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Abstract

The use of adhesive joints in various industrial applications has become
increasingly popular due to their beneficial characteristics, including
their high strength-to-weight ratio, design flexibility, limited stress con-
centrations, planar force transfer, good damage tolerance, and fatigue
resistance. However, finding the best process parameters for adhesive
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bonding can be challenging. This optimization problem is inherently
multi-objective, aiming to maximize break strength while minimizing
cost and constrained to avoid any visual damage to the materials
and ensure that stress tests do not result in adhesion-related fail-
ures. Additionally, testing the same process parameters several times
may yield different break strengths, making the optimization process
uncertain. Conducting physical experiments in a laboratory setting
is costly, and traditional evolutionary approaches like genetic algo-
rithms are not suitable due to the large number of experiments
required for evaluation. Bayesian optimization is suitable in this context,
but few methods simultaneously consider the optimization of multi-
ple noisy objectives and constraints. This study successfully applies
advanced learning techniques to emulate the objective and constraint
functions based on limited experimental data. These are incorpo-
rated into a Bayesian optimization framework, which efficiently detects
Pareto-optimal process configurations under strict budget constraints.

Keywords: Bayesian optimization, multi-objective optimization, constrained
optimization, machine learning, adhesive bonding

1 Introduction

Adhesive bonding is the engineering process of joining two surfaces together by
a non-metallic substance [1]. This process occurs frequently in many engineer-
ing design contexts, such as the automotive industry [2], electronics [3], and
aeronautics [4]. It is a complex process, in which several physical and chem-
ical processes occur simultaneously [5, 6], with outcomes that are influenced
by many factors, such as environmental conditions, material specifications,
and specific process settings. Process optimization is therefore traditionally
performed by experts, based on acquired knowledge and extensive experi-
mental campaigns [7, 8]. Yet, even for experts, optimizing adhesive bonding
parameters is a difficult task, due to the complex (and, essentially, black box)
relationships between the process parameters, and the case-specific nature of
the bonding process. As a consequence, real physical experiments are required
to detect the optimal settings for each specific case. These tend to be costly
in terms of time (time to prepare the parts to be joined, time to prepare the
adhesive, to join both materials, and to allow the adhesive to gain its final
strength), and in terms of manual labor. Moreover, data from one industrial
bonding process cannot be used to optimize another process, as not only mate-
rials and adhesives may differ, but also production process specifications. As a
result, optimization of an adhesive bonding process is challenging and costly,
even with expert knowledge available. Moreover, the experimental approach
may easily yield suboptimal results with respect to other relevant perfor-
mance metrics, such as production costs. Thus, the problem is also inherently
multi-objective.
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As observed in [9], evolutionary approaches (in particular, genetic algo-
rithms) are currently the most common data science technique in engineering
design optimization. This also holds for multi-objective engineering design
problems (a.o., bonding problems). Evolutionary multi-objective algorithms
(EMOAs) are applicable to black-box optimization problems and have proven
to be effective derivative-free optimizers [10]. The Non-dominated Sorting
Genetic Algorithm (NSGA-II) [11], stands out as one of the most widely used
algorithms in industrial process cases. For instance, Corbett et. al. (2017) [12]
used NSGA-II in combination with a Gaussian Process surrogate model to
simultaneously optimize two objectives (force sustained by the joint and area
beneath the load-displacement curve) for a novel concept for joining materi-
als. Labbé and Drouet (2012) [13] studied designs for optimal bonding of TSL
(tubular single-lap) joints using NSGA-II, highlighting the conflicting nature
of mass-related and stress-related objectives.

Relative to the unconstrained case, the literature on algorithms for solving
constrained multi-objective problems is scarce. Some of the well-known algo-
rithms are the Constrained Non-dominated Sorting Genetic Algorithm II (C-
NSGA-II [11, 14]), the Constrained Multi-Objective Evolutionary Algorithm
based on Decomposition (C-MOEA/D [15]), the Two-Archive Evolutionary
Algorithm for Constrained multi-objective optimization (C-TAEA [16]), and
the Constrained Particle Swarm Optimization algorithm for Multi-Objective
problems (C-MOPSO [17]). These algorithms differ in the way in which they
handle constraints: while the first three algorithms handle the constraints dur-
ing the non-dominated sort, the latter adopts a penalization function approach.
We refer the reader to the original publications for further details about the
implementation of these algorithms.

EMOAs are indeed an effective tool for black-box optimization, especially
if the optimization problem is difficult to model; however, they are data-
inefficient (i.e., they require numerous function evaluations), which makes
them ill-suited for optimizing design problems that require (computational or
experimental) expensive data. Even when an emulator or surrogate model is
used to mitigate this issue [18], the search process in this type of algorithm
remains largely based on random alterations of (promising) solutions, with
convergence speeds that are sensitive to the choice of user-defined (and often
problem-specific) parameters. Moreover, the measurement of the objectives is
usually affected by noise and this is often neglected during the optimization,
leading to suboptimal solutions.

