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a b s t r a c t

This paper explores the potential of self-supervised learning as an alternative to supervised learning in
the context of geometry-based 3D object retrieval. With the ongoing digitalization of many industries,
an exponentially increasing number of 3D objects are processed by retrieval systems. In order to
support new shapes, modern deep learning-based retrieval systems require retraining. The dominant
paradigm for optimizing neural networks in this field is supervised classification training. Supervised
learning requires time-consuming and expensive data annotation. Moreover, training neural networks
for classification introduces a bias towards the classes in the training data, which is undesirable for
retrieval systems encountering unseen object types in the wild.

Through extensive experiments, we make a direct comparison between supervised and self-
supervised learning on four datasets from three different domains (household, manufacturing and
medical). For object classes seen during training, self-supervised and supervised learning are com-
petitive. For unseen classes, self-supervised learning outperforms supervised learning in many cases.
We conclude that self-supervised learning provides a powerful tool for circumventing labeling costs
and providing more robust retrieval systems.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Object retrieval has been an essential instrument in various
ields for decades, including game development, AR/VR [1,2] ap-
lications, medicine [3] and Computer-Aided Design/
anufacturing (CAD/CAM) [4]. Object retrieval allows designers,
rtists and engineers to start their work from existing objects or
se them as reference parts, drastically shortening the amount
f time spent on a task [4,5]. With the ongoing digitalization
n many industries, the need for 3D design and 3D processing
eeps growing. Retrieval systems must support larger amounts
f objects and handle an ever-increasing variety of shapes [6–9].
Modern retrieval systems represent 3D objects with feature

ectors [9], where similar objects are expected to have similar
ectors. In the past, feature vectors were the result of hand-
rafted feature extraction algorithms [10]. Following the break-
hrough of deep learning in the last decade [11], the current
tate-of-the-art feature extractors for 3D objects are neural net-
orks, offering superior performance in most cases and requiring

ess development effort than feature engineering approaches.
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The dominant paradigm to train a neural network for 3D
object retrieval is to train in a supervised manner on a classifica-
tion task [12–14]. The final layers in the network (the head) are
removed after training, and the leftover backbone layers are kept
as the feature extractor, see Fig. 1.

Two important challenges present themselves for supervised
classification training. (1) Supervised learning requires human-
annotated data. To obtain a deep learning feature extractor or to
update a model for supporting new object categories, sufficient
data has to be annotated. The process of annotating is typically
time-consuming and costly, and is often a blocker during product
development when insufficient domain expertise is available for
data annotation. (2) Teaching a neural network to classify objects
introduces a bias towards the classes seen during training. When
extracting feature vectors for objects from unseen classes, the ex-
tracted vectors are less qualitative, ultimately resulting in worse
retrieval results [14]. Supporting unseen object types is a crucial
property of retrieval systems in the wild, as the number of 3D
objects has been growing exponentially for decades together with
the digitalization in many industries [6,7].

To overcome the challenges related to supervised classification
training, self-supervised learning could provide an alternative
training procedure for retrieval models. Self-supervised learning
is a paradigm where neural networks are trained in a similar
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. Overview of a geometry-based 3D object retrieval system with a neural
network as feature extractor. During the first phase, a neural network consisting
of a backbone (general feature extraction) and a head (task prediction), is
optimized for a training task. Next, the backbone is kept for inferring general
feature vectors that act as descriptors for fast lookup in a vector database.

manner to supervised learning, with the difference that the train-
ing labels are automatically generated from the data [15]. As such,
there is no need for human annotations in self-supervised learn-
ing and neither are neural networks explicitly biased towards
specific classes. Recent advances in self-supervised learning have
catalyzed numerous breakthroughs, significantly impacting many
subfields in the broader artificial intelligence domain, starting
with natural language processing [16,17] and spreading to im-
age processing [18,19], video processing [20,21], robotics [22,23],
protein folding [24,25] and speech processing [26,27].

Self-supervised learning for 3D object retrieval has been
tudied in the past, but only limited work has compared self-
upervised learning to supervised learning in an extensive man-
er. Within this small subset of works, we argue that various
spects could be improved. First of all, self-supervised and su-
ervised methods are compared with different feature extraction
ackbones [28,29], disallowing a direct comparison between the
wo training procedures. Second, the robustness and the capabil-
ty to generalize to unseen object types is not evaluated [28–30],
hile retrieval systems in the real world need to handle unseen
ypes. Moreover, only datasets with common objects (Model-
et40 [31] and Shapenet [32]) are considered [28,30], which is
nteresting for AR/VR applications in a household setting, but
eaves many applications in medicine and CAD/CAM out of scope.
urthermore, experiments are only validated on datasets with
bjects aligned in a canonical orientation [28,30], while the cor-
ect alignment of objects in the wild is non-trivial. Notably, only
iew-based neural network architectures such as MVCNN [33]
re considered [28], architectures for directly processing point
louds (e.g. PointNet++ [34] and DGCNN [35]) are left out. Finally,
he proposed self-supervised methods are complex and extend
he training loop significantly, e.g. by requiring clustering steps
or negative sample mining [28] or by requiring training for two
eural networks of different modality (images and point clouds)
t the same time [30].
Our work addresses the aforementioned limitations in the

tate-of-the-art through a less complex self-supervised method
nd a larger, more realistic experimental setup. The important
omponents of our work can be summarized as follows:

• Self-supervised and supervised methods are evaluated on
the exact same feature extracting backbone;

• Four datasets from three different domains (household,
manufacturing, medical) are used as training datasets, where
14
some datasets have unaligned objects and others have
aligned objects;

• The cross-domain performance of self-supervised and su-
pervised similarity models is evaluated by performing re-
trieval on a different test dataset than the training set;

• The feature extracting backbone is a PointNet++ architec-
ture, which processes point clouds in a direct manner;

• The self-supervised training procedure is based on the VI-
CReg [36] method, a non-contrastive siamese network with
a simple implementation that can run efficiently on 1 GPU.

