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Abstract

Out-of-scope (OOS) intent classification is an emerging field in conversa-
tional AI research. The goal is to detect out-of-scope user intents that do
not belong to a predefined intent ontology. However, establishing a reliable
OOS detection system is challenging due to limited data availability. This
situation necessitates solutions rooted in few-shot learning techniques. For
such few-shot text classification tasks, prompt-based learning has been
shown more effective than conventionally finetuned large language models
with a classification layer on top. Thus, we advocate for exploring prompt-
based approaches for OOS intent detection. Additionally, we propose a new
evaluation metric, the Area Under the In-scope and Out-of-Scope Charac-
teristic curve (AU-IOC) This metric addresses the shortcomings of current
evaluation standards for OOS intent detection. AU-IOC provides a com-
prehensive assessment of a model’s dual performance capacities: in-scope
classification accuracy and OOS recall. Under this new evaluation method,
we compare our prompt-based OOS detector against 3 strong baseline mod-
els by exploiting the metadata of intent annotations, i.e., intent description.
Our study found that our prompt-based model achieved the highest AU-
IOC score across different data regimes. Further experiments showed that
our detector is insensitive to a variety of intent descriptions. An intrigu-
ing finding shows that for extremely low data settings (1- or 5-shot),
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employing a naturally phrased prompt template boosts the detector’s
performance compared to rather artificially structured template patterns.

Keywords: few-shot learning, prompt-based models, outlier/novelty detection,
dialogue intent classification

1 Introduction

When deploying a machine learning based model in the wild, it risks facing real-
world input data that differs from what it was trained on. To avoid the model
producing undesirable output/decisions in such cases, and thus achieve a robust
system, out-of-scope (OOS) detection is crucial. Therefore, for classification
tasks, OOS detection has been widely studied, e.g., in vision [1–4], text [5–9]
and audio [10, 11] domains.

In this work, we focus on OOS detection for task-oriented dialogue systems,
more specifically for a crucial building block, namely intent classification. OOS
intents pertain to types of user requests that are not supported by the trained
dialogue system. It is challenging to design a robust system that can maintain
a high accuracy of predicting in-scope intents while also having decent OOS
detection performance. Such OOS detection is essential to reduce the risk of
misunderstanding. For instance, a bank service chatbot should not treat an
OOS intent as a block account intent. Many approaches have been proposed to
tackle the OOS intent detection task [5–7, 9, 12, 13]. These methods assume a
large amount of in-scope training data, which is not always available due to
the high cost of collecting high-quality labeled data in real-world applications.
Thus, our current work specifically focuses on the low-data regime, which makes
it even more challenging to build an OOS intent detection model: we coin our
task as few-shot OOS intent detection.

Regardless of whether an OOS detection system is trained under a few-
shot or full-shot setting, the performance evaluation of such system remains
non-trivial. A main issue is to find a balance between in-scope classification
performance and OOS detection. For instance, Table 1 shows the key results
from [14], where different pretrained encoders are evaluated with 5-shot training
data. Among those results, the RoBERTa model obtains the highest in-scope
accuracy, yet performs poorly in terms of OOS recall. Similar conflicts of model
rankings for different metrics are prevalent in other experiments, as shown in
Table 4 in [14]. This complexity makes it challenging to select the best model.
One way to achieve a balance between in- and out-of-scope detection metrics
is by tuning the threshold of the classification score. Given a test sample, an
OOS detection system typically outputs a score that indicates its confidence
on whether that sample is in- or out-of-scope. Thus, the score threshold of in-
scope classifiers (below which an input would be then classified as out-of-scope)
could be tuned to maximize the sum of in-scope accuracy Accin and OOS recall
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Roos, as in [14, 15]. However, it is hard to intuitively interpret this sum of two
complementary metrics.

Table 1 Demonstration of the difficulty in ranking models by relying on either in-scope
accuracy Accin or OOS recall Roos alone. †: Numbers taken from Table 4 in [14]. ‡: Numbers
computed by us. AU-IOC denotes Area Under the In-scope and Out-of-scope Characteristic
curve, a new metric introduced in Section 3.1. Different pretrained encoders are compared
on the 5-shot experiment on BANKING dataset. Numbers in parentheses are standard
deviations.

5-shot Accin
† Roos

† AU-IOC ‡

ALBERT 20.3 (± 2.4) 89.5 (± 1.5) 28.05 (± 3.68)
BERT 25.4 (± 3.6) 90.9 (± 0.6) 48.39 (± 1.10)

ELECTRA 30.9 (± 2.3) 87.5 (± 2.4) 44.17 (± 2.79)
RoBERTa 43.0 (± 2.9) 83.1 (± 4.3) 51.46 (± 2.62)
ToD-BERT 35.5 (± 1.5) 82.7 (± 1.8) 46.69 (± 0.98)

To give a more holistic picture of a classification model’s performance,
beyond that at a specific model parameter value (e.g., the aforementioned score
threshold), metrics such as Area Under the Receiver Operation Characteristic
Curve (AUC or AUROC) or Area Under the Precision Recall Curve (AUPR)
have been used in [5–7, 16, 17]. Yet, these AUROC and AUPR metrics have
been designed for binary classification. To adopt them for OOS detection, we
would need to lump all in-scope classes together (typically in the “positive”
class). This means we would no longer have any information on in-scope
classification performance. Therefore, we propose to use another curve, plotting
in-scope accuracy (Accin) against OOS recall (Roos), from which we define
a new metric named “Area Under In-scope and Out-of-scope Characteristic
curve (AU-IOC )”. Our AU-IOC is designed with three advantages over the
aforementioned methods: (i) it clearly indicates the performance of different
OOS intent detection models (as shown in the last column of Table 1); (ii) it
is threshold-free; (iii) it simultaneously covers the performance of in-scope
multi-class classification and OOS detection.

As just mentioned, an ideal intent classifier for dialogue systems should simul-
taneously achieve both high Accin and Roos. With the objective of achieving
high Accin, recent studies on prompt-based learning (PBL) have demonstrated
state-of-the-art or competitive performance on few-shot language understand-
ing tasks such as text classification [18, 19], named entity recognition [20] and
relation extraction [21]. These works reformulate the classification task as cloze
form questions. For example, for binary good/bad classification of statements, a
prompting input would be: “Hundreds of lives were saved. It is a [mask] thing.”,
where “good” would need to be predicted for the [mask]. Such prompt-based
learning allows for better alignment between pretraining and finetuning stages.
However, one overlooked limitation of this promising prompting approach is
that the evaluated tasks are restricted to in-scope classification, i.e., the held-
out test set has no out-of-scope samples. In the context of intent classification
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tasks, one research question naturally arises: is prompt-based learning robust in
identifying out-of-scope (OOS) intents while maintaining in-scope classification
performance? To answer this question, we investigate a simple yet effective
prompt-based model as a strategy to tackle the few-shot OOS intent detection
problem. Our empirical investigation demonstrates that, by exploiting the meta-
data (i.e., descriptions of intent labels), our prompt-based model outperforms
strong baseline models by a large margin.