For the sub-class of low-dimensional black-box problems that are expen-
sive to evaluate, Bayesian optimization (BO) has emerged as a powerful
alternative, with applications ranging from hyperparameter tuning of deep
learning models, to design optimization in engineering, and stochastic opti-
mization in operational research (see [19] for a comprehensive review). Several
Bayesian Multiobjective Optimization (BMO) methods have been proposed to
solve complex decision-making problems involving multiple objectives that are
expensive to evaluate [20]. Only a few methods have considered the constrained
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case [21–23], and even less literature has considered noisy objectives and/or
constraints [24, 25]. The main contribution of this paper is the implementation
of a full BMO algorithm for the noisy, expensive, and constrained optimization
of a novel adhesive bonding process. The approach builds on the recent work
of Rojas et. al. (2019) [25]. More specifically, the main contributions include:

• The formulation of an acquisition function that combines the expected
improvement over the objectives and the constraint feasibility (based on dis-
crete values (FEASIBLE or NOT FEASIBLE) rather in numeric values),
where both the objective and constraints are black-box, noisy, and expen-
sive to evaluate. This provides an explainable approach, as opposed to the
upfront parameter choices that guide the generation of successive popula-
tions in evolutionary algorithms. The contribution in this sense is given by
the fact that EAs are still traditionally used to solve such complex engi-
neering problems and do not consider the knowledge gathered from past
evaluations beyond the heuristics defined by the algorithm.

• The use of a Gaussian Process (GP) surrogate that explicitly accounts for
the noise that is typically present in the outcomes of the experiments. Here,
outcomes cannot be observed with perfect accuracy, and the magnitude of
the noise may vary between different configurations; thus, we have input-
dependent (i.e., heterogeneous) noise. This issue is commonly overlooked in
engineering optimization problems, by simply assuming that noise is non-
existent (or, at best, homogeneous). Hence the contribution of the proposed
algorithm.

• A full BMO algorithm that is able to obtain better configurations than
state-of-the-art EMOAs and surrogate-assisted EMOAs. The approach is
particularly meant for settings where the analyst can only afford a very lim-
ited number of observations (as is the case with costly physical experiments
in a lab).

The remainder of this article is organized as follows. Section 2 discusses
the main concepts in multi-objective optimization, followed by a description
of the bonding process problem under study. Section 3 details the relevant
background in Bayesian optimization, and the proposed algorithms. Section
4 discusses the design of experiments, while Section 5 discusses the results.
Finally, Section 6 summarizes the findings and highlights some future research
directions.

2 Multi-objective optimization: main concepts
and problem description

2.1 Multi-objective optimization: main concepts

In general, a multi-objective optimization problem can be defined as (assuming
minimization of all the objectives):
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min [f1(x), . . . , fm(x)]

s.t. gi(x) ≤ 0, i = 1, 2, . . . , p
(1)

where x = [x1, . . . , xd]
T is a vector of d decision variables in the decision

space D, f : D → Rm is a vector-valued function yielding the m objectives,
and the function gi (i = 1, ..., p) defines inequality constraints. The goal of a
multi-objective problem is to find the set of non-dominated or Pareto-optimal
solutions. A solution x(1) is said to dominate another solution x(2) when it
performs better than the latter on at least one objective, while not performing
worse on any of the other objectives [26]. More formally, for x(1) and x(2) two
vectors in D:

• x(1) ≺ x(2) means x(1) dominates x(2) iff fj(x
(1)) ≤ fj(x

(2)),∀j ∈
{1, . . . ,m}, and ∃j ∈ {1, . . . ,m} such that fj(x

(1)) < fj(x
(2))

• x(1) ≺≺ x(2) means x(1) strictly dominates x(2) iff fj(x
(1)) < fj(x

(2)),∀j ∈
{1, . . . ,m}

The optimal solutions for the individual objectives are usually not of inter-
est to the decision-maker, since these only reflect the extremes of the so-called
Pareto front (i.e., the evaluation of the Pareto set in the objective space).
The geometry of the Pareto front can be very diverse (see, e.g., Figure 1 for
two examples generated from artificial test problems), and is usually unknown
upfront. Often, it contains infinitely many solutions; the multi-objective opti-
mization algorithm then tries to approximate this front with a finite discrete
set. The solution to be implemented in practice will then depend on the prefer-
ences of the decision-maker. The reader is referred to [18] for a comprehensive
survey on deterministic multi-objective methods for engineering problems. In
such methods, it is usually assumed that the objective and, if applicable, con-
straint functions can be observed without noise (e.g., through a deterministic
simulator, or noise-free experiments). However, in the adhesive bonding prob-
lem discussed here (and in practical settings in general), the objective and
constraint observations are noisy [27, 28].

2.2 Adhesive bonding process: problem setting

The bonding process we focus on joins two PolyPhenylene Sulfide (PPS) sub-
strates using Araldite 2011 adhesive. Figure 2 shows the general procedure of
the adhesive bonding process.
The optimization focuses on the Plasma treatment step. The plasma treat-
ment chemically modifies the top surface layer of the PPS substrate so that
the surface energy increases, which impacts the adhesion strength (i.e., the
strength of the connection between the adhesive and the substrate). In this
process, six parameters play a role: (1) whether the surface is pre-processed or
not (cleaning to remove dust and grease, which may prevent a good connection
between the adhesive and the substrate), (2) the power setting of the plasma
torch, (3) the speed at which the plasma torch moves across the samples, (4)
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(a) (b)

Fig. 1: Illustration of (a) a 2-objective problem with a disconnected Pareto
front, (b) a 3-objective problem with a concave Pareto front

Fig. 2: Schematic overview of the adhesive bonding process

the distance between the plasma torch nozzle and the sample, (5) the number
of passes of the plasma torch over the sample, and (6) the time between the
plasma treatment and the application of the glue (as the plasma effect reverses
over time). The adhesion strength is very sensitive to the configuration of these
parameters.