We will show that self-supervised learning can be a valid,
and often even a better-performing alternative over supervised
learning in context of 3D object retrieval. The results can be
summarized as follows:

• When evaluating and training on the same dataset, self-
supervised learning can be a competitive replacement for
supervised 3D object retrieval depending on the dataset and
can thus circumvent labeling costs;

• Similarity models trained in a self-supervised setup can
generalize better to datasets from other domains, providing
better robustness;

• We show that non-contrastive implementations for siamese
network setups such as VICReg are suitable for 3D deep
learning, avoiding complex implementations.

In the remainder of this paper, related works on 3D object re-
trieval and self-supervised learning are described in Section 2,
our application of VICReg to 3D deep learning is detailed in Sec-
tion 3, the experiments are discussed in Section 4 and the
conclusion with future work can be found in Section 5.

2. Background & Related work

In order to situate our work in the existing literature, an
overview is presented on 3D deep learning & 3D object re-
trieval (Section 2.1), self-supervised learning (Section 2.2) and
self-supervised object retrieval (Section 2.3).

2.1. 3D deep learning & 3D object retrieval

Historically, 3D object retrieval relied on hand-crafted fea-
tures, based on spherical harmonics [37], 2D projection statis-
tics [38], lightfields [39] or other methods. A more complete
overview can be found in Bustos et al. [9], Iyer et al. [8], Tangelder
et al. [40] and Li et al. [10]. In the past decade, the focus shifted
towards learning the feature vectors with neural networks (NNs).
The successes in image processing [11] with convolutional neural
networks (CNNs) gave inspiration for 3D deep learning in two
ways: 3D convolutional neural networks and view-based neural
networks.

3D CNNs [31,41] are a natural extension of the pixel-based
2D convolutional layers to voxel-based 3D convolutional lay-
ers. Voxels are a relatively simple data structure compared to
e.g. point clouds, meshes or projection-based representations. The
most important downside for voxel-based methods is that the
required computational resources scale cubically when increasing
the resolution to smaller voxel sizes. Various architectures tried
to overcome this downside, e.g. OctNet [42].

View-based neural networks [33] work by rendering a 3D
object from multiple camera positions and processing the 2D
projections as images with 2D convolutional neural networks.
These architectures allow to directly make use of breakthrough
architectures, e.g. AlexNet [11], VGGNet [43] and ResNet [44],
and even allow to start from model weights pre-trained on large
image datasets, e.g. ImageNet [45]. These methods have achieved
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tate-of-the-art results in 3D deep learning since their inception
nd have been a staple in the 3D object retrieval literature, for
xample, with RotationNet [46] and GVCNN [12].
With PointNet++ [34], NN architectures applied to point clouds

ame on par with the state-of-the-art view-based methods. Point
loud-based architectures have the advantage of containing less
arameters than view-based architectures and only require 1
ass through the NN backbone instead of 1 pass for each ren-
er in a view-based model. Other types of architectures include
raph-based models such as DGCNN [35] and transformer-based
odels [47], e.g. Pointformer [48].
In geometry-based object retrieval, view-based architectures

ave traditionally outperformed other architectures [33,46] and
his is no different in recent works [14,28]. However, view-based
ethods come with the downside of requiring more computation

ime [49] because these architectures have 10 to 100 times more
arameters and requiring passing multiple views through the
ackbone. In this work, the PointNet++ architecture is the NN
rchitecture of choice to allow for a faster iteration time.

.2. Self-supervised learning

Self-supervised learning refers to methods where neural net-
orks are trained with labels that are automatically generated

rom the data. The problem formulation for self-supervised learn-
ng looks similar to supervised learning schemes. In practice,
elf-supervised learning does not require expensive human an-
otations.
The advantages of self-supervised learning became clear in

ecent years thanks to breakthroughs in natural language pro-
essing [16,17]. The basis of these successes involved masked lan-
uage modeling, next-sentence prediction and other text-related
econstruction methods which do not require human annota-
ions.

While self-supervised learning has been around in the com-
uter vision world since the early 1990s [50,51], the strong
erformance of pre-trained language models attracted more at-
ention to self-supervised learning for computer vision. Important
ethods include siamese networks [52,53] and auto-encoding

54] approaches. As the focus of this work is only on feature
ectors in latent space and does not require reconstructions
n Euclidean space, experiments are performed with siamese
etworks.
In a siamese network setup [52], a neural network is trained

o infer the same output vector for two similar data samples.
riginal applications include signature recognition [52] and face
ecognition [53], two cases where similar samples had to be
etrieved from a database (as in 3D object retrieval).