In summary, our contribution is threefold:
• We point out limitations of existing evaluation metrics for OOS detection
and propose a new evaluation metric AU-IOC that incorporates two
important and complementary aspects of an OOS detector’s performance,
i.e., in-scope accuracy and OOS recall;

• To the best of our knowledge, we are the first to adopt prompt-based
learning for the few-shot OOS detection task, incorporating an textual
intent description as part of the prompt. Extensive experiments on 6
datasets for few-shot OOS detection in dialogue intent classification show
that a prompt-based model outperforms strong baseline models across
various data regimes (from 1- to 50-shot learning), indicating strong
robustness and data efficiency of prompt-based learning;

• We further show that our prompt-based OOS detector benefits from
textual intent descriptions, yet is insensitive to their variety (e.g., among
descriptions provided by multiple annotators). Indeed, empirical results of
the few-shot OOS detection task illustrate that providing plain language
descriptions of the intents in the prompt, rather than just a short label (e.g.,
block account), significantly boosts performance, without being sensitive
to the exact phrasing of that description. Interestingly, we find that for
extremely low data settings (1- or 5-shot), using a naturally phrased
prompt template boosts the detector’s performance compared to using
artificially structured prompt patterns.

2 Preliminaries

We first introduce the formal task definition of few-shot OOS intent detection.
Subsequently, by going through two existing evaluation methods, we point out
their limitations (I, II III) which motivates our proposed evaluation method in
Section 3.1. Table 2 lists frequently used notations in this paper.

2.1 Few-shot Out-of-Scope Intent Detection

Our work tackles the problem of OOS detection in a dialogue system under a
few-shot setting, where for each intent class only k positive examples are given,
i.e., balanced k-shot learning. Note that we purposefully use the term “out-of-
scope” (OOS) instead of “out-of-domain” (OOD), since we focus on identifying
utterances that are within the same domain as the predefined intents and thus
more challenging to distinguish than totally unrelated OOD utterances. For
example, if a chatbot is trained only for booking restaurants (with two intents,
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Table 2 Notations used in this paper.

OOS out-of-scope TP number of true positive predic-
tions

in in-scope FN number of false negative predic-
tions

X an utterance TN number of true negative predic-
tions

ϕ a model’s confidence score TPR true positive rate
τ a threshold to gauge ϕ FPR false positive rate

Acc accuracy L total number of in-scope intents
P precision V a verbalizer mapping label(s) to

textual token(s)
R recall T a template function
C number of correctly pre-

dicted examples
h a vector encoded by a neural

network
N total number of examples W , b trainable parameters of a linear

layer
d the hidden dimension of a neu-

ral network

restaurant availability and restaurant address), any questions from other domains
(e.g., banking, e-commerce), or even random texts crawled from the web, would
be classified as OOD. Only questions with related but not specifically predefined
intents, such as restaurant phone number, would be flagged as OOS. Like other
works, we assume that the OOS data is inaccessible during the training stage
[9, 12, 14–16, 22, 23]. Our reason to follow this restriction is that in most cases,
the OOS data distribution is unknown or its vast underlying space makes it
hard and expensive to collect a sufficient amount of OOS data. The formal
task definition is:

Given only in-scope training data, learn to determine for a given
input utterance X (i) whether X is in- or out-of-scope, and
(ii) which intent class it belongs to, in case X is in-scope.

A common approach for (i) to decide whether X is OOS, is to compare
a classifier’s confidence value ϕ against a predefined threshold τ , i.e., X is
classified as OOS if ϕ < τ . An example of ϕ is the normalized output (i.e.,
pseudo probability) of a softmax layer. Next, we discuss evaluation methods
by tuning such a threshold τ and without tuning it.

2.2 Threshold-tuning Evaluation

Prior works [14, 15, 24, 25] tune the threshold based on two major metrics,
in-scope accuracy Accin and OOS recall Roos.

1 The two metrics are defined
as follows: Accin = Cin/Nin, Roos = Coos/Noos, where Cin is the number of
correctly predicted in-scope examples, Nin is the total number of in-scope

1The reason for using recall instead of precision to evaluate the OOS detection is that a recall
error (an OOS question is wrongly classified as an in-scope intent) would generate a completely
wrong response, while a precision error (i.e., an in-scope question is misclassified as OOS) is rather
safe since it usually triggers a fallback response that asks the user to rephrase the question.
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examples, Coos is the number of correctly predicted OOS examples, and Noos is
the total number of OOS examples. There is a trade-off between Accin and Roos

when tuning the threshold. For example, let’s assume a model that simulates a
probability distribution of all the utterance examples, thus its output spans the
range [0, 1] and the two extreme cases are τ = 0 and τ = 1. When τ = 0, all
examples are classified as in-scope intents. Consequently, the in-scope accuracy
will be high (if the model is properly trained), while Roos = 0 (which would
only be acceptable if the system is deployed in a friendly environment where
professional or trained users never ask OOS questions). On the other hand,
when τ = 1, all examples are classified as OOS, i.e., Accin = 0 and Roos = 1,
which clearly is useless.

Prior works [14, 15, 24, 25] pursue the best trade-off (i.e., set the threshold τ)
by optimizing an objective function f(Accin, Roos) = g(τ). A simple objective
adopted by [14, 15] is f = Accin+Roos, giving the same weight to both metrics.
The threshold is tuned by maximizing f on the dev set. Table 1 shows partial
results from [14], where performance of five different pretrained encoders is
compared against each other. The ALBERT model has the second highest Roos

however owns the lowest Accin. The RoBERTa model obtains the highest Accin,
while it is inferior to the BERT model in terms of Roos. Such inconsistency
prevails on the other experiment results (see the full results in [14]), making
it difficult to clearly distinguish the model under comparison (limitation I).
Another drawback is that Accin and Roos are calculated at a specific threshold.
This means that these metrics at a specific model parameter setting (for τ)
do not offer a nuanced and holistic view of the performance trade-off between
in-scope classification and OOS detection, e.g., how fast Accin drops when Roos

escalates by varying the threshold (limitation II).

2.3 Threshold-free Evaluation

To avoid the limitations incurred by tuning the threshold, [3, 16] propose to use
the Area Under the Receiver Operating Characteristic curve (AUROC) and Area
Under the Precision-Recall curve (AUPR), which are threshold-independent
performance evaluation metrics [26]. Neither of these two threshold-free methods
can reflect the multi-class classification accuracy because all in-scope classes
are merged into one class, normally the positive, and the OOS class is regarded
as the negative. The ROC curve (conceptually visualized in Fig. 1(b)) plots
the true positive rate (TPR, equivalent to the recall of in-scope examples, Rin)
against the false positive rate (FPR) calculated at a series of thresholds. By
computing the integral of a ROC curve, AUROC does not rely on any specific
threshold, and it can be interpreted as the probability that a positive example
has a greater confidence score than a negative example [27]. A random binary
classifier obtains merely 50% AUROC and a “perfect” classifier reaches 100%,
which makes it easier to rank the model performance than using the threshold-
tuning method. The relation of TPR and FPR to the threshold-tuning metrics
(i.e., Accin and Roos) is shown in Eqs. (1)–(2), where Nin and Noos denote the
total number of in-scope examples and OOS examples respectively.
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More robust Better

Acc*

AU-IOC AUROC AUPR

Better

Perfect detector Bad detector Good detector

Fig. 1 Conceptual illustration of (a) In-scope and Out-of-scope Characteristic (IOC) curves,
(b) Receiver Operating Characteristic (ROC) curves and (c) Precision-Recall (P-R) curves.
Acc∗ denotes the maximal Accin that a detector can obtain. Shaded areas denote the area
under each curve. Best viewed in color.