Using lab experiments, stress tests can be performed to check the out-
comes of samples that have been treated with any particular plasma parameter
configuration: the lap shear strength of the sample (MPa), the failure mode
(adhesive, cohesive, or substrate failure), the production cost of the sample
(in euros), and the potential occurrence of visual damage (the substrates may
burn when heated above their maximum allowable temperature during plasma
treatment). Such physical experiments are expensive, as they require the whole
process in Figure 2 to be performed, involving a human operator. Figure 3
shows different failure modes and an example of visual damage.

The goal of the optimization is to set the plasma process parameters in such
a way that (1) the tensile strength (TS) is maximized, (2) the production cost
(PC) is minimized, and (3) adhesive failures and visual damage are avoided.
As objectives (1) and (2) are in conflict, this is a multi-objective optimization
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(a) Initial substrate (b) Adhesion failure (c) Substrate failure (d) Burned sample

Fig. 3: Illustration of failure modes that may result from the stress test applied
to a sample. The adhesive is applied on the substrates (a) and the failure mode
can be either adhesion failure (b), substrate failure (c), or cohesive failure (not
shown). In addition, visual damage might be observed after the experiment;
e.g., burned sample (d)

problem. The goal is to find a set of solutions that reveal the essential trade-
offs between these objectives (i.e., those solutions for which no objective can be
improved without negatively affecting the performance of any other objective)
while meeting the constraints (3). Equation 2 formally defines this optimization
problem as

min [−TS(x), PC(x)]

s.t. 0.5− PoF(x) ≤ 0
(2)

where the notation PoF(x) refers to the probability of feasibility of any given
process configuration x (estimated as the fraction of replications in which the
configuration resulted in a feasible outcome). As the performance evaluation is
expensive, the optimization algorithm should be able to detect (nearly) Pareto-
optimal solutions within a small number of experiments required; collecting
large amounts of experimental data is simply financially infeasible. In the fol-
lowing section, we discuss how the use of Bayesian optimization allows us to
develop such a data-efficient optimization approach.

3 Constrained Bayesian multiobjective
optimization: proposed algorithms

BO is a supervised learning technique, that starts with the evaluation of
an initial set of input points with good space-filling properties (obtained,
e.g., by means of Latin hypercube sampling or quasi-random sequences). The
BO literature suggests setting the number of initial design points equal to
k = 10d (with d the number of dimensions of the input space), but smaller
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designs have also been advocated [29, 30]. Next, it constructs a surrogate
model (also referred to as metamodel), describing our belief about the response
functions under study, based on the samples observed so far. Further observa-
tions are then added sequentially using an acquisition function that chooses
the most promising input point (referred to as infill point) as the one to
be evaluated next. This acquisition function should balance exploration (in
sparsely observed regions of the input space), and exploitation (in regions
that are already known to contain good values). The metamodels are then
updated, and the algorithm continues until a stopping criterion is met (e.g.,
the computational budget is depleted).

Each BO algorithm thus has two key elements: the type of metamodel used,
and the type of acquisition function. Several acquisition functions exist (see
[19] and [20] for single and multiobjective surveys respectively); allegedly, the
expected improvement (EI) remains one of the most commonly used ones in
practice [31], and GP regressors are standard metamodels in the BO literature
[32]. In this work, we propose two different algorithms for constrained multi-
objective optimization using EI: cMEI-SK, and cEHVI-SK. Both methods
follow the same general steps depicted in Figure 4, but differ in the acquisi-
tion function used: while cMEI-SK uses a scalarization approach to transform
the problem into multiple single-objective ones [25, 33], cEHVI-SK uses the
Expected Hypervolume Improvement (EHVI) acquisition function [34, 35].

Fig. 4: Constrained Bayesian multi-objective optimization algorithms: general
steps.

These two acquisition functions are well-known in the BO literature. How-
ever, their application has mostly been reported in deterministic unconstrained
settings [36]. A few extensions have been proposed in the literature to han-
dle constraints (e.g., [24]), and to handle observational noise (e.g., [25, 37]).
Given that in our problem setting the feasibility of a process configuration is
evaluated with physical tests, where both the objectives and constraints not
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only are noisy but also of different nature (see Section 2.2), such methods can-
not be used out-of-the-box. Further details on the proposed algorithms (and
thus our main contributions) are given in sections 3.2, 3.3, and 3.4. More-
over, we explicitly differentiate two types of GP models: ordinary kriging (OK)
[31, 38] and stochastic kriging (SK) [39]. While any GP model can accommo-
date noisy evaluations [32], OK metamodels are limited to homogeneous noise.
The seminal work of [39] extended OK metamodels to handle heterogeneous
noise (referred to as SK metamodels); as explained further in subsection 3.1,
we exploit the information extracted from both types of metamodels.

3.1 Ordinary versus stochastic kriging metamodels

In ordinary kriging, it is assumed that the observations of the response function
under study are deterministic (i.e., they do not exhibit uncertainty). Assume
that we observed this function at n input locations x(i), i = {1, . . . , n} (con-
tained in matrix X), yielding function values y(i), i = {1, . . . , n} (contained in
matrix Y). This unknown function f (i) for a point x(i) is then modeled as

f (i) = m(x(i)) +M(x(i)) (3)

In this expression, m(x) represents the mean of the process; it is often sup-
posed to be just a constant (β0). The notation M(x) denotes a realization of a
Gaussian random field with mean zero, and a covariance structure that exhibits
spatial correlation (according to a covariance function or kernel k(·, ·)):

Cov(y(i),y(j)) = k(x(i),x(j)), (4)

Often, this covariance function is assumed to be stationary, meaning that its
outcome only depends on the distance between the input locations. Multiple
kernel functions exist in the literature [32]; a popular choice is the squared
exponential or Gaussian kernel:

k(x(i),x(j)) = σ2exp

− d∑
k=1

[
x
(i)
k − x

(j)
k

]2
2l2k

 (5)

where σ2 is the process variance, and lk is the length scale of the process along
dimension k. The parameters β0, σ

2, and lk are estimated from the already
observed data, usually by means of maximum likelihood estimation.

