a probability-based approach,” IEEE Transactions on Network and
Service Management, vol. 18, no. 3, pp. 2478–2491, 2021.

[24] Y. Hu, J. Wang, H. Zhou, P. Martin, A. Taal, C. De Laat, and Z. Zhao,
“Deadline-aware deployment for time critical applications in clouds,”
in European Conference on Parallel Processing. Springer, 2017, pp.
345–357.

[25] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards network-
aware resource provisioning in kubernetes for fog computing applica-
tions,” in 2019 IEEE Conference on Network Softwarization (NetSoft).
IEEE, 2019, pp. 351–359.

[26] A. Beltre, P. Saha, and M. Govindaraju, “Kubesphere: An approach
to multi-tenant fair scheduling for kubernetes clusters,” in 2019 IEEE
Cloud Summit. IEEE, 2019, pp. 14–20.

[27] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards delay-
aware container-based service function chaining in fog computing,” in
NOMS 2020-2020 IEEE/IFIP Network Operations and Management
Symposium. IEEE, 2020, pp. 1–9.

[28] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with kubernetes,” Computer Commu-
nications, vol. 159, pp. 161–174, 2020.

[29] A. F. Baarzi and G. Kesidis, “Showar: Right-sizing and efficient schedul-
ing of microservices,” in Proceedings of the ACM Symposium on Cloud
Computing, 2021, pp. 427–441.

[30] D. Crankshaw, G.-E. Sela, X. Mo, C. Zumar, I. Stoica, J. Gonzalez,
and A. Tumanov, “Inferline: latency-aware provisioning and scaling
for prediction serving pipelines,” in Proceedings of the 11th ACM
Symposium on Cloud Computing, 2020, pp. 477–491.

[31] S. Wang, X. Zhou, L. Zhang, and C. Jiang, “Network-adaptive schedul-
ing of data-intensive parallel jobs with dependencies in clusters,” in
2017 IEEE International Conference on Autonomic Computing (ICAC).
IEEE, 2017, pp. 155–160.

[32] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang et al., “Gandiva: Introspective
cluster scheduling for deep learning,” in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI) 18), 2018, pp.
595–610.

[33] Z. Hu, J. Tu, and B. Li, “Spear: Optimized dependency-aware task
scheduling with deep reinforcement learning,” in 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2019, pp. 2037–2046.

[34] A. Chung, S. Krishnan, K. Karanasos, C. Curino, and G. R. Ganger, “Un-
earthing inter-job dependencies for better cluster scheduling,” in 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI) 20), 2020, pp. 1205–1223.

[35] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive cluster
scheduling for goodput-optimized deep learning,” in 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI)
21), 2021.

[36] Y. He, W. Cai, P. Zhou, G. Sun, S. Luo, H. Yu, and M. Guizani,
“Beamer: Stage-aware coflow scheduling to accelerate hyper-parameter
tuning in deep learning clusters,” IEEE Transactions on Network and
Service Management, vol. 19, no. 2, pp. 1083–1097, 2021.

[37] X. Li, Z. Lian, X. Qin, and W. Jie, “Topology-aware resource allocation
for iot services in clouds,” IEEE Access, vol. 6, pp. 77 880–77 889, 2018.

[38] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana,
“E3:energy-efficient microservices on smartnic-accelerated servers,” in
2019 USENIX Annual Technical Conference (USENIX ATC 19), 2019,
pp. 363–378.

[39] D. Yang, D. Cheng, W. Rang, and Y. Wang, “Joint optimization of
mapreduce scheduling and network policy in hierarchical data centers,”
IEEE Transactions on Cloud Computing, 2019.

[40] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “Heterogeneity-aware cluster scheduling policies for deep
learning workloads,” in 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI) 20), 2020, pp. 481–498.

[41] B. Ryu, A. An, Z. Rashidi, J. Liu, and Y. Hu, “Towards topology
aware pre-emptive job scheduling with deep reinforcement learning,” in
Proceedings of the 30th Annual International Conference on Computer
Science and Software Engineering, 2020, pp. 83–92.

[42] V. Rao, V. Singh, K. Goutham, B. U. Kempaiah, R. J. Mampilli,
S. Kalambur, and D. Sitaram, “Scheduling microservice containers on
large core machines through placement and coalescing,” in Workshop
on Job Scheduling Strategies for Parallel Processing. Springer, 2021,
pp. 80–100.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 16

[43] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
task-aware scheduling for data center networks,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, pp. 431–442, 2014.