The ability to control what a siamese network will learn to
onsider as similar, is the basis for self-supervised learning with
iamese networks. It is possible to artificially generate similarity
airs, alleviating the need for human annotations. For example,
imilarity pairs can be created by generating two augmented
ersions of one sample and artificially labeling the two versions
s similar [18,19,55–57].
The challenge for a siamese network setup is to prevent the

odel from predicting a constant vector that does not change de-
ending on the input. In recent years, the most popular approach
o solving this problem was contrastive learning [26,53,58,59].
his involves training on non-similar pairs as well and penalizing
he siamese network for inferring similar vectors for the samples
n a non-similar pair.

The current state-of-the-art siamese network methods try to
void negative pairs however [36,60–62]. Contrastive learning
ethods work best when there are far more negative samples
15
than positive samples in one batch [58], resulting in constrain-
ing VRAM requirements on GPUs or resulting in implementa-
tion complexity [59]. Important non-contrastive works include
various forms of asymmetrical networks [60,61], regularization
through auxiliary loss functions [36,63] and making smart use
of batch normalization [62]. We will be using the VICReg [36]
approach in this paper, which avoids the trivial siamese network
solution by forcing the output vectors in a batch to take on a
distribution with a regularizing auxiliary loss.

2.3. Self-supervised learning for 3D object retrieval

Diverse methods have been proposed for self-supervised 3D
object retrieval. Pioneering works use auto-encoder setups in
which neural networks are trained to reconstruct (a derivative
of) the input. Leng et al. [64] apply convolutional auto-encoders,
trained in a layer-wise manner, to 2D depth images. Zhu et al. [65]
train auto-encoders in one phase and also consider 2D depth
images as input. Furuya et al. [66] present a cross-modal auto-
encoder, called the Transcoder, which trains encoders and de-
coders towards and from a shared latent space combining point
clouds, voxels and 2D images. Luciano et al. [29] propose a feature
extractor that takes in a vector of geodesic moments derived from
a mesh. The feature extractor is trained through an auto-encoder
setup in which the input vectors are reconstructed.

Other methods consider contrastive learning and siamese net-
works. Jing et al. [30] train a 2D–3D multi-modal siamese setup
where an image feature extractor and a point cloud feature ex-
tractor learn to infer the same feature vector for a point cloud
and a rendered image of the point cloud. The trained point cloud
feature extractor serves as a retrieval model. Li et al. [28] train a
siamese network with a view-based architecture only operating
on 3D objects. The network is trained with a local loss based on
contrasting views of each object and a global triplet loss based on
contrasting positive and negative objects that were mined during
a pre-training phase.

The experiments in this work will use siamese network meth-
ods for two reasons. First, the focus in modern object retrieval
systems goes to feature vectors in latent space and less so to
the Euclidean space where an auto-encoder setup performs re-
construction. Second, state-of-the-art non-contrastive siamese
networks have low implementational complexity and VRAM re-
quirements, allowing for fast iteration cycles and easy accessibil-
ity for the broader community.

3. Method

We describe our application of VICReg to neural networks
for processing 3D point clouds. First, the general context of a
siamese network and our data generation are described. Next, the
regularization for stabilizing the training is explained. We end by
detailing the model architectures that are used throughout our
experiments. A high-level overview is depicted in Fig. 2.

3.1. Siamese network setup for 3D objects

This section describes the two key ideas behind self-
supervised learning with siamese networks for 3D objects: the
siamese network setup and the artificial generation of similarity
pairs.
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Fig. 2. Overview for our application of the VICReg [36] method in 3D deep
learning. A siamese model is trained to infer the same batch of vectors Za and Zb
for augmented versions Xa and Xb of the same batch of 3D objects. The similarity
loss Lsim is the Euclidean distance. The VICReg approach adds two auxiliary
loss functions to the siamese model setup for stabilizing and for improving the
model training. The first auxiliary loss function is the standard deviation loss Lstd
which brings the output vectors distribution per batch Z to the standard normal
distribution. The standard deviation loss prevents the network from learning the
unwanted trivial solution where the network always predicts the same vector,
regardless of the input. The second auxiliary loss is the covariance loss Lcov
which reduces the correlation between the dimensions in the output vectors.
The covariance loss is in place to maximize the information yield of the output
vectors, which has been shown to improve the feature vector quality [63,67].

3.1.1. Siamese network fundamentals
A siamese network setup aims to extract similar feature vec-

tors for similar shapes. It consists of a neural network encoder
fθ (x) with parameters θ that learns a mapping of two samples
in a pair (xa, xb) onto the same vector in a high-dimensional
vector space. More concretely, the encoder is trained to bring
za = fθ (xa) and zb = fθ (xb) close in vector space VD by minimizing
a similarity loss function Lsim. In our work, we use the mean-
squared Euclidean distance between the unnormalized feature
vectors za and zb:

Lsim(za, zb) =

D∑
d=1

(zda − zdb)
2 (1)

with zda the value for dimension d in vector za. Siamese networks
form the basis for obtaining similarity models throughout this
work.

3.1.2. Data generation
The trick for training a siamese similarity model in a self-

supervised manner lies in the acquisition process of the similarity
pairs. To circumvent the need for human similarity annotations, it
is possible to artificially generate similarity pairs by augmenting
a sample twice. The two augmented versions can be consid-
ered similar (assuming the augmentations are not unreasonably
strong) since they originate from the same sample.

During training, mini-batches of k point clouds are sampled
from the dataset. For each of the k point clouds in the mini-batch,
two augmented versions are generated and paired. The k resulting
pairs are passed on to the siamese network for training.