TPR = TP/(TP+ FN) = TP/Nin ≥ Cin/Nin (1)

⇒ TPR ≥ Accin

FPR = FP/(FP+ TN) = (Noos − Coos)/Noos (2)

⇒ FPR = 1−Roos

More specifically, when computing the number of true positive (TP) predic-
tions for TPR, an example is only required to have a confidence score greater
than the threshold. In other words, it does not matter if an utterance’s intent
class is correctly predicted or not, which by contrast, is considered in calcu-
lating the number of correct in-scope predictions (Cin). This is why TP is
larger or equal than Cin in Eq. (1). Hence, TPR may overestimate a classifier’s
performance for in-scope classification. In the worst case, despite attaining a
high TPR, a model might in fact have a low Accin, especially when the data
has a rather large number of in-scope classes (e.g., ≥ 10). To the authors’ best
knowledge, this problem of being overly optimistic (limitation III) has not
yet been discussed in prior OOS research works.

Similarly, the PR curve (shown in Fig. 1(c)) is a graph displaying the
precision (Pin = TP/(TP + FP)) and recall (Rin = TP/(TP + FN) = TPR)
against each other. The inequality in Eq. (1) also holds in computing Rin,
making it always higher than Accin. Therefore, AUPR also faces the over-
estimation problem as AUROC does.
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3 Proposed Methodology

3.1 Proposed Evaluation Method

To overcome the limitations (I, II, III) discussed in Section 2.2 and Section 2.3,
we propose a new evaluation metric designed to meet the following require-
ments: (i) it should allow for clearly distinguishing models; (ii) it simultaneously
covers the two most relevant perspectives of a classifier with OOS detection
capabilities, i.e., in-scope accuracy Accin and OOS recall Roos; (iii) it is prefer-
ably threshold-free to offer a holistic view. Motivated by these requirements,
we propose to evaluate OOS models by the Area Under the In-scope and Out-
of-Scope Characteristic curve (AU-IOC), which reflects a model’s performance
in both of in-scope accuracy and OOS recall. The In-scope and Out-of-Scope
Characteristic curve (IOC) plots Accin and Roos against each other, parame-
terized over the full range of possible OOS detection thresholds. An IOC curve
monotonically decreases as Roos increases (see Fig. 1(a)). The intercept at the
y-axis (Acc∗) is the maximal Accin that a detector can obtain. Tweaking the
threshold τ varies Roos within [0, 1]. Hence, being the integral of an IOC curve,
the AU-IOC is never greater than Acc∗, i.e., AU-IOC ≤ Acc∗, where the equal-
ity occurs if and only if a detector can “perfectly” distinguish OOS examples
from in-scope examples. This fact also implies that a classifier with high Acc∗

would have high AU-IOC as well. Note that a perfect detector should attain
AU-IOC =100%, i.e., Acc∗ = 100%, i.e., its perfect in-scope accuracy does not
drop when moving the OOS detection threshold towards perfect OOS recall.

3.2 Prompt-Based Model

As pointed out in Section 3.1, an OOS intent detector should ideally achieve
both high Accin and high Roos to obtain a high AU-IOC score. To achieve high
Accin, recent works based on prompt-based learning (PBL) have demonstrated
state-of-the-art performance on few-shot text classification tasks [18, 19, 28],
as well as competitive results on few-shot named entity recognition [20] and
few-shot relation extraction [21]. However, to the best of our knowledge, there
have been no studies applying PBL on the few-shot OOS intent detection
task, let alone investigating its robustness for this task. Given PBL’s excellent
performance in few-shot in-scope language understanding tasks, we hypothesize
it would also outperform existing models for the few-shot OOS intent detection
task.

The key concept of prompt-learning is to formulate inputs in a natural
language format, i.e., phrase the task following a certain input template, as
proposed in the PET model [18]. Text classification tasks are thus transformed
into cloze-style questions, similar to the input format used for masked language
modeling (e.g., BERT [29]). In this work, we frame intent detection as a text
entailment task rather than a multi-class classification task. The original PET
model [18] maps each class label to a single token or multiple tokens to achieve
the multi-class classification directly. However, in our study, an intent label
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Training Data
Intent

Classi�-
cation

training testing

Evaluation

(a) Softmax Model

0.59

0.27

(c) Entailment Model

[cls] [utterance] [sep] [intent]

0.74

0.38

[cls] representation 

(d) Prompt-based Model

[cls] ... [utterance] ... [intent]? [mask]

0.30

[mask] representation 

0.76

[cls] representation 

0.61

0.52

(b) Siamese Model

softmax headtransformer entailment head (sigmoid) token logits for [mask] & softmax(Yes, No)

Binary OOS
Classi�-
cation

if then OOS

(e) Binary OOS Classi�cation

prompt templateutterance intent description cosine similarity

normalized
scores

non-normalized
scores

number of
intent classes

normalized
scores

Fig. 2 Overview of our approach. We compare different architectures including (a) Softmax,
(b) Siamese, (c) Entailment and (d) Prompt-based model. L, s, ϕ, τ respectively denote the
number of in-scope classes, predicted score, confidence value and threshold. (e) illustrates
how we identify the out-of-scope utterances by comparing ϕ against τ .

cannot be easily mapped to only one token, making it hard to follow the PET
methodology.2 Therefore, for each intent, we consider a one-vs-all classifier,
enabling us to exploit the intent description with richer semantic information
compared to the intent label.3 As stated in [28], when handling datasets (i.e.,
BANKING) with multiple labels longer than a single token, they also convert
the multi-class classification task to a binary classification task, leading to more
efficient training and inference.

To this end, our model treats an utterance and an intent as “premise”
and “hypothesis” respectively. In our case, the entailment relation is binary,
either positive (+) or negative (−). Following prior works [18, 30], we use a
verbalizer V mapping the relation labels to tokens from the vocabulary of a
language model, i.e., V(+) =“yes” and V(−) =“no”. The logits of “yes” and
“no” output at the mask position of a template input are normalized through
a softmax layer to generate a probability distribution over these two possible
entailment outcomes. The resulting probability of the “yes” token is taken
as the entailment score. The model architecture is depicted in Fig. 2(d). For
the final intent classification, the intent with the highest entailment score is
chosen and we use that score as confidence value. The training objective is
to maximize the probability of true labels for each training instance, phrased
according to a predefined input template (see Section 5.4).

Fig. 2 illustrates the training and inference procedures of our prompt-based
model and other baseline models which will be introduced in Section 4.2.
To clarify our prompt-based solution for intent detection, assume there
are two possible intents: i1 = stop account, and i2 = create account. Now,

2We also experimented on a multi-mask PET model [28] to directly predict labels directly
yielding much worse performance and less efficient training compared to our prompt-based model.

3Without specification, “intent” represents either “intent label” or “intent description”.
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consider two utterances to classify: an in-scope utterance u1 = “Can you
suspend my bank account right now?” and an out-of-scope u2 = “My con-
tactless card does not work. I want to fix it.” For all the experiments in
this work (except Section 5.4), our prompt-based model uses the template
T = Joe said “[utterance]”. Does Joe mean [intent]? [mask], in which [utter-
ance] and [intent] are placeholders. A well-trained prompt based model
should score u1 with a higher “yes” score for intent i1 than for i2, i.e.,
p(“yes”|T (u1, i1)) > p(“yes”|T (u1, i2)). In addition, the model should score
the OOS utterance u2 with a low score (lower than a threshold τ) for both
intents, i.e., maxℓ∈{0,1} p(“yes”|T (u2, iℓ)) < τ .