[44] C. Gao, H. Wang, L. Zhai, Y. Gao, and S. Yi, “An energy-aware ant
colony algorithm for network-aware virtual machine placement in cloud
computing,” in 2016 IEEE 22nd international conference on parallel
and distributed systems (ICPADS). IEEE, 2016, pp. 669–676.

[45] R. Wang, J. A. Wickboldt, R. P. Esteves, L. Shi, B. Jennings, and L. Z.
Granville, “Using empirical estimates of effective bandwidth in network-
aware placement of virtual machines in datacenters,” IEEE Transactions
on Network and Service Management, vol. 13, no. 2, pp. 267–280, 2016.

[46] H. Zhu, K. Kaffes, Z. Chen, Z. Liu, C. Kozyrakis, I. Stoica, and X. Jin,
“Racksched: A microsecond-scale scheduler for rack-scale computers,”
in 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI) 20), 2020, pp. 1225–1240.

[47] M. Blöcher, L. Wang, P. Eugster, and M. Schmidt, “Switches for
hire: resource scheduling for data center in-network computing,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
268–285.

[48] G. Shen, Q. Li, W. Shi, F. Han, Y. Jiang, and L. Gu, “Poche: A priority-
based flow-aware in-network caching scheme in data center networks,”
IEEE Transactions on Network and Service Management, 2022.

[49] E. Ahvar, S. Ahvar, N. Crespi, J. Garcia-Alfaro, and Z. A. Mann,
“Nacer: a network-aware cost-efficient resource allocation method for
processing-intensive tasks in distributed clouds,” in 2015 IEEE 14th
International Symposium on Network Computing and Applications.
IEEE, 2015, pp. 90–97.

[50] J. Darrous, S. Ibrahim, A. C. Zhou, and C. Perez, “Nitro: Network-aware
virtual machine image management in geo-distributed clouds,” in 2018
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 2018, pp. 553–562.

[51] D. Haja, B. Vass, and L. Toka, “Towards making big data applications
network-aware in edge-cloud systems,” in 2019 IEEE 8th International
Conference on Cloud Networking (CloudNet). IEEE, 2019, pp. 1–6.

[52] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, vol. 98, pp. 289–330, 2019.

[53] C. N. C. F. C. Volcano, “Volcano, a batch system built on kubernetes,”
accessed on 28 March 2022. [Online]. Available: https://github.com/
volcano-sh/volcano.

[54] ——, “The gang plugin,” accessed on 28 March 2022. [On-
line]. Available: https://github.com/volcano-sh/volcano/tree/master/pkg/
scheduler/plugins/gang.

[55] ——, “Task topology plugin,” accessed on 28 March 2022. [On-
line]. Available: https://github.com/volcano-sh/volcano/tree/master/pkg/
scheduler/plugins/task-topology.

[56] ——, “The binpack plugin,” accessed on 28 March 2022. [On-
line]. Available: https://github.com/volcano-sh/volcano/tree/master/pkg/
scheduler/plugins/binpack.

[57] ——, “Dominant resource fairness (drf) plugin,” accessed on 28 March
2022. [Online]. Available: https://github.com/volcano-sh/volcano/tree/
master/pkg/scheduler/plugins/drf.

[58] B. Ibryam, “Principles of container-based application design,” Redhat
Consulting Whitepaper, 2017.

[59] K. Cosheduling Plugin, “coscheduling plugin implementations based on
coscheduling based on podgroup crd.” accessed on 28 March 2022. [On-
line]. Available: https://github.com/kubernetes-sigs/scheduler-plugins/
tree/master/pkg/coscheduling.

[60] K. Topology-aware Plugin, “Topology-aware scheduler plugin
implementations.” accessed on 28 March 2022. [Online]. Available:
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/pkg/
noderesourcetopology.

[61] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, “A hierar-
chical data-partitioning algorithm for performance optimization of data-
parallel applications on heterogeneous multi-accelerator numa nodes,”
IEEE Access, vol. 8, pp. 7861–7876, 2019.

[62] Kubernetes, “Scheduling framework.” accessed on 28 March 2022. [On-
line]. Available: https://kubernetes.io/docs/concepts/scheduling-eviction/
scheduling-framework/.

[63] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards low-
latency service delivery in a continuum of virtual resources: State-of-the-
art and research directions,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2557–2589, 2021.

[64] A. Haider, R. Potter, and A. Nakao, “Challenges in resource allocation
in network virtualization,” in 20th ITC specialist seminar, vol. 18, no.
2009. ITC, 2009.

[65] C. D’Ambrosio, A. Lodi, and S. Martello, “Piecewise linear approxima-
tion of functions of two variables in milp models,” Operations Research
Letters, vol. 38, no. 1, pp. 39–46, 2010.