Augmentations are generated through a sequence of geomet-
ric transformations. The following stochastic transformations are
used in this work (Fig. 3), assuming that the point cloud is
normalized to the unit sphere:

1. point cloud subsampling,
2. random 3D rotation,
3. global scaling with factor s, uniformly distributed between

[0.8, 1.25],
4. stretching in x, y, z dimensions with respective factors

sx, sy,
s , independently uniformly distributed in [0.8, 1.25],
z

16
5. point jittering by displacing each point with ∆x, ∆y, ∆z
sampled independently from a normal distribution N (0,
0.01), clipped in the interval [−0.05, 0.05].

Point subsampling refers to the procedure of generating point
clouds with a large number of samples before training and us-
ing subsampled versions during training. When generating two
augmented versions of a point cloud, two different subsampled
versions were given as input to the augmentation pipeline.

Note that in many cases, the rotation augmentation was not
applied. In Section 4, we show that rotation augmentations can
severely hurt the performance of the similarity model, in partic-
ular when working with aligned datasets.

3.2. Improving siamese networks through regularization

Below, two auxiliary loss functions are described which were
proposed by the VICReg [36] work to stabilize and improve
siamese network training without requiring negative samples.

3.2.1. Avoiding collapse
Training a siamese network setup with only a similarity loss

leaves room for an unwanted trivial solution, i.e. the constant
vector. It is possible for the network to predict the same constant
vector for all possible inputs and still satisfy the loss function. For
avoiding this collapse to the trivial solution, there is an additional
loss function for regularizing the model.

The proposed auxiliary loss function works by penalizing the
network for having a small standard deviation over the feature
vectors in a mini-batch. Such an auxiliary loss pushes the network
away from always predicting a constant vector as that would
result in a standard deviation equal to 0. At the same time, the
standard deviation should not be growing indefinitely as that
would destabilize the training in another way. Therefore, the loss
function is limited to a maximum value of 1. This is effectively the
Hinge loss with threshold 1 applied to the variance within each
dimension of the batch. The regularizing loss Lstd takes a batch Z
of N vectors [z1, . . . , zn] and returns the following result:

Lstd(Z) =
1
ND

N∑
i=1

D∑
j=1

max(0, 1 − S(z ji , ϵ)) (2)

where z ji is the value of dimension j for vector zi and S is the
standard deviation:

S(x, ϵ) =

√
Var(x) + ϵ (3)

with ϵ a small number to prevent numerical instabilities. From
the perspective of generative modeling approaches, Lstd forces the
model output to take on a distribution and leaves no room for the
constant solution.

An important caveat must be considered when applying this
loss in conjugation with the similarity loss Lsim. The standard
deviation loss Lstd is designed to push the vectors in a mini-batch
away from each, including the vectors from samples belonging to
the same similarity pair. To prevent these losses from opposing
each other, the Lstd loss is not applied to the full mini-batch at
nce. Still, it is separately applied to the two halves of the mini-
atch with each half containing one of the two members of each
imilarity pair.

.2.2. Maximizing information
A second regularizing loss is the covariance loss Lcov , which

reduces the correlation between the dimensions in the feature
vector. The goal of this regularization is to maximize the in-
formation yield of each dimension and was introduced by the
Barlow Twins [62] method. In other words, the network is forced
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Fig. 3. Examples of the transformations employed in the augmentation pipeline. To train siamese networks in a self-supervised manner, it is possible to artificially
generate the required similarity pairs by creating augmented versions of 3D objects. This figure illustrates the five proposed augmentations separately.
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to encode as much unique information in each dimension. For
further intuition, we refer to [63,67] where the authors show that
embeddings that are uniformly spread out over the hypersphere
indicate strong representation learning and where the relation-
ship to the information bottleneck [68,69] principle is investigated
s well.
The covariance loss Lcov is derived from the off-diagonal ele-

ents in the covariance matrix C of the output batch Z with N
ectors [z1, . . . , zn] with D dimensions:

(Z) =
1

N − 1

n∑
i=1

(zi − z̄)(zi − z̄)T ,where z̄ =
1
N

n∑
i=1

zi. (4)

Lcov(Z) =
1
D

∑
i̸=j

[C(Z)]2i,j. (5)

The two regularizing loss functions are combined with the
similarity loss in a final weighted loss LVICReg :

VICReg = α ∗ Lsim + β ∗ Lstd + Lcov, (6)

where the same values were used as in the original work, α = 25
nd β = 25.

.3. Neural network architectures

In this section, the structure of the models used through-
ut this work is described. Generally, each model exists out of
wo modules. The first comprises the initial layers of the neural
etwork which extract local features and combine the local in-
ormation into a global vector. This module is referred to as the
eature extractor or the backbone. The second module consists of
he last layers in the network, which process the global vector
rom the backbone module and perform the task for which the
etwork is being trained. This module is called the head of the
eural network.
After training the neural network, we only keep the backbone

odule for extracting global feature vectors, as shown in Fig. 1.
hese global feature vectors are used as descriptors for the 3D
bjects during object retrieval tasks.