The ordinary kriging prediction at an arbitrary unobserved location x(∗) is
then given by:

f̂OK(x(∗)) = β0 + k∗[Kn]
−1(Y− 1nβ0) (6)

where 1n is a n× 1 vector of ones. The mean squared error on the prediction
(MSE, also referred to as kriging variance) is given by [31]:

ŝ2OK(x(∗)) = k∗∗ − k∗K
−1
n kT∗ (7)

where
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Kn = [k(x(i),x(j))], i, j ∈ {1, . . . , n} (8)

k∗ = [k(x(∗),x(i))], i ∈ {1, . . . , n} (9)

k∗∗ = k(x(∗),x(∗)) (10)

Note that the uncertainty involved in the model of Equation 3 is imposed
on the problem by assumption, to aid the construction of the predictive model.
For this reason, it is also referred to as the extrinsic uncertainty [39].

In many problem settings, however, the observations of the response func-
tion are not deterministic: evaluating the same input location x(i) multiple
times (i.e., taking multiple replications) results in a different observation y(r,i)

in each replication r. The observations thus exhibit noise, which stems from
the experiments (this is also referred to as intrinsic noise). In the literature,
this noise is often assumed to be homogeneous and modeled using OK meta-
models [28]. In practice, however, the structure and level of the noise often
depend on the input variables [38]. Stochastic kriging metamodels [39] explic-
itly account for this intrinsic (input-dependent) noise. It models the observed
response value in the r -th replication at design point x(i) as:

f (r,i) = m(x(i)) +M(x(i)) + ϵr(x
(i)) (11)

where m and M are defined as in Equation 3, and ϵr(x
(i)) is the intrinsic noise

observed in replication r. The SK prediction at an unobserved location x(∗) is
then given by

f̂SK(x(∗)) = β0 + k∗[Kn +Σϵ]
−1(Y− 1nβ0), (12)

and the MSE on this prediction is given by

ŝ2SK(x(∗)) = k∗∗ − k∗
[
K−1

n +Σϵ

]
kT∗ . (13)

In these expressions, Kn, k∗ and k∗∗ are as defined in Equations 8, 9 and
10 respectively, and

Σϵ = diag

[
V ar(y(1))

r(1)
, . . . ,

V ar(y(n))

r(n)

]
, (14)

where V ar(y(i)) refers to the sample variance of the replication outcomes
at location x(i). The values on the diagonal divide this sample variance by
the number of replications r(i) taken at each location, and thus reflect the
estimated variance of the mean outcome at each observed location.

3.2 Probability of feasibility

The probability of feasibility (PoF) has been well-studied in the BO literature
when the constraints are deterministic [27, 35, 36]. In our problem setting, the
constraint feasibility is checked physically (meaning that it will not entail visual
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damage or adhesive failure), which results in a classification problem with two
classes: YES for feasible outcomes and NO for infeasible outcomes. Thus, for each
process configuration evaluated, we have a discrete target variable t ∈ {0, 1},
where 1 denotes YES and 0 denotes NO. We are interested in the probability
p(t = 1 | X); that is, the probability of a process configuration being truly
feasible conditioned on the data collected so far.

To do this, we can train a classification model in Step 3 of Algorithm 4.
However, training a binary classifier here is not very helpful, since the noise
on the constraints will affect the performance for the same input configuration
(i.e., replicating the same process configuration may yield different outcomes
for constraint violation). For instance, if the same input is replicated 5 times,
yielding 2 YES and 3 NO, it is unlikely that training the classifier with e.g., the
mode of the outcomes will yield accurate predictions. Therefore, we opt for
training a regression model on the proportion of successful outcomes instead:
for a given process configuration x(∗), we take the proportion of successful
outcomes of the binary target t as

t̄(∗) =

∑r(∗)

j=1 tj

r(∗)
(15)

where r is the number of replications. We then approximate the probability
of feasibility (PoF) of the unobserved locations by fitting an ordinary kriging

model (Equation 6) on the target t̄ (denoted f̂c(x)). That is, given the observed
targets t̄ ∈ T at points X, the predicted distribution of an unobserved target
t(∗) at point x(∗) is given by

PoF(x(∗)) ≃ f̂c(x
(∗)) = p(t(∗) = 1 | x(∗),X,T). (16)

3.3 cMEI-SK acquisition function

When a scalarization function is used, then only one metamodel is trained
on the scalarized objective at each BO iteration. In this work, we use the
augmented Tchebycheff scalarization function, which is popular in general
multi-objective optimization problems due to the theoretical guarantees it
provides [26, 33]. The scalarized objective is given by:

Zλλλ(x) = max
j={1,...,m}

λjfj(x) + ρ

m∑
j=1

λjfj(x) (17)

where λλλ = [λ1, ..., λm],
∑m

j=1 λj = 1,∀j ∈ {1, . . . ,m}, and ρ is a small positive
value (e.g., ρ = 0.05). We then fit an SK metamodel on Zλλλ(x), explicitly
accounting for the intrinsic noise on the scalarized objective (see Equation 12).
The metamodel information is then used in the acquisition function as
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MEI-SK(x) =
[
ẐSK(xmin)− ẐSK(x)