4 Experimental Setup

We experiment with our proposed prompt-based model on six intent classifica-
tion datasets (Section 4.1). We compare it against three strong baseline models,
described in Section 4.2.

4.1 Datasets

Numerous intent classification datasets are at our disposal. In choosing the
most suitable dataset for our study, we adhered to two primary criteria: (i) the
dataset must contain more than two intent classes. This prerequisite is essential
as it enables the segregation of an intent as the Out-of-Scope (OOS) category,
which would be unfeasible with two or fewer classes.; (ii) it is imperative that
the intent classes exhibit a balanced distribution, thereby facilitating k -shot
experiments. In essence, each class should possess a minimum of k training
samples. We choose 6 benchmark datasets which meet our requirement. Table 3
shows their statistics. To save space, we only present the intent split of CLINC-
Banking in Table 4 while the other 5 datasets’ intent splits are made available
online. 4

SNIPS [31] has 7 intents annotated for dialogues between a user and a virtual
assistant. We randomly selected 5 as in-scope intents.

Facebook [32] has 12 intents across 3 domains including setting alarms,
reminders and querying the weather. We randomly picked 8 as in-scope intents.

CLINC-Banking [24] has 15 intents in total from which 10 intents were
chosen as in-scope and the others are OOS as shown in Table 4.

Stackoverflow [33] was crawled from the stackoverflow website. It consists of
technical question titles covering 20 topics in total. We randomly picked 14 as
in-scope topics.

HWU64 [34] has 64 intents in total ranging from home automation, email
queries, etc. . We randomly selected 40 as in-scope intents.

4https://bit.ly/3r4bDN0

https://bit.ly/3r4bDN0
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Table 3 Statistics of the 6 datasets used in our experiments

. INS and OOS denote in-scope and out-of-scope respectively.

Dataset #intents Train Dev Test

SNIPS
INS 5 9,385 500 484
OOS - - 200 216

Facebook
INS 8 19,336 3,029 6,151
OOS - - 866 1,650

CLINC- INS 10 500 500 500
Banking OOS - - 400 350

Stackoverflow
INS 14 11,191 1,406 1,403
OOS - - 594 597

HWU64
INS 40 5,691 640 684
OOS - - 366 392

BANKING
INS 50 5,905 1,506 2,000
OOS - - 530 1,080

BANKING [35] focuses on a single domain, i.e., banking. Its fine-grained
77 intents makes itself the most challenging intent classification task as the
intents are semantically closely-related. From the 77 intents, 50 were selected
as in-scope intents.

In a k-shot experiment, we randomly sample k utterances per each in-scope
intent to construct a training set. The sampling process is dependent on the
random seed used for training a model.

4.2 Models Under Comparison

We introduce three canonical architectures as baselines: (i) a basic soft-
max-based utterance classifier, (ii) a siamese model as the vanilla bi-encoder
architecture, and (iii) a binary entailment classifier as the vanilla cross-encoder.
These architectures are commonly used in the literature of few-shot OOS intent
detection [14, 16, 24, 25] or sentence representation learning [36, 37]. Fig. 2(a-c)
depicts these three architectures.

Softmax model

A straightforward approach for text classification is to finetune a pre-trained
language model that feeds a softmax-activated classification layer. As shown
in Fig. 2(a), the input to the pre-trained encoder is constructed as “[cls]
[utterance]”. The last hidden state hc of the [cls] token (hc ∈ Rd, with d the
output dimension of the encoder) is passed to a linear layer (indicated as
‘Head’ in Fig. 2(a)), parameterized by W ∈ Rd×L and b ∈ RL. The scores
are normalized by a softmax layer and used in computing the cross-entropy
loss. The maximal output of the softmax layer is used as the confidence score
ϕ for the OOS detection [14, 16, 24], i.e., ϕ = max softmax(Whc + b). If ϕ
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Table 4 In-scope and OOS intents of CLINC-Banking dataset. The description for each
intent is also listed.

Intent label Intent description

In-scope

transactions a request to review transactions related to a specific type of purchase, a
specific time period, or a specific card

pay bill a request for assistance or a statement to pay a specific type of bill
where the payment account is optionally specified

spending history an enquiry about the total amount of money spent on a particular type
of purchase or during a specific time period

routing asking for the routing number, with the bank or account name option-
ally specified

pin change a statement of a forgotten pin code, or a request to create a new pin
code or to change an existing pin code for a specified bank account

account blocked requesting the reason behind a frozen, hold, or blocked bank account

report fraud a statement of fraudulent activity, unauthorized access, or theft involv-
ing a bank account or card

interest rate a request for obtaining the interest rate for an optionally specified bank
account

bill balance a request to obtain the total amount of outstanding bills, or due bills, of
a specific type during a specific time period

order checks a request to order additional checks for an optionally specified bank
account

Out-of-scope

balance enquiring about the balance on a specified bank account, or whether the
amount of money on a specified bank account is enough for a specific
type of purchase

bill due enquiring about when a specified type of bill is due for payment

min payment enquiring about the minimum amount of money or payment for an
optionally specified bill

freeze account a request to freeze, block, or stop payments on a specified bank account

transfer a request to transfer a specified amount of money from one bank
account to another

exceeds the OOS score threshold, the intent label attaining score ϕ is used as
classification output.

Siamese model

We implement a siamese network, which has shown great power in the represen-
tation learning of sentence embeddings [36, 37] and natural language inference
tasks [38, 39]. Similar to the entailment classifier discussed next, a siamese
classifier predicts a binary relationship between an utterance and an intent
label depending on whether they match or not. The difference is that a siamese
classifier treats an utterance and an intent label as two sentences and encodes
them separately, generating two sentence vectors u, v (i.e., the [cls] encodings
for utterance and intent). As illustrated in Fig. 2(b) , we compute the cosine
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similarity score between u and v. The mean squared error between the similar-
ity score and the true binary label is used as the training objective. During
inference, we rank all the possible combinations of a test utterance and intent
labels by their similarity scores. The highest score is used as the confidence
score ϕ for OOS detection (where the corresponding intent label is thus ignored
if ϕ falls below the OOS score threshold).

Entailment model

To better gauge the semantic relationship between utterances and intents, [25]
proposes to concatenate an utterance and an intent label as a combined input
to a pre-trained language model, in a cross-encoder setting. In particular, the
utterance as premise and label as hypothesis are provided to an encoder in the
format “[cls] [utterance] [sep] [intent]”. A binary classification layer is added
on top of the encoder, as shown in Fig. 2(c). The whole model is finetuned to
predict “entailment” if the utterance’s true label is the provided intent, and
“non-entailment” otherwise. Specifically, the [cls] encoding is passed to a linear
layer (with parameters W ∈ Rd and b ∈ R) with a sigmoid activation for the
binary entailment prediction. During inference, all the possible combinations
of a test utterance and intent labels are evaluated. The highest entailment
probability among the combinations is used as the confidence score ϕ for the
OOS detection. If ϕ exceeds the OOS score threshold, the utterance is classified
as the intent attaining that maximal score ϕ.