.3.1. PointNet++
The PointNet++ [34] architecture is designed for processing 3D

oint clouds in a hierarchical structure. The structure is made up
f a sequence of set abstraction layers that extract local features

with small PointNets [70] in increasing spherical neighborhoods.
The small PointNet modules have the key property of being per-
mutation invariant, i.e. no matter the order in the set of points, the
resulting point cloud feature vector will be the same. The merit of
the PointNet++ architecture is the hierarchical structuring which
introduces weight sharing between different local neighborhoods.
PointNet acts as the method which enables the direct processing
of point clouds with neural networks. PointNet++ is the method
that achieves state-of-the-art performance.
17
3.3.2. VICReg model
A VICReg model consists of a neural network backbone and

a multilayer perceptron (MLP) head, the expander. The backbone
network can be any feature extractor for 3D objects. We use the
PointNet++ architecture as backbone where the dimension of the
global vector is 1024. The expander network is an MLP head
with two hidden layers (consisting of a fully-connected layer,
batch normalization, ReLU activation) and one output layer (a
fully-connected layer with no bias term), all of dimension 1024.

Regarding the siamese network setup, we use the same archi-
tecture fθ (x) and the same weights θ for each of the two forward
asses. There exist other works that use the same architecture but
ot the same weights [62]. Some works even use different archi-
ectures in the two siamese branches, e.g. in a student–teacher
etup [71] or in a multi-modal setup [30].

.3.3. Classification model
The classification models used in this work, have a PointNet++

ackbone and an MLP head. We use the MLP head presented by
i et al. [34]. The head consists of 2 hidden layers (consisting of
fully-connected layer, batch normalization, ReLU, 50% dropout)
ith dimensions 512 and 256, followed by an output layer where
he dimension is equal to the number of classes considered in the
ataset.

. Experiments & Results

We compare self-supervised learning and supervised learning
or 3D object retrieval in two experiments. The first experiment
onsiders the default context in machine learning where the
raining set and the test set have the same distribution. We show
hat self-supervised learning (VICReg) and supervised learning
classification) show similar performance in this setting.

In the second experiment, evaluation happens on test sets
ontaining object categories that were not seen during training,
.e. the training set and the test set have a different distribu-
ion. Our results show that self-supervised learning outperforms
upervised learning in most cases.
In the following subsections, we discuss our evaluation

ipeline, the importance of each dataset, the implementation
etails and the experiment results.

.1. Evaluation pipeline

In each of our experiments, we aim to evaluate training meth-
ds for neural network backbones that encode the 3D objects
nto latent feature vectors. As depicted in Fig. 1, the neu-
al networks are first trained for a specific training task, which
ill be either classification (supervised learning) or VicReg (self-
upervised learning). After the training phase, the neural network
ead, specific to the training task, is removed and only the task-
gnostic backbone remains. All backbones for object retrieval in
his work have the same architecture and the same encoding
imension (1024) regardless of the training task. This is important
o allow a fair and direct comparison between the supervised and
he self-supervised training methods.
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Table 1
Dataset overview showing the domain of origin, the alignment and the dataset size.
Dataset Domain Alignment # Classes # Samples

ModelNet40 Household Aligned 40 12.311
ShapeNet normal Household Aligned 55 51.162
ShapeNet perturbed Household Unaligned 55 51.162
Mechanical Components Benchmark Manufacturing Unaligned 68 58.696
Proprietary dataset Medical/dental Unaligned 38 12.038
b
a
k
G
r
a
f
t
M
p

After a backbone is trained on the training samples from a
ataset, it can be evaluated on the same dataset or other datasets.
he procedure for evaluating a backbone on a dataset goes as
ollows. First, the backbone infers latent feature vectors for all
rain and test samples in the evaluation dataset. Then, the qual-
ty of the feature vectors is evaluated through nearest neighbor
lassification and through similarity ranking.
The nearest neighbor classification works by finding the train-

ng sample with the closest feature vector (according to the
osine distance in latent space) to each test sample. The classifica-
ion label of the training sample is transferred to the test sample
s the prediction. To measure the nearest neighbor classification
erformance, we measure the accuracy over all test samples
referred to as NN in the tables) and the F1 score averaged over
ll classes (referred to as F1 macro in the tables). The F1 score is
he harmonic mean of the recall and the precision for a class.

The similarity ranking performance of trained backbones is
valuated through the Normalized Discounted Cumulative Gain
etric (referred to as NDCG in the tables). For each test sample,

he following procedure is executed. First, the N closest training
bjects in latent space, according to cosine distance, are retrieved.
he retrieved objects are ranked according to their distance to
he test sample in latent space. Next, the Discounted Cumulative
ain metric is calculated, which gives a basic score of 1 point to
ach training sample with the same class label as the test sample.
owever, each point is discounted logarithmically based on its
osition in the list. The lower a training sample of the correct
lass is ranked, the lower the score. The highest score is achieved
hen all training samples of the test sample class are on top of
he ranked list. Where si is the basic score (0 for different class,
for correct class) at ranking position i, the DCGN is obtained as

ollows:

CGN =

N∑
i=1

si
log2(i + 1)

. (7)

To normalize the DCGN metric, its value is divided by the max-
imum possible DCGN , as if all si in the list would be 1. The
NDCG value reported in the tables is the average NDCG over all
test samples in an evaluation dataset. For ModelNet40 and the
proprietary dataset, we use N = 200 and for the other, larger
datasets we use N = 1000.

4.2. Datasets

Multiple datasets are considered to compare the performance
of self-supervised learning and supervised learning. The combina-
tion of datasets described below was specifically chosen because
they originated from different domains, see Fig. 4 for a visu-
alization and Table 1 for an overview. The combination allows
to verify if self-supervised learning works in different domains
and it allows to test the generalization performance of trained
similarity models from domain to domain.