]
Φ

[
ẐSK(xmin)− ẐSK(x)

ŝOK(x)

]

+ ŝOK(x)ϕ

[
ẐSK(xmin)− ẐSK(x)

ŝOK(x)

] (18)

where ẐSK(xmin) is the SK prediction for the scalarized function (Zλλλ) at xmin

(i.e., the point having the lowest sample mean for the scalarized objective
among all feasible points already sampled), and ϕ(·) and Φ(·) are the stan-
dard normal density and standard normal distribution function, respectively
[25, 40]. For an arbitrary input location, the corresponding constrained MEI
(denoted cMEI-SK) is given by

cMEI-SK(x) = f̂c(x)×MEI(x) (19)

Note that at each BO iteration, a new weight vector λλλ is selected from a set of
weights distributed uniformly, allowing the algorithm to sample points across
the entire Pareto front [33].

3.4 cEHVI-SK acquisition function

When scalarization is not used, an independent SK metamodel is trained for
each of the m objectives. The Expected Hypervolume Improvement (EHVI)
is a popular acquisition function in unconstrained and deterministic settings
[36, 41]. The hypervolume is the size of the space dominated by a Pareto front
P given a reference point [42]. Therefore, the hypervolume improvement of
an objective vector y ∈ Rm is defined as the increment of the hypervolume
indicator after y is added to the current approximation of P [35, 43]

I(y,P) = H(P ∪ {y})−H(P) (20)

where H is the hypervolume calculation function. The EHVI can be defined
as the integration of the hypervolume improvement function over the non-
dominated area using the metamodel prediction [34]

EHVI-SK(x) =

∫
y(x)∈A

I(y(x),P)

m∏
i=1

1

ŝSKi
(x)

ϕ

(
yi(x)− f̂SKi

(x)

ŝSKi
(x)

)
dyi(x)

(21)

where A stands for the non-dominated area. The terms f̂SKi
(x) and ŝSKi

(x)
represent the objective and uncertainty estimators of the stochastic GP model
respectively. Previous studies have already used EHVI, often assuming noise-
less objectives [35, 41, 44], or with homogeneous noise at best [37, 45]. Finally,
for a novel input configuration x(∗), the corresponding constrained EHVI
(denoted cEHVI-SK) is given by
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cEHVI-SK(x(∗)) = f̂c(x
(∗))× EHVI-SK(x(∗)) (22)

4 Design of experiments

To test the proposed optimization approach, we benchmark its performance
against five state-of-the-art constrained EMOAs: C-NSGA-II [14], C-MOEA/D
[15], C-TAEA [16], C-MOPSO [17], an adaptation of C-NSGA-II [46] to use the
OK metamodel prediction to generate new populations (OK-C-NSGA-II), and
a modification to the surrogate-assisted evolutionary algorithm K-RVEA [47],
which we refer to as C-K-RVEA. The latter uses GP surrogates to approximate
the objective functions, and it was modified to handle infeasible configurations
with a penalization factor given by PoF (see Equation 2). To evaluate the
impact of SK, we also implemented our proposed approaches using OK models;
these are denoted with an ‘OK’ in the algorithm name. Furthermore, Zhan
and Xing [36] present a different formulation for constrained EI by using the
definition of PoF presented by Sobester et. al. [48]. However, we observed
in our experiments that the formulation we propose in Equation 19 got, on
average, superior results compared to the results obtained with the formulation
suggested by Zhan and Xing [36]. Appendix A details these results.

The optimization of the acquisition function in Bayesian optimization tends
to be non-trivial, as the function is often non-linear, non-convex, and multi-
modal [49]. Here we use a Particle Swarm Optimization (PSO) algorithm to
find the infill point that maximizes the proposed acquisition functions (i.e.,
the fitness function of this inner optimization). Our choice is motivated by the
good performance and low computational time observed in other studies with
high-dimensional search space [50]. With PSO, the position of the particle
represents the values of each variable to optimize.

Since the physical experiments are very expensive, a Matlab process sim-
ulator was provided by the Joining & Materials Lab1. This simulator predicts
the lap shear strength of the sample (MPa), failure mode (adhesive, substrate,
or cohesive failure), sample production cost (in euros), and visual quality out-
come (YES in a matter of seconds. It is critical to note that this simulator
is not meant to be a digital twin of the true process, but rather a tool for
the relative comparison of the performance of the algorithms under differ-
ent conditions, at almost zero cost. Table 1 shows the range of each process
parameter considered in the optimization problem, and Table 2 summarizes
the parameters of the optimization algorithms. It is worth mentioning that
the Kolmogorov-Smirnov test showed that the distributions of the objective
replications (for break strength) do not follow a Normal distribution. While it
is common to use the mean of repeat evaluations as a way of handling noisy
functions, this does still assume that the noise is normally distributed. How-
ever, we can assume normality according to the Central Limit Theorem (CLT).

1https://www.flandersmake.be

https://www.flandersmake.be
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In probability theory, CLT establishes that, in many situations, for indepen-
dent and identically distributed random variables, the sampling distribution of
the standardized sample mean tends towards the standard normal distribution
even if the original variables themselves are not normally distributed.

Table 1: Range of the process settings (input variables) considered in the
optimization.