4.3 Experimental setup

We employ RoBERTa-base [40] as the backbone encoder for our prompt-based
model and all the models used in our comparison. This ensures a fair comparison
between the various architectures. However, our primary focus is not to merely
pursue a state-of-the-art model. Instead, we aim to investigate the performance
disparities of various key architectures for the OOS intent detection task under
the proposed evaluation method.

For all the models under comparison, the learning rate is set to 1e-5 following
common practice [18, 30]. The batch size and maximum text length are set to
64 and 128 respectively, given the memory limit of the GPU we used (a single
NVIDIA GTX-1080Ti 12Gb). We use the AdamW optimizer [41] with weight
decay of 0.01. The models are trained for 50 epochs, with the optimal epoch
selected based on the AU-IOC score on the dev set. For different experiments,
we keep using the same set of 5 different random seeds to ensure the sampled
training data remains the same.

5 Results and Analysis

We first compare our prompt-based model’s performance against baseline
models, for limited labeled in-scope data (k-shot settings for k = 1. . . 50)
(Section 5.1). Next, we analyze the robustness of our prompt-based detector
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and baseline models (Section 5.2). Finally, as ablations, we study (i) our
prompt-based model’s sensitivity to different intent descriptions (Section 5.3),
and (ii) the influence of choosing either a naturally phrased prompt or an
artificially structured template (Section 5.4).

5.1 Few-shot OOS Intent Detection Performance

Table 5 shows the evaluation results of each model on the CLINC-Banking
and BANKING datasets. The prompt-based model is found to perform very
well. It obtains the highest AU-IOC score on all six datasets in 1/5/10-shot
settings (except Stackoverflow), indicating that the prompt-based model is more
data-efficient in the OOS intent detection task than the other architectures.
Furthermore, in the extreme few-shot case (i.e., 1-shot), the prompt-based
model outperforms other discriminative models (i.e., Siamese and Entailment)
by a large margin on all six datasets. It is noteworthy that it is unfair to
compare the Softmax model to the other models in the 1-shot setting, since the
discriminative models receive extra training signal, i.e., the intent description,
which can be considered a pseudo utterance. However, even if we compare the
Softmax model’s score at 2-shot against discriminative models’ score at 1-shot
(see Fig. 3), the inferiority of Softmax still stands. In fact, to achieve similar
performance as the 1-shot prompt-based approach, the Softmax model needs
at least 3 training instances per class.

In addition, we conduct a bootstrap analysis [42], to estimate the significance
of the higher score of the prompt-based model with respect to each of the other
models. To this end, we sampled the test results of all models 5,000 times with
replacement. The resulting one-tailed significance levels (p) are indicated in
Table 5 by markers ⋆, †, ‡, which denote p <0.1, <0.05 and <0.01 with respect
to the best model in each column. For the 1-shot setting, the prompt-model
significantly outperforms the others, and its advantage becomes less pronounced
for larger k.



Few-shot Out-of-Scope Intent Classification 15

12345 10 20 30 40 50

50

60

70

80

90
AU

-IO
C

(a) SNIPS

12345 10 20 30 40 50

30

40

50

60

70

80

90

AU
-IO

C

(b) Facebook

12345 10 20 30 40 50
50

55

60

65

70

75

80

85

90

AU
-IO

C

(c) CLINC-Banking

12345 10 20 30 40 50
k-shot

40

45

50

55

60

65

70

75

80

AU
-IO

C

(d) Stackoverflow

12345 10 20 30 40 50
k-shot

20

30

40

50

60

70

80

AU
-IO

C

(e) HWU64

12345 10 20 30 40 50
k-shot

20

30

40

50

60

70

80

AU
-IO

C

(f) BANKING

Softmax Siamese Entailment Prompt

Fig. 3 AU-IOC scores for k-shot experiments (k from 1 to 50) on the six datasets. Results
of each model are averaged over 5 runs with different random seeds. Best viewed in color.

We also compare k-shot OOS detection among the included models for a
wider range of k, i.e., from 1 to 50, as shown in Fig. 3. For 4 of 6 datasets
(i.e., Facebook, CLINC-Banking, HWU64 and BANKING), the prompt-based
model outperforms the other 3 models over the full range of k and obtains
the highest AU-IOC scores with extremely limited data, i.e., 1- to 4-shots. For
SNIPS and Stackoverflow, the prompt-based model’s performance is superior
to the other models at 1- to 4-shots while attains close performance compared
to the Entailment model. On Facebook and CLINC-Banking, the prompt-based
model’s performance plateaus from k = 20 onwards, whereas for HWU64 and
BANKING, the score steadily increases up until k = 50, but its advantage over
the other models is mostly pronounced for k up to 10 only.
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Table 5 OOS detection performance (AU-IOC scores, test set) of baselines and the
prompt-based model on CLINC-Banking and BANKING datasets with 1/5/10-shot training
data. All the models use RoBERTa-base as the encoder. Reported numbers are mean (± std)
over 5 runs with different random seeds. The markers ⋆, †, ‡ respectively denote the
one-tailed significance levels of the bootstrap-based p-value, i.e., p< 0.1, < 0.05 and < 0.01
with respect to the highest scoring model in each column

.

SNIPS 1-shot 5-shot 10-shot

Softmax 46.42 (± 1.96)‡ 73.46 (± 2.49)‡ 77.15 (± 1.68)‡

Siamese 52.33 (± 1.87)‡ 72.43 (± 0.80)‡ 79.14 (± 0.78)‡

Entailment 54.02 (± 0.53)‡ 78.73 (± 0.52)† 84.95 (± 0.92)
Prompt 59.17 (± 1.44) 80.27 (± 1.34) 83.31 (± 0.80)⋆

Facebook 1-shot 5-shot 10-shot

Softmax 29.24 (± 0.64)‡ 65.67 (± 1.92)‡ 78.05 (± 2.52)‡

Siamese 43.33 (± 3.80)‡ 72.57 (± 1.47)‡ 80.16 (± 0.75)‡

Entailment 46.25 (± 2.31)‡ 73.79 (± 0.92)‡ 82.52 (± 2.10)†

Prompt 53.56 (± 2.13) 78.18 (± 2.05) 85.61 (± 1.89)

CLINC-Banking 1-shot 5-shot 10-shot

Softmax 50.33 (± 2.16)‡ 80.59 (± 1.80)‡ 83.40 (± 2.19)⋆

Siamese 67.74 (± 2.69)‡ 83.40 (± 3.39) 84.19 (± 1.22)

Entailment 73.37 (± 2.80)⋆ 82.86 (± 0.80)‡ 84.81 (± 1.32)
Prompt 76.02 (± 1.64) 84.56 (± 1.26) 85.86 (± 2.61)

Stackoverflow 1-shot 5-shot 10-shot

Softmax 41.49 (± 2.96)‡ 63.19 (± 1.41)‡ 68.22 (± 1.24)‡

Siamese 47.52 (± 1.07)‡ 68.73 (± 2.73)‡ 71.89 (± 0.47)‡

Entailment 53.08 (± 0.59)‡ 74.49 (± 2.35) 75.62 (± 1.60)

Prompt 57.25 (± 0.92) 72.31 (± 1.83) 74.02 (± 1.41)‡

HWU64 1-shot 5-shot 10-shot

Softmax 17.69 (± 1.51)‡ 54.76 (± 3.29)‡ 70.59 (± 2.56)‡

Siamese 49.95 (± 2.45)‡ 65.81 (± 2.46)‡ 74.71 (± 0.23)‡

Entailment 58.15 (± 1.55)‡ 72.06 (± 1.16) 76.24 (± 0.71)†

Prompt 62.80 (± 1.06) 72.57 (± 0.68) 77.64 (± 0.94)

BANKING 1-shot 5-shot 10-shot

Softmax 19.85 (± 0.81)‡ 51.46 (± 2.62)‡ 60.93 (± 1.22)‡

Siamese 38.70 (± 5.73)‡ 56.81 (± 0.90)‡ 63.98 (± 1.33)†

Entailment 44.27 (± 1.36)‡ 58.44 (± 1.50)‡ 64.97 (± 1.05)†

Prompt 50.27 (± 0.73) 60.76 (± 0.85) 66.54 (± 0.58)
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5.2 Robustness of Prompt-Based Models

We analyze the robustness of the prompt-based model by comparing its IOC
curves and confidence score distribution against other models.