4.2.1. ModelNet40
ModelNet40 is a selection of 40 classes out of the larger Mod-

elNet [31] collection. The ModelNet40 contains 12.311 objects,
split into a training set of 9.843 samples and a test set of 2.468
18
samples. The samples contain household objects and common
shapes like chairs, shelves, plant pots, cars, airplanes, . . .An im-
portant detail is that these objects have a canonical orientation
and are aligned in some relation to the gravitational direction.
This has implications regarding the use of rotation augmentation
during training.

4.2.2. ShapeNetCore
ShapeNetCore is a subset of 55 classes from the ShapeNet [32]

database. The selection contains 51.162 3D objects with a train/val
/test split of 35.764/5.133/10.265 objects respectively. In our
experiments, we train on the combined train and validation set
of 40.897 samples. This dataset contains similar categories as
the ModelNet40 dataset. There are two versions of the dataset
available, of which the first one contains objects in an aligned,
canonical pose, to which we will refer as ShapeNet normal.
The second version contains the same objects as ShapeNet nor-
mal, but rotated. The rotated version is referred to as ShapeNet
perturbed.

4.2.3. Mechanical components benchmark
The Mechanical Components Benchmark [72] dataset con-

tains 58.696 parts from the manufacturing world, which is dif-
ferent from ModelNet40 or ShapeNetCore. The dataset contains
68 classes which were purposefully chosen to be confusing. The
work by Kim et al. [72] specifies an A version (all samples) and a
B version (containing only 25 of 68 classes), we use the A version.
We follow the official 80%/20% train/test split.

4.2.4. Proprietary data
To further diversify the domains considered in this paper, we

also added the results from a proprietary dataset. There are 38
classes present in the proprietary dataset, of which most are
medical/dental-related and a few are jewelry/industrial-related.
The dataset contains 2.560 test samples and 9.478 training sam-
ples.

4.3. Implementation details

Before training, large point clouds of 16.000 points are ran-
domly sampled with the python library trimesh [73,74]. During
training, the augmentation pipeline randomly subsamples the
point clouds to of 2.048 points. All models receive the points and
the normals. Point clouds are normalized to the unit sphere. The
deep learning framework for the implementation is Pytorch [75]
along with the Pytorch Lightning [76]. The VICReg implementa-
tion is derived from the official open-source repository by face-
ookresearch [77]. The PointNet++ code is a combination of
n implementation by Erik Wijmans [78] and torch points
ernels [79]. All models were trained on one Nvidia Tesla V100
PU. The Adam optimizer was used for all models with learning
ate 3.10−4. The weighted loss coefficients α and β are kept
t 25 for all experiments. All classification models are trained
or 250 epochs with batch size 64. The siamese networks were
rained with batch size 128 for either 300 epochs (ShapeNet and
echanical Components) or either 900 epochs (ModelNet40 and
roprietary dataset).
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Fig. 4. Examples from each of the four datasets.
Table 2
Supervised (classification) and self-supervised (VICReg) training comparison on
various datasets. After training a model, feature vectors are inferred with the
backbone for all objects in the train and test set. Nearest neighbor classification
and similarity ranking are performed to evaluate the backbones. In the table,
NN% is the classification accuracy over all objects in the test set (classified by the
label of their closest neighbor in the training set), F1% is the F1 score averaged
over all classes and NDCG is the Normalized Discounted Cumulative Gain over
all test samples.
Dataset + Training method NN % F1% NDCG %

ModelNet40
VICReg 84.8 80.9 38.9
Classification 86.0 82.2 42.8

ShapeNet normal
VICReg 83.1 68.2 66.0
Classification 82.6 68.0 65.9

ShapeNet perturbed
VICReg 75.8 56.6 56.9
Classification 71.7 53.6 55.4

Mechanical Components
VICReg 95.2 88.9 65.0
Classification 95.4 88.8 64.8

Proprietary dataset
VICReg 60.4 52.3 37.9
Classification 81.3 72.8 48.4

4.4. Experiment I: Supervised versus self-supervised learning

In this experiment, we make an apples-to-apples comparison
etween self-supervised learning and supervised learning trained
nd evaluated on the same data distribution, with the exact same
ackbone.
For each dataset, a classification model and a VICReg model

re trained on the training split and evaluated on the test split
elonging to the same dataset. Nearest neighbor classification and
imilarity ranking are performed as described in Section 4.1. The
esults are reported in Table 2. For datasets with objects in a
anonical orientation, no rotation augmentation was used. The
lassification models are trained with the same augmentations as
he VICReg models, except for the proprietary dataset where the
lassification model was trained without rotation augmentation
nd the VICReg model was trained with rotation augmentation.
The two training methods are competitive with each other.
hich method works best depends on the dataset contents. For
19
the two ShapeNet versions, VICReg training performs better. In
the case of the Mechanical Components Benchmark, the two
methods have a very similar performance. This is an impressive
result for self-supervised learning as no human-annotated data is
required at all for training.

For ModelNet40 and the proprietary dataset, supervised clas-
sification training performs better. We argue that these datasets
might not be large enough to be effectively trained with VI-
CReg. In particular, for the proprietary dataset, the performance
is worse. An explanation could be that there is not enough vari-
ation in the dataset since 15 out of 38 classes are tooth-like or
sequences of teeth, but more experiments would be required to
confirm these claims.