ID Variable Min Max
v1 Pre-processing Yes or No
v2 Power setting (W) 300 500
v3 Torch speed (mm/s) 5 250
v4 Distance between the torch and the sample

(cm)
0.2 2

v5 Number of passes 1 50
v6 Time between plasma treatment and glue

application (min)
1 120

The simulator allows the analyst to experiment with different levels of
noise. In real life, multiple factors cause noise to occur. One of these is the so-
called contact angle2: this measure reflects the extent to which the adhesive can
maintain good contact with the material. This is important to achieve a strong
adhesive bond. The contact angle depends on the type of material but also on
impurities or contaminants such as wax, oil, plasticizers, etc. present on the
material surface. Even though all samples in our setting are made of the same
material, variations in the degree of these contaminants occur across samples,
implying variations in contact angle. These result in noisy measurements of
the final break strength of the bonded joints. A realistic value for the standard
deviation of the contact angle is γ = 30% of the mean, which is what we use
in our experiments.

Given the experimental setting in Table 2, each algorithm evaluates exactly
60 process configurations in an expensive way, with 5 replications per con-
figuration (i.e., 300 expensive evaluations in total). Although the number of
replications performed in one input location should be in correspondence to
the level of noise observed at that point, we kept this value constant for each
input given the small budget we have for the optimization (300 expensive
evaluations). The BO algorithms start with an initial design of 20 process con-
figurations (note that this is smaller than the usual choice of k = 11d − 1);
exactly one infill point is then added in each of the following 40 iterations. The
EMOAs, by contrast, use an initial population of 20 process configurations
(the same initial set used by BO algorithms) and in each of the 2 successive
generations, a novel population is generated. As common in the literature,
the fitness of the configuration outcomes is evaluated based on their sample
means over the 5 replications (note that, by doing so, these algorithms implic-
itly ignore the fact that this sample mean is in itself uncertain). Our approach

2Other noise factors could not be controlled in the simulator, so they are not further discussed.
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Table 2: Summary of the parameters of the optimization algorithms

Setting
BO

algorithms
Evolutionary
algorithms

Size of initial design/popula-
tion

LHS: N = 20

Crossover probability - 0.5 (C-MOEA/D); 0.9 o.w
Mutation probability - 0.1
Reference directions - 19 (C-TAEA); 3 (C-MOEA/D)
Inertia weight - 0.4 (C-MOPSO)
C1 factor - 2 (C-MOPSO)
C2 factor - 2 (C-MOPSO)
Max velocity (%) - 5 (C-MOPSO)
Reference vectors - 151 (C-K-RVEA)
Replications r = 5
Iterations 40 2
Acquisition function cMEI-SK/cEHVI-SK -
Acquisition function optimiza-
tion

PSO* -

Kernel (for all GPR models) Gaussian -
* PSO configuration: swarm size = 50, max iterations=1800, max stall
iterations = 10, tolerance = 1e−6

takes into account both the sample mean and the sample variance though, as
explained in Section 3. While a total budget of 300 evaluations may seem high,
it allows us to also study the progress the algorithms would have obtained at
lower budgets, as illustrated below.

We evaluate the quality of the resulting fronts using the well-known hyper-
volume (HV) and IGD+ indicators [51]. The hypervolume is the volume of
the objective space that is dominated by the front obtained, w.r.t. a reference
point, and the IGD+ is the average smallest inverted generational distance
to the closest member of the true Pareto front. The larger the hypervolume
and the lower the IGD+, the better the quality of the front obtained. We
also include performance analysis of the proposed methods using the empirical
attainment function [52]. As the front obtained by the algorithms may depend
on the initial design, we performed 50 macro-replications, each one starting
with a different initial design.

5 Results

To gain some insight into the objective space to be explored by the algorithms
under idealized conditions (i.e., if the contact angle could be perfectly con-
trolled), Figure 5 shows the mean responses of the simulator on a set of 60
000 process configurations (with γ = 0%). These configurations were deter-
mined through Halton sampling, and each configuration was replicated five
times. Interestingly, the feasible solutions seem to be clustered in areas with
high break strength. Moreover, the use of pre-processing seems to merely lead
to a cost increase, while the resulting gains in break strength are very scarce
and only minor. The Pareto optimal (feasible) points estimated by means of
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these Halton results, under these idealized conditions (γ = 0%), serve as the
benchmark Pareto front to judge the quality of the competing optimization
algorithms.

Fig. 5: Sample mean of break strength versus production cost, estimated by
the simulator for 60 000 random process configurations (γ = 0%)

Figure 6 shows an exploratory analysis of the Pareto fronts obtained by
each BO algorithm in the different macro-replications. The analysis is per-
formed using the concept of the empirical attainment function (EAF, [52]).
For each point, the EAF gives an estimate of the probability that this point is
dominated (attained) by the Pareto front put forward by the given algorithm.
Connecting points with the same given EAF value yields an attainment sur-
face that separates the objective space into two regions: those objective vectors
that are attained by the resulting Pareto fronts with (at least) that probabil-
ity, and those that are not. The attainment surfaces allow us to summarize
the location of the objective vectors obtained by a stochastic algorithm. The
median attainment surface, for instance, consists of the objective vectors that
are attained by half of the runs (representing a probability of 50%). Similarly,
the worst-case results of an algorithm are reflected in the worst attainment
surface, whereas the best results are given by the best attainment surface. The
shaded areas in the right-hand side of Figure 6 show the objective areas where
the proposed cMEI-SK approach reaches better attainment surfaces minimiz-
ing the objective cost. On the other hand, using cEHVI-SK means a better
attainment surface minimizing the objective break strength.