5.2.1 Analysis of IOC curves

As discussed in Section 2.2-2.3, there is a trade-off between Accin and Roos,
i.e., and increase of Roos typically comes with the cost of sacrificing Accin. A
desired robust model is supposed to have as high Accin as possible across the
full spectrum of Roos. To gain more insight into the trade-off, in Fig. 4 we plot
IOC curves (Accin vs. Roos) at 1/5/10-shot of the prompt-based model and
baseline models, for CLINC-Banking, Stackoverflow and BANKING.5

For CLINC-Banking, Fig. 4(a-c) shows that the prompt-based model is
more robust than the other models, especially at 1-shot (Fig. 4(a)), where
the prompt-based model achieves maximal Accin (of 0.87) and maintains the
highest level for larger Roos. The superiority of the prompt-based model remains
at 5-shot (Fig. 4(b)). As the number of shots increases to 10 (Fig. 4(c)), the
performance gap disappears. Nonetheless, the prompt-based model’s Accin
drops more slowly than other models, thus overall being the most robust model.

For Stackoverflow, the prompt-based model is the most robust at 1-shot
setting as shown in Fig. 4(d), in which the prompt-based model achieves
the highest Accin (0.69) compared to the other 3 models. Such performance
difference is maintained as Roos ranges from 0 to 1. While for the 5-shot
setting Fig. 4(e), the Entailment model demonstrates the best robustness as
its AU-IOC score is always higher than the other models’. For the 10-shot
setting Fig. 4(f), a critical point is at Roos=0.9 where the Siamese model’s
Accin starts to dominate. Such transition implies that each model may have
its own advantageous range. In other words, with 10-shot training data of
Stackoverflow, a trained Siamese model is a better choice for deployment if a
very high Roos is desired (≥0.9).

For BANKING, the prompt-based model is consistently the most robust
across various k-shot settings, as shown in Fig. 4(g-i). We do note that Accin
is lower than those on CLINC-Banking and Stackoverflow, mainly because of
BANKING’s highest number (50) of in-scope classes and their close semantic
relatedness as they all belong to a single domain. Further, we observe that for
5/10-shot settings, the Siamese model attains a slightly higher Accin than the
prompt-based model does when Roos < 0.4. However, the Siamese model fails
to maintain this advantage for higher Roos (>0.4), thus indicating its inferiority
in terms of robustness.

In summary, according to the findings presented in Fig. 4, with few training
examples per class (k = 5), the prompt-based model retains an overall higher
Accin than the other models, even when the threshold is lowered to achieve
a sufficiently high Roos. In this sense, the prompt-based model turns out to

5For completeness, in Appendix A we also plot IOC curves of the 4 architectures for all the 6
datasets from 1- to 50-shot settings in Fig. A1-A6.
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be the most robust model in a few-shot setting (even though this effect is no
longer visible for k = 10, see Fig. 3). Also, for all k-shot settings on the 3
datasets, when Roos approaches 1, the entailment model performs on par with
the prompt-based model.
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Fig. 4 IOC curves (Accin vs. Roos) of 4 models in 1/5/10-shot settings evaluated on the
test set of (a-c) CLINK-Banking, (d-f) Stackoverflow and (g-i) BANKING datasets. Results
of each model are averaged over 5 runs with different random seeds. Best viewed in color.

5.2.2 Analysis of confidence score distributions

Fig. 5 presents the confidence score output by different models on 5-shot exper-
iments of CLINC-Banking, Stackoverflow and BANKING.6 Ideally, there would
be no overlap between the in-scope and OOS confidence score distributions.
Compared to the other three models, the prompt-based model is better at
distinguishing in-scope and OOS samples as the overlap between the two sets is

6To save space, the score distributions of the other 3 datasets are plotted in Fig. B7, Appendix B.
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minimal as shown in Fig. 5(d, h, l). The entailment model demonstrates com-
parable ability given the polarized distribution of confidence scores in Fig. 5(c,
k). However, we observe a more scattered score distribution of the entailment
model for in-scope examples (particularly for the BANKING dataset), as well
as mistakenly higher scored OOS samples. Consequently, the entailment model
has lower Accin compared to the prompt-based model when Roos is fixed. How-
ever, there is an exception in Fig. 5(g) where the Entailment model exhibits a
more polarized score distribution compared to that of the prompt-based model
Fig. 5(h). The clearer differentiation between in-scope and OOS samples leads
to a higher AU-IOC score (see Fig. 3(d)) and a more robust curve (see Fig. 4(e)).
The drawback of the Softmax and Siamese models is similar: they are overly
confident in assigning high scores to OOS samples. This causes both models to
have lower Roos compared to the prompt-based model when Accin is fixed.
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Fig. 5 Confidence score histogram at the 5-shot setting on the test set of (a-d) CLINK-
Banking, (e-h) Stackoverflow and (i-l) BANKING. Best viewed in color.

5.3 Effects of Intent Description

As explained in Table 4, we provide a description for each intent, which enables
the prompt-based model to better strike a balance between Accin and Roos.
However, the description in Table 4 is created by just a single annotator,



20 Few-shot Out-of-Scope Intent Classification

which may incur a certain bias in the label phrasing. To assess the impact
of such annotation bias, we independently collected intent descriptions from
4 extra annotators. We assume that all annotators reach a similar level of
understanding on an intent, even though they may phrase their descriptions
differently based on their personal writing habits. Thus, their annotations’
contents are expected to closely resemble each other.7 An ideal OOS detection
model should be insensitive to different descriptions, assuming they convey the
same content. To this end, we experiment with descriptions of the 5 annotators
and average the results labeled as annotator in Fig. 6.

Aside from annotator impacts, we investigate two additional questions:
(1) Does the prompt-based model really “understand” the semantic relations
between utterances and their corresponding intent descriptions? In other words,
the model might classify utterances by only matching text patterns between
utterances and intent descriptions. (2) Is it an overkill solution to use the intent
descriptions? Why not simply use any utterance as the corresponding intent
description, assuming it covers the key aspects of its intent class? The textual
intent label itself might also serve as a useful intent description.