4.5. Experiment II: Generalization over domains

In practice, retrieval systems come across object types that
did not appear in the training set. We set up an experiment
to compare the ability of self-supervised models and supervised
models to generalize out of distribution by training on one dataset
and testing on other datasets.

The training and evaluation procedure is the same as in Sec-
tion 4.4. The results are reported in Tables 3–5, which also in-
cludes the results of experiment I for completeness.

In total there are 20 training configurations (rows) in these
tables, showing the training dataset, the training method and
the presence of rotation augmentation. 10 rows are supervised
and 10 are self-supervised. Each supervised configuration can be
compared to exactly one other self-supervised configuration with
the same training dataset and the same presence for rotation
augmentation. Given that each configuration is evaluated on 4
out-of-distribution datasets (apart from 1 other in-distribution
dataset), there are 40 points of comparison between supervised
and self-supervised learning.

Considering the NN accuracy results in Table 3, the self-
supervised method outperforms the supervised method in 30 out
of 40 cases. Leaving out the 8 cases trained on the proprietary
dataset, self-supervised learning outperforms supervised learning
in 29 out of 32 cases, which is impressive. For the F1 score
in Table 4 and the NDCG metric in Table 5, we find similar strong
results. We argue that this happens because supervised classifica-
tion training introduces a stronger bias towards the classes seen
during training than self-supervised learning. The self-supervised
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Table 3
Self-supervised and supervised training with five datasets: ModelNet40 (M40), ShapeNet normal (SN normal), ShapeNet perturbed
(SN perturbed), Mechanical Components Benchmark (MechComp) and the proprietary dataset (Prop). After training a model, feature
vectors are inferred with the backbone for all objects in the train and test set. Nearest neighbor classification is performed to
evaluate the backbones. In the table, the nearest neighbor classification accuracy over all objects in the test set is reported.
Training dataset Training method M40 SN normal SN perturbed MechComp Prop

ModelNet40 VICReg
Not rotation augmented 84.8 81.4 45.3 94.5 58.8
Rotation augmented 82.3 79.5 42.0 94.3 57.3

Classification
Not rotation augmented 86.0 79.0 41.6 93.3 55.6
Rotation augmented 81.5 77.6 67.1 93.2 70.1

ShapeNet normal VICReg
Not rotation augmented 86.6 83.1 51.7 94.3 65.0
Rotation augmented 81.7 76.9 74.9 94.3 70.6

Classification
Not rotation augmented 82.0 82.6 43.6 93.1 59.6
Rotation augmented 79.1 77.5 69.9 92.8 68.0

ShapeNet perturbed VICReg
Not rotation augmented 85.0 80.9 38.3 92.2 60.4
Rotation augmented 80.4 76.8 75.8 93.9 71.7

Classification
Not rotation augmented 80.6 79.7 58.3 92.7 57.6
Rotation augmented 77.1 75.6 71.7 92.9 70.2

MechComp VICReg
Not rotation augmented 82.1 80.4 47.4 95.0 63.7
Rotation augmented 70.0 69.6 66.5 95.2 72.5

Classification
Not rotation augmented 76.9 76.4 40.4 95.5 58.0
Rotation augmented 69.7 67.6 64.5 95.4 71.6

Proprietary dataset VICReg
Not rotation augmented 73.7 75.5 40.9 92.4 59.1
Rotation augmented 65.2 67.1 40.5 91.0 60.4

Classification
Not rotation augmented 78.1 77.6 40.1 94.2 81.3
Rotation augmented 70.9 69.2 65.3 94.6 74.5
method does not focus on specific classes as it is trained to infer
similar feature vectors for similar geometries, which appears to
be a better proxy task for training robust similarity models.

The cases where supervised outperforms self-supervised train-
ng, occur when training on the proprietary dataset and for Mod-
lNet40. We suspect that the same reasons as in Section 4.4
re responsible for this, i.e. the dataset is too small or contains
nsufficient variation between the classes. In Fig. 5, we give
glimpse of the proprietary dataset and show some retrieval
xamples with the best performing model for the proprietary
ataset (classification trained on proprietary dataset without ro-
ation augmentation 81.3% NN) and the worst performing VICReg
odel (trained on ModelNet40 without rotation augmentation).
ig. 5(a) clearly shows how certain dental objects are incorrectly
etrieved as similar objects. Given the strong performance of
elf-supervised learning when trained on other datasets, we be-
ieve that the few underwhelming results should be attributed
rimarily to the training data and not to the training method.
Next, we would like to point out the impact of rotation aug-

entation during training as this had an important influence on
he results. When an evaluation dataset contains aligned objects
nd the training method used rotation augmentations, the results
ere negatively influenced and vice-versa. The impact of using
otation augmentations can go up to an absolute difference of
5+% (see results for ShapeNet Perturbed) and is often much
arger than the impact of the training method.

Again, there is an important difference: the self-supervised
ethod does not require any human annotations at all. With
ufficient care for the training data, self-supervised learning can
e competitive with supervised learning and even has an edge for
eneralizing out of distribution.
20
5. Conclusion

Modern object retrieval systems represent 3D objects by fea-
ture vectors extracted by neural networks. Due to the ongoing
digitalization of many industries, the number of objects and the
variety of object types keeps growing exponentially. Supporting
new object types is a challenge for neural networks and requires
retraining, which traditionally happens in a supervised manner
through classification. This procedure brings an annotation cost
and a bias towards classes seen during training, hurting the
generalization capabilities.