Figure 7 shows the final best Pareto front obtained by the proposed
approaches over 50 macro-replications (along with the median and worst
fronts), for γ = 30% and Figure 9 shows the percent of Pareto feasible solu-
tions found at the end of the optimization. Although the number of feasible
solutions in the Pareto front remained similar for each algorithm, BO-based
approaches were able to find better fronts w.r.t. the IGD+ and hypervolume
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Fig. 6: Visualization of the differences between the EAFs using different acqui-
sition functions in the BO methods. The Y-axis is inverted to allow for the
minimization of both objectives. Each plot shows the median surface (dashed
line), along with the best and worst surfaces (full lines). The areas where a
better attainment surface is obtained are indicated by a shaded area (the col-
ors indicate the improvement in the probabilities).
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Fig. 7: Best, median, and worst Pareto front obtained by the BO methods.
The Y-axis is inverted to allow minimization of both objectives

indicators. Each of these Pareto feasible solutions was considered to add 10,000
extra replications to analyze the percentage of those solutions that remained
feasible. Figure 8 shows that approximately 60% of the process configurations
remained feasible for most of the optimization algorithms, with C-TAEA as
the worst and cEHVI-SK the best (w.r.t. the median percentage).

The best Pareto front obtained by cEHVI-SK is very close to the ideal
Pareto front estimated by means of the Halton set exploration. It also leads
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Fig. 8: Percent of Pareto feasible solutions (found by the algorithms during
the optimization of each macro-replication) that remained as feasible when
10,000 replications were performed. The star and vertical line inside the box
represent the mean and median, respectively, of the percentage computed for
each macro-replication.

to a faster increase in HV, in terms of the number of expensive evaluations
performed, than all other algorithms. This is evident from Figure 10, which
shows the evolution of the average hypervolume and IGD+ obtained (across
macro-replications) during the optimization process (again, for γ = 30%). This
superior performance is also evident from Table 3, which shows the results
for the average HV, along with those of the average IGD+ (the latter uses
the ideal front obtained in the Halton experiment of Figure 5 as the true
front). These results highlight that BO methods are able to obtain better
quality results for the Pareto front than evolutionary algorithms (including
surrogate-assisted ones), particularly at very limited budgets. Appendix B
shows that statistical differences (Wilcoxon test, α = 5%), both for HV and
IGD+, were mainly focused amongst C-MOPSO, C-MOEA/D, and C-TAEA;
and metamodel-based optimization algorithms (including C-K-RVEA).

Overall, ignoring the input-dependent noise associated with the objective
break strength (thus using the mean value of the replications) negatively influ-
ences the performance of optimization algorithms. As shown in Figure 10,
the curves of the deterministic BO methods (i.e., the proposed algorithms
using OK metamodels) are inferior to the one when input-dependency is taken
into account. Yet, they remain superior to the evolutionary algorithms, which
reinforces the advantages of the exploration/exploitation performed by the
optimization of the acquisition function and thus obtaining the best possible
trade-off between expected performance and model error. A steep increase in
the hypervolume (or decrease in IGD+) indicates that the algorithm is find-
ing solutions that increment the area of the search space dominated by the
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Fig. 9: Percent of Pareto feasible solutions found by the algorithms during the
optimization of each macro-replication. The star and vertical line inside the
box represent the mean and median, respectively, of the percentage computed
for each macro-replication.
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Fig. 10: Evolution of the IGD+ metric (Left) and hypervolume indicator
(Right) of the Pareto-optimal solutions throughout the search, for γ = 30%
(average of 50 macro-replications). The Pareto front obtained from the Halton
set is considered to compute the IGD+ metric and the reference point with
production cost=3, break strength=4 is used to compute the hypervolume
indicator

obtained Pareto front (and the Pareto optimal solutions are close to an ideal
Pareto front). For instance, we can see that BO-based optimization quickly
suggests (feasible) Pareto optimal solutions during the first 20 iterations (the
first generation of the EAs). As for the number of simulations needed for con-
vergence, from Figure 10 we can also see that EAs need more iterations (more
expensive evaluations to perform) to reach the Pareto optimal solutions that
BO-based optimization already found with fewer iterations (fewer expensive
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evaluations). Since the type of problem addressed in this research is char-
acterized by the expansiveness of the objective evaluation, performing more
iterations can be unfeasible in practice. Hence, the superiority of BO-based
optimization. Additionally, we note that surrogate-assisted evolutionary algo-
rithms (such as C-K-RVEA) can indeed benefit from the approximation of the
objectives and obtain better configurations than standard EMOAs. However,
this performance remains inferior to BO approaches when data-efficiency is
needed on top of effective black-box optimization.

Finally, by looking closer at the solutions (in input space) suggested by
cEHVI-SK (the one with the highest HV value), we found that ±63% of the
solutions skip pre-processing, meaning that the production costs are reduced.
Thus in Figure 11 we show the distribution of the remaining input variables. In
general, cEHVI-SK suggests that the power should be between 480 W and 500
W, the speed should move at a speed between 127.5 mm/s and 152 mm/s, the
distance between the torch and the sample should be in the range of 0.2cm and
0.38 cm, between 11 and 16 passes should be performed, and a time difference
between 1 and 13 minutes should be considered before the glue application.