[66] Kubernetes, “Assigning pods to nodes,” accessed on 28 March
2022. [Online]. Available: https://kubernetes.io/docs/concepts/
scheduling-eviction/assign-pod-node/.

[67] ——, “Advertise extended resources for a node,” accessed on
28 August 2022. [Online]. Available: https://kubernetes.io/docs/tasks/
administer-cluster/extended-resource-node/.

[68] J. Santos, C. Wang, T. Wauters, and F. De Turck, “Bandwidth
resources advertisement via extended resources,” accessed on 28
August 2022. [Online]. Available: https://anonymous.4open.science/r/
bandwidth-component-3DDF/README.md.

[69] Kubernetes, “Network plugins,” accessed on 28 August 2022. [On-
line]. Available: https://kubernetes.io/docs/concepts/extend-kubernetes/
compute-storage-net/network-plugins/.

[70] X. Fan, B. Lang, Y. Zhou, and T. Zang, “Adding network bandwidth
resource management to hadoop yarn,” in 2017 seventh international
conference on information science and technology (ICIST). IEEE, 2017,
pp. 444–449.

[71] J. Santos, C. Wang, T. Wauters, and F. De Turck, “App
group crd yaml file,” accessed on 28 August 2022. [Online].
Available: https://github.com/jpedro1992/scheduler-plugins/blob/
KepDevWithNTController/manifests/appgroup/crd.yaml.

[72] Kubernetes, “Service.” accessed on 28 March 2022. [Online]. Available:
https://kubernetes.io/docs/concepts/services-networking/service/.

[73] J. Santos, C. Wang, T. Wauters, and F. De Turck, “App group controller,”
accessed on 28 August 2022. [Online]. Available: https://github.com/
diktyo-io/appgroup-controller.

[74] C. Pang, J. Wang, Y. Cheng, H. Zhang, and T. Li, “Topological sorts
on dags,” Information Processing Letters, vol. 115, no. 2, pp. 298–301,
2015.

[75] A. B. Kahn, “Topological sorting of large networks,” Communications
of the ACM, vol. 5, no. 11, pp. 558–562, 1962.

[76] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[77] J. Santos, C. Wang, T. Wauters, and F. De Turck, “Network
topology crd yaml file,” accessed on 28 August 2022. [On-
line]. Available: https://github.com/jpedro1992/scheduler-plugins/blob/
KepDevWithNTController/manifests/networktopology/crd.yaml.

[78] ——, “The netperf component for the diktyo framework,” accessed
on 28 August 2022. [Online]. Available: https://github.com/jpedro1992/
pushing-netperf-metrics-to-prometheus/tree/configmap.

[79] Netperf, “a benchmark to measure the performance of many different
types of networking. it provides tests for both unidirectional throughput,
and end-to-end latency.” accessed on 28 March 2022. [Online]. Avail-
able: https://github.com/HewlettPackard/netperf.

[80] Kubernetes, “Configmaps,” accessed on 28 August 2022. [Online].
Available: https://kubernetes.io/docs/concepts/configuration/configmap/.

[81] J. Santos, C. Wang, T. Wauters, and F. De Turck, “Network topology
controller,” accessed on 28 August 2022. [Online]. Available: https://
github.com/diktyo-io/networktopology-controller.

[82] Kubernetes, “Scheduling, preemption and eviction,” accessed on 28
March 2022. [Online]. Available: https://kubernetes.io/docs/concepts/
scheduling-eviction/ print/.

[83] M. Hausenblas and S. Schimanski, Programming Kubernetes: Develop-
ing Cloud-Native Applications. ” O’Reilly Media, Inc.”, 2019.

[84] J. Santos, C. Wang, T. Wauters, and F. De Turck, “Network
topology cr example file,” accessed on 28 August 2022. [On-
line]. Available: https://github.com/jpedro1992/scheduler-plugins/blob/
KepDevWithNTController/manifests/networktopology/example.yaml.

[85] ——, “The diktyo scheduling plugins,” accessed on 28 August 2022.
[Online]. Available: https://github.com/jpedro1992/scheduler-plugins/
tree/KepDevWithNTController/pkg/networkaware.

[86] Kubernetes, “the qos plugin sorts pods by .spec.priority and breaks ties
by the quality of service class.” accessed on 28 March 2022. [On-
line]. Available: https://github.com/kubernetes-sigs/scheduler-plugins/
tree/master/pkg/qos.

[87] ——, “Core v1 pod api.” accessed on 28 March 2022. [Online]. Avail-
able: https://github.com/kubernetes/client-go/blob/master/listers/core/v1/
pod.go.