Motivated by these questions, we also experiment with three other settings
to validate the effectiveness of intent descriptions/labels:
1) (shuffle) To investigate the effect of uninformative intent descriptions,

we shuffle the mapping between intent labels and intent descriptions in
Table 4; the shuffled descriptions thus serve as an artificial worst case
scenario of unsuitable intent descriptions. For example, after shuffling, the
description of account blocked is used to represent pay bill;

2) (utterance) We randomly sample an utterance for each intent from
the largest train set (i.e., the 50-shot) as a “prototypical” utterance,
which we in general expect to be less comprehensive than the annotator’s
description. We repeat the sampling process 5 times, obtaining different
sets of “prototypical” utterances and average their results;

3) (label) Instead of using the description, we use the short intent label
itself (e.g., pay bill, account blocked), which we a priori expect to be less
informative than the longer description.

Fig. 6 summarizes the experimental results of the various utterance descrip-
tion/label settings for CLINC-Banking. The overall small standard deviation
(across the different annotations) of AU-IOC in the annotator setting, indi-
cates that the prompt-based model is rather insensitive to the exact phrasing
of the intent descriptions. (Note that the standard deviation slightly larger
for k = 1, which is likely caused by the random choice of the single training
utterance.) Not surprisingly, the shuffle setting gets the worst scores across all
k, as the model can hardly learn any meaningful relation between utterances
and another label’s descriptions, and apparently cannot learn to sufficiently
ignore the incorrect intent description even for higher k. Interestingly, the label
and utterance settings demonstrate comparable performance, with the latter
being marginally better, except for the 20-shot scenario. This can be attributed

7All annotations are available from https://bit.ly/3Xo5BAR

https://bit.ly/3Xo5BAR
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Fig. 6 Effects of different intent description on AU-IOC scores on CLINC-Banking (dev
set) for the prompt-based model. 4 settings are compared: shuffle, label, utterance and
annotator. Results of each description type are mean (± std) over 5 runs with different
random seeds. Better viewed in color.

to the selected representative utterance not necessarily being more informative
than a short label, as opposed to a description which is more carefully crafted
by an annotator.

Overall, we conclude from these experiments that OOS detection perfor-
mance is improved by using well-phrased descriptions to represent intents rather
than using a random utterance or even a more informative but still short intent
label in the prompt.

5.4 Effects of Prompt Templates

In Section 3.2, the prompt template is introduced as part of the prompt-based
model. As suggested by prior research [43], the quality of a prompt template
might influence the performance of text classification. Therefore, we investigate
to what extent the design of prompt templates impacts the robustness of the
prompt-based model in OOS detection. The templates we experiment with are
listed in Table 6. The “unnatural templates” comprise an artificial template
structure that only contains placeholders for an utterance, intent description
and a mask token. We alter the position of [mask] among T1–T3 and always
place [utterance] before [intent]. In contrast, the “natural templates” have
better readability as we add phrases between [utterance] and [intent]. Take T5
as an example, where we assume a dummy person Joe is posing a question.
The prompt-based model needs to answer “Does Joe mean [intent]?” with yes
or no. For all the templates, we use RoBERTa-base as the encoder and use
intent descriptions listed in Table 4 to fill in the [intent] placeholder.

Fig. 7 shows the AU-IOC scores of all the templates for the CLINC-Banking
dataset. In general, T5 achieves the overall best performance, particularly on
the 1-shot setting. This is likely due to the fact that compared to the other
templates, T5 is composed in a more natural style that is better aligned to the
corpus (e.g., book texts, Wikipedia) used for pretraining large language models,
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Table 6 List of prompt templates. [mask] and [sep] are special tokens used by a pretrained

language model (e.g., RoBERTa). Texts are fixed in a template.

Unnatural templates
T1 [utterance] [mask] [intent]
T2 [utterance] [intent] [mask]
T3 [mask] [utterance] [intent]
Natural templates

T4 [utterance] implies [intent] ? [mask]

T5 Joe said “ [utterance] ”. Does Joe mean [intent] ? [mask]

T6 “ [utterance] ” is asked by Joe. I think Joe means [intent]. Am I right? [mask]

including RoBERTa, which was used in our experiments. In the 1-shot setting,
the OOS detection performance varies significantly among different templates.
Apart from the template design, the high variance can be attributed to the
inherent randomness associated with training on only one example. However,
as the number of shots increases beyond 5, the variance of AU-IOC scores
decreases, implying that prompt-based models are less sensitive to prompt
templates when a sufficient amount of data is available. Nonetheless, on average,
natural templates result in improved OOS detection performance compared to
unnatural templates.
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Fig. 7 Effects of different prompt templates on AU-IOC scores on CLINC-Banking (dev set).
Templates 1-3 are unnatural templates and templates 4-6 are natural templates. Results of
each template are mean (±std) on 5 runs with different random seeds. Better viewed in color.

6 Related work

Out-of-Scope Intent Detection. Out-of-scope (OOS) detection in text
classification is an emerging field [9, 12, 13, 16, 22, 23, 44, 45]. Prior studies
tackle this problem mainly using either of two approaches: (i) adding real or
synthetic OOS samples to the training data as the (L+1)th class and learning a
(L+1)-way classifier, where L denotes the number of in-scope classes [13, 44, 45],
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or (ii) training a classifier without any OOS data [9, 12, 16, 22, 23]. OOS data
can be expensive and difficult to acquire, particularly for specialized domains
with large and uncertain data spaces. Despite synthetic OOS data being cheaper
to obtain, it is often hard to interpret its textual meaning, as it is typically
synthesized in a high-dimensional embedding space.

In our work, we focus on the second approach (ii), i.e., we assume training
without access to OOS data, which is more appealing in the early stages of
developing a dialogue system where no OOS data is available. Several stud-
ies have focused on OOS intent detection in few-shot learning scenarios, the
most relevant to our work being [14, 15, 25, 46]. In [46], the Prototypical Net-
work [47] is adapted to the OOS detection task. Their meta-learning framework
independently samples meta-tasks that treat each other as simulated OOS
data to obtain prototypical embeddings for each label as well as an OOS class,
and eventually using cosine similarity to perform classification (similar to the
Siamese architecture we include among our baseline models). The work of [15]
is the first to explicitly define how to tune the threshold of the confidence
score based on the sum of in-scope accuracy Accin and OOS recall Roos. Addi-
tionally, they further pretrain BERT on a large amount of NLI data, which
improves few-shot OOS detection performance compared to using the vanilla
BERT model. Our work adopts the same threshold-based idea, but we pro-
pose a new evaluation method (cf. our AU-IOC metric) that is threshold-free
and offers more holistic view of Accin and Roos. Furthermore, we propose a
prompt-based model that can use recent pretrained language models (PLMs)
(either multi-lingual [48] or mono-lingual8) as is, without any further finetuning.
We believe this is particularly useful for (low-resource) languages other than
English (e.g., Arabic, Dutch) where suitable finetuning data (e.g., for NLI) may
not be readily available.

Following the threshold-tuning evaluation method, [25] fuses the semantic
information of intent labels into an entailment architecture in order to gauge
if an utterance is in-scope or OOS. Conceptually, we are inspired by their
finding that semantic information in the intent label name can be exploited to
boost classification performance, and carry it further by adopting even more
informative intent descriptions or sample utterances. Besides the entailment
model, we further extend the idea to prompt-based models.

In [14], the robustness of various PLMs was evaluated using the Softmax
architecture on the few-shot OOS intent detection task and RoBERTa was found
the most robust among them. Based on their findings, we also choose RoBERTa
as our text encoder. As stated before, we include the Softmax architecture idea
among the baselines we compare our proposed prompt-based model against.