Table 3: Average IGD+ and HV of the fronts obtained over 50 macro-
replications, for γ = 30%

IGD+ HV
cEHVI-SK 0.0719 4.0184
cEHVI-OK 0.0739 4.0235
cMEI-SK 0.0737 4.0174
cMEI-OK 0.0782 4.0116
C-K-RVEA 0.0785 4.0062
C-NSGA-II 0.092 3.9839
OK-C-NSGA-II 0.0937 3.979
C-MOPSO 0.1049 3.9579
C-TAEA 0.1199 3.9237
C-MOEA/D 0.1306 3.893

6 Conclusions

This paper presented two constrained Bayesian optimization algorithms to
solve a bi-objective problem related to the adhesive bonding process of materi-
als (maximizing break strength while minimizing production costs). As the real
experiments are carried out physically in a lab are costly, the budget for eval-
uations is very limited. The proposed Bayesian approach is shown to clearly
outperform state-of-the-art evolutionary algorithms, which are commonly
used in engineering design when solving general multi-objective, constrained
problems. The difference lies in the way the experimental design is guided
throughout the search: the Bayesian approach selects infill points based on an
(explainable) acquisition function, which is related to the expected merit of
the new infill point for optimization. The BO model ensures that the search
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focuses on infill points that have a high probability of being feasible. Moreover,
the GP model used to approximate the objective(s) accounts for the out-
put (heterogenous) noise, whereas the evolutionary algorithms rely simply on
the (uncertain) sample means as performance approximations. Moreover, the
search in EMOAs (as it is generally with metaheuristic approaches) is guided
by hard-to-tune evolutionary operators. The success of evolutionary processes
is largely dependent on the availability of a sufficient experimentation budget,
which is not always the case in practice.
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Fig. 11: Distribution of the Pareto-optimal input values obtained by cEHVI-
SK, across 50 macro-replications.

Our research highlights the superiority of BO methods, particularly using
an EHVI-based infill criterion, over traditional EMOAs in solving the optimiza-
tion problem of analysis. Additionally, the optimization algorithms considered
in this research were applied to solve two other engineering problems and the
results are summarized in an electronic companion of this paper. We are con-
vinced that the use of Bayesian approaches holds great promise in solving noisy
and expensive engineering problems, in terms of both search efficiency (i.e.,
finding solutions within a limited budget) and search effectiveness (i.e., yielding
high-quality solutions). Future research will focus on the further development
of an interactive software tool (a first release has been provided and is being
tested), allowing lab experts to validate the results generated by the algo-
rithm in a real-life test environment, and on the inclusion of a third objective
(minimization of the debonding break strength). Another potential research
direction could focus on a dynamic allocation of the replications applied to
each input configuration to reduce the uncertainty observed in the objectives.
This can lead to more optimal use of the evaluation budget and potentially
greater exploration/exploitation of the search space.
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Appendix A Constrained Expected
Improvement (CEI)

The Constrained Expected Improvement (CEI [36]) uses one OK metamodel
to approximate the expensive objective and one metamodel to approximate
each expensive constraint independently. Then, for a constrained optimization
problem with c constraints

min y(x),x ∈ R

s.t. gi(x) ≤ 0, i = 1, 2, . . . , c
(A1)

the objective value of point x can be treated as a Gaussian random variable
N (ŷ(x), ŝ(x)) and the i-th constraint value of x can be also treated as a
Gaussian random variable N (ĝi(x), êi(x)) , i = 1, 2, . . . , c. For this, ŷ and ŝ
are the GP prediction and standard error of the objective function respectively,
and ĝi and êi are the GP prediction and standard error of the i-th constraint
function respectively.

Then, from Equation 2 we can transform the constraint and derive the
Probability of Feasibility as:

g(x) = 0.5− Pf(x) ≤ 0 = Pf(x) ≥ 0.5 =
Pf(x)− ĝ(x)

ê(x)
≥ 0.5− ĝ(x)

ê(x)
(A2)

PoF (x) = Prob

(
Pf(x)− ĝ(x)

ê(x)
≥ 0.5− ĝ(x)

ê(x)

)
= 1− Prob

(
Pf(x)− ĝ(x)

ê(x)
≤ 0.5− ĝ(x)

ê(x)

)
= 1− Φ

(
0.5− ĝ(x)

ê(x)

) (A3)

In case the GP standing for the objective and constraint function are
mutually independent, the CEI can be obtained by combining the EI (to be
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consistent with our work we used MEI instead and the predictors defined in
Equation 12 and Equation 13) and PoF as

CMEI-SK(x) = MEI(x)× PoF(x)

=
[(

f̂SK(xmin)− f̂SK(x)
)
Φ (D) + ŝOK(x)ϕ (D)

]
×
[
1− Φ

(
0.5− ĝ(x)

ê(x)

)]
(A4)

and

D =
f̂SK(xmin)− f̂SK(x)

ŝOK(x)
(A5)
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Fig. A1: Evolution of the mean hypervolume throughout the optimization
(of 50 macro-replications). The reference point [production cost=3, break
strength=4] is used to compute this metric

Note that this equation is different from our proposed Equation 19 in the
derivation of the PoF. Figure A1 shows that our proposed cMEI-SK got on
average better Pareto fronts (higher hypervolume values) than that of CEI.
This suggests that considering the uncertainty predicted by the GP may lead
the optimization to points that do not cause an increase in the hypervolume.
This was more evident when the improvement was measured with MEI (and
fitting only one GP to the scalarized objectives).

Appendix B Wilcoxon test results
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