[88] A. EC2, “Amazon ec2 on-demand pricing,” accessed on 28 March 2022.
[Online]. Available: https://aws.amazon.com/ec2/pricing/on-demand/.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, APRIL 2023 17

[89] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM computer communication
review, vol. 38, no. 4, pp. 63–74, 2008.

[90] I. ILOG, “Ibm cplex ilog optimization studio,” accessed on
28 March 2022. [Online]. Available: https://www.ibm.com/products/
ilog-cplex-optimization-studio.

[91] A. A. Donovan and B. W. Kernighan, The Go programming language.
Addison-Wesley Professional, 2015.

[92] Kubernetes, “Overview of kubeadm,” accessed on 28 March 2022.
[Online]. Available: https://kubernetes.io/docs/reference/setup-tools/
kubeadm/kubeadm/.

[93] I. Cloud, “Hybrid. open. resilient. your platform and partner for digital
transformation.” accessed on 28 March 2022. [Online]. Available: https:
//www.ibm.com/cloud.

[94] A. N. Kuznetsov, “tc(8) — linux manual page.” accessed on 28 March
2022. [Online]. Available: https://man7.org/linux/man-pages/man8/tc.8.
html.

[95] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer,
“Firm: An intelligent fine-grained resource management framework for
slo-oriented microservices,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 2020, pp. 805–825.

[96] Redis, “How fast is redis?” accessed on 28 March 2022. [Online].
Available: https://redis.io/topics/benchmarks.

[97] J. Santos, C. Wang, T. Wauters, and F. De Turck, “Redis app
group crd yaml file,” accessed on 1 September 2022. [On-
line]. Available: https://github.com/jpedro1992/scheduler-plugins/blob/
kepDev/manifests/appgroup/redis-appGroup-example.yaml.

[98] ——, “Online boutique app group crd yaml file,” accessed
on 28 March 2022. [Online]. Available: https://github.com/
jpedro1992/scheduler-plugins/blob/kepDev/manifests/appgroup/
onlineBoutique-appGroup-example.yaml.

[99] Locust, “An open source load testing tool.” accessed on 28 March 2022.
[Online]. Available: https://locust.io/.

José Santos obtained his M.Sc. degree in Electrical
and Computers Engineering in July 2015 from the
University of Porto, Portugal. Recently, he com-
pleted his doctoral studies at Ghent University in
April 2022. He is currently a Postdoctoral Re-
searcher in the Internet Technology and Data Science
Lab (IDLab) Research Group at Ghent University -
imec, Belgium. His research interests include Cloud
and Fog Computing, IoT, Service Function Chain-
ing, and Reinforcement Learning. His work has been
published in more than 20 scientific publications.

Chen Wang obtained her M.S.c and Ph.D. de-
grees in Electrical and Computer Engineering from
Carnegie Mellon University (CMU) in 2014 and
2017, respectively. Since 2017, she has worked as
a Research Staff Member at IBM Thomas J. Wat-
son Research Center. Her research interests include
Cloud video streaming systems, Cloud resource
management, Container Cloud platforms, Serverless
Computing, Machine Learning/Data Analytics sys-
tems, and data-driven cloud system management,
with a special focus on machine learning approaches.

She authored and coauthored 20+ papers, and served as co-chair for ACM In-
ternational Workshop on Containers, ACM Middleware Industrial Track, IEEE
CloudCom, etc. She is also an open source advocate, actively contributing
to projects in Linux Foundation, Cloud Native Foundation, and Kubernetes
Ecosystems.

Tim Wauters received the M.Sc. and Ph.D. de-
grees in electro-technical engineering from Ghent
University, in 2001 and 2007, respectively. He has
been working as a Postdoctoral Fellow of F.W.O.-
V. with the Department of Information Technology
(INTEC), Ghent University. He is currently active
as a Senior Researcher at imec. His work has been
published in more than 150 scientific publications.
His research interests include design and manage-
ment of networked services, covering multimedia
distribution, cybersecurity, big data, and smart cities.

Filip De Turck leads the network and service
management research group at Ghent University,
Belgium and imec. He (co-) authored over 700 peer
reviewed papers and his research interests include
design of efficient softwarized network and cloud
systems. He is involved in several research projects
with industry and academia, served as chair of the
IEEE Technical Committee on Network Operations
and Management (CNOM), and serves as a steering
committee member of the IM, NOMS, CNSM and
NetSoft conferences. Prof. Filip De Turck served as

Editor-in-Chief of IEEE Transactions on Network and Service Management
(TNSM), and was named an IEEE Fellow since 2021.