Prompt-based Learning. Our idea to adapt prompt-based learning (PBL)
on the OOS intent detection task is mainly inspired by [18, 19, 28], in which
masked language models are exploited for few-shot in-scope text classification,
called Pattern Exploiting Training (PET). Our method differs from PET

8See [49, Tables 5–6] for a list of mono-lingual PLMs.
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in 2 aspects: (1) PET focuses on in-scope classification while our research
emphasizes OOS detection; (2) PET utilizes large task-specific unlabeled data
and ensemble learning. Our method focuses on few-shot learning without any
unlabeled data. We propose a single-model solution instead of training multiple
models in order to lower the training cost. This technique has also been applied
to other few-shot in-scope language understanding tasks such as named entity
recognition [20] and relation extraction [21], where PBL achieved competitive
results compared to strong baseline models.

As [50] has shown, another type of prompt-based learning based on causal
language models (e.g., GPT-2) also has promising performance in few-shot in-
scope text classification. However, our pilot experiments showed that employing
GPT-2 Small as the base encoder (with comparable number of parameters
to that of RoBERTa-base) yields much worse results in OOS intent detection
compared to those from using RoBERTa-base. The suboptimal OOS detection
performance of using GPT-2 Small could be attributed to its rather limited
capacity, which is supported by the ablation studies of [50] that revealed that
on average, GPT-2 Large yielded significantly better classification accuracy
compared to GPT-2 Small. Unfortunately, our current computational resources
disallows us to train or finetune larger models, such as RoBERTa-large or
GPT-2 Medium/Large. However, this presents a promising avenue for future
research.

7 Conclusion and Future Work

In this work, we investigate the robustness of prompt-based learning in the few-
shot out-of-scope (OOS) intent classification task. Inspired by the recent success
of prompt-based learning in few-shot in-scope language understanding tasks,
we propose a simple yet effective prompt-based OOS detector by leveraging a
masked language model.

Furthermore, to overcome the limitations of existing evaluation metrics for
OOS detection, we propose a more comprehensive metric, the Area Under In-
scope and Out-of-Scope Characteristic curve (AU-IOC), which offers a holistic
view of in-scope accuracy and OOS recall and clearly distinguishes different
OOS detection models.

Under this new evaluation method, we compare our prompt-based detector
against 3 strong baseline models by performing extensive experiments on 6
datasets. Our study found that by exploiting the meta-data of intent annotation
(i.e., the intent description), the prompt-based detector achieved the highest
AU-IOC score across various data regimes (from 1- to 50-shot) and significantly
outperforms all the baseline models at extremely low data settings (1/5-shot).
Additionally, further experiments showed that our prompt-based detector is
insensitive to intent descriptions phrased in different formats. Also, we found
that a prompt template formulated in a natural style is a key ingredient to the
high robustness of our prompt-based detector.
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As for our future work, we will extend the scope of prompt-based models by
adapting causal language models (e.g., GPT-3, ChatGPT) on the few-shot OOS
intent classification task. Our work mainly relies on discrete prompt templates,
which need manual design and cannot be parameterized. To this end, we are
also interested in investigating the effects of their continuous counterparts.
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Appendix A IOC curves at 1-50 shots

Fig. A1-A6 plot IOC curves of different models in 1-50 shot settings for SNIPS,
Facebook, CLINC-Banking, Stackoverflow, HWU64 and BANKING dataset
respectively.
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Fig. A1 IOC curves (Accin vs. Roos) of models in 1-50 shot settings evaluated on SNIPS
(test set). Better viewed in color.
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Fig. A2 IOC curves (Accin vs. Roos) of models in 1-50 shot settings evaluated on Facebook
(test set). Better viewed in color.
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Fig. A3 IOC curves (Accin vs. Roos) of models in 1-50 shot settings evaluated on CLINC-
Banking (test set). Better viewed in color.

0.0 0.2 0.4 0.6 0.8 1.0
R_oos

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c_

in

(a) 1-shot

0.0 0.2 0.4 0.6 0.8 1.0
R_oos

0.0

0.2

0.4

0.6

0.8

1.0
(b) 5-shot

0.0 0.2 0.4 0.6 0.8 1.0
R_oos

0.0

0.2

0.4

0.6

0.8

1.0
(c) 10-shot

0.0 0.2 0.4 0.6 0.8 1.0
R_oos

0.0

0.2

0.4

0.6

0.8

1.0
(d) 20-shot

0.0 0.2 0.4 0.6 0.8 1.0
R_oos

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c_

in

(e) 30-shot

0.0 0.2 0.4 0.6 0.8 1.0
R_oos

0.0

0.2

0.4

0.6

0.8

1.0
(f) 40-shot

0.0 0.2 0.4 0.6 0.8 1.0
R_oos

0.0

0.2

0.4

0.6

0.8

1.0
(g) 50-shot

Softmax
Siamese
Entailment
Prompt

Fig. A4 IOC curves (Accin vs. Roos) of models in 1-50 shot settings evaluated on Stack-
overflow (test set). Better viewed in color.
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Fig. A5 IOC curves (Accin vs. Roos) of models in 1-50 shot settings evaluated on HWU64
(test set). Better viewed in color.
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Fig. A6 IOC curves (Accin vs. Roos) of models in 1-50 shot settings evaluated on BANKING
(test set). Better viewed in color.

Appendix B Confidence score distributions of
the other 3 datasets at 5-shot

Fig. B7 shows the confidence score distributions of the 4 architectures on 3
datasets (SNIPS, Facebook and HWU64) at 5-shot.
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Fig. B7 Confidence score histogram at the 5-shot setting on the test set of (a-d) SNIPS,
(e-h) Facebook and (i-l) HWU64. Best viewed in color.

Appendix C Inference speed

Fig. C8 illustrates the inference throughput against the number of in-scope
classes (denoted as L). To ensure a fair comparison between the models and to
aptly simulate the online evaluation setting, we standardized the input batch
size to 1 across all models. This means that each batch contains only a single
user question. We observed that the throughput of the Softmax model remains
relatively stable (approximately 62 instances/s) irrespective of the variations
in L. The Softmax model bypasses the one-vs-all binary classification, thereby
exhibiting speed insensitivity. In the case of the Siamese model, we implemented
a strategy to cache the intent label embedding to foster efficiency. However,
despite this optimization, we found that the computational demand for the
cosine similarity operation escalates as L increases. In contrast, the throughput
for the other two models is much smaller when L increases over 14. Notably, the
prompt-based model surpasses others in achieving higher AU-IOC scores, albeit
at the expense of reduced inference throughput, particularly when L exceeds 10.
A significant factor contributing to this reduced speed is the tensor extraction
operations involved in the prompt-based model, requiring data transfer between
the GPU and CPU, which is time-consuming. While our primary focus in this
study remains on scrutinizing the robustness of different models in handling
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the Out-of-Scope (OOS) intent detection task, we acknowledge that optimizing
the inference speed is a critical aspect that warrants attention in future work.
It is also pertinent to note that the inference time is contingent upon the
hardware utilized during the evaluation, implying that a change in hardware
could potentially alter the throughput numbers reported.
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Fig. C8 Inference throughput v.s. number of in-scope classes. All the throughput numbers
are computed with a single NVIDIA GTX-1080Ti GPU.
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