In this paper, we explored the potential of self-supervised
3D object retrieval. With a simple, non-contrastive siamese net-
work setup, we made a fair and direct comparison between
self-supervised and supervised learning. In many cases, self-
supervised learning outperformed supervised learning, with a few
exceptions for models trained on smaller datasets. This finding is
validated in experiments over four datasets from three different
domains. Moreover, we show that the alignment of objects to
a canonical pose plays an influential role in the transferability
of a neural network from one dataset to another. If a target
dataset contains unaligned objects and the training dataset has
aligned objects, the neural network requires rotation augmen-
tation. When the training data is curated in the right manner,
self-supervised learning outperforms supervised learning for 3D
object retrieval. We would like to highlight the data-related
aspect of our work, as it might be a fruitful research direction
for future work.

Considering that self-supervised learning alleviates large-scale
labeling requirements, the presented results can have far-
reaching consequences for practical applications.



J. Van den Herrewegen, T. Tourwé and F. wyffels Computers & Graphics 115 (2023) 13–24

(
(

Fig. 5. Retrieval examples comparing model A, the worst performing VICReg model for the proprietary dataset trained on ModelNet40 with rotation augmentation
57.3% NN), and model B, the best performing classification model for the proprietary dataset trained on the proprietary dataset without rotation augmentation
81.3% NN. The most similar samples to the query sample are on the left.
Table 4
Self-supervised and supervised training with five datasets: ModelNet40 (M40), ShapeNet normal (SN normal), ShapeNet perturbed
(SN perturbed), Mechanical Components Benchmark (MechComp) and the proprietary dataset (Prop). After training a model, feature
vectors are inferred with the backbone for all objects in the train and test set. Nearest neighbor classification is performed to
evaluate the backbones. In the table, the F1-score over all classes in the test set is reported.
Training dataset Training method M40 SN normal SN perturbed MechComp Prop

ModelNet40 VICReg
Not rotation augmented 80.9 65.8 22.8 88.2 55.2
Rotation augmented 77.4 63.6 21.1 86.8 53.1

Classification
Not rotation augmented 82.2 62.1 20.5 86.1 52.5
Rotation augmented 77.2 58.9 46.9 86.4 63.1

ShapeNet normal VICReg
Not rotation augmented 82.5 68.2 26.5 89.5 59.1
Rotation augmented 77.3 59.1 56.6 88.3 63.2

Classification
Not rotation augmented 77.0 68.0 22.4 86.6 55.9
Rotation augmented 74.5 59.3 49.9 85.3 61.3

ShapeNet perturbed VICReg
Not rotation augmented 80.9 63.6 17.2 85.4 56.1
Rotation augmented 75.5 59.1 56.5 87.4 64.5

Classification
Not rotation augmented 76.3 63.6 34.5 86.3 54.1
Rotation augmented 72.7 57.6 53.6 84.9 62.4

MechComp VICReg
Not rotation augmented 77.0 62.9 23.5 88.1 59.7
Rotation augmented 64.2 51.3 48.5 88.9 65.3

Classification
Not rotation augmented 71.3 59.4 19.9 88.4 55.1
Rotation augmented 64.5 49.2 45.1 88.8 64.1

Proprietary dataset VICReg
Not rotation augmented 65.7 56.9 18.8 84.3 52.8
Rotation augmented 59.0 47.6 20.2 80.3 52.3

Classification
Not rotation augmented 73.6 61.4 20.2 87.4 72.8
Rotation augmented 65.9 50.3 46.3 88.2 67.0
21
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Table 5
Self-supervised and supervised training with five datasets: ModelNet40 (M40), ShapeNet normal (SN normal), ShapeNet perturbed
(SN perturbed), Mechanical Components Benchmark (MechComp) and the proprietary dataset (Prop). After training a model, feature
vectors are inferred with the backbone for all objects in the train and test set. Nearest neighbor classification is performed to
evaluate the backbones. In the table, the NDCG over all objects in the test set is reported.
Training dataset Training method M40 SN normal SN perturbed MechComp Prop

ModelNet40 VICReg
Not rotation augmented 38.9 63.6 37.0 57.4 39.2
Rotation augmented 39.3 60.2 36.3 56.7 39.4

Classification
Not rotation augmented 42.8 60.2 36.7 53.7 38.2
Rotation augmented 41.0 60.2 54.6 52.8 43.1

ShapeNet normal VICReg
Not rotation augmented 42.2 66.0 36.2 58.4 37.8
Rotation augmented 40.2 57.4 56.4 58.1 43.8

Classification
Not rotation augmented 39.3 65.9 35.6 53.3 39.5
Rotation augmented 39.2 58.2 54.9 53.5 42.5

ShapeNet perturbed VICReg
Not rotation augmented 42.0 64.2 33.3 51.6 36.5
Rotation augmented 39.9 56.6 56.9 58.0 43.8

Classification
Not rotation augmented 39.8 61.2 46.6 52.3 40.3
Rotation augmented 38.3 56.4 55.4 53.6 42.8

MechComp VICReg
Not rotation augmented 39.7 61.2 36.1 60.6 38.4
Rotation augmented 36.9 51.1 50.5 65.0 43.6

Classification
Not rotation augmented 37.9 58.1 37.5 64.8 39.3
Rotation augmented 37.4 51.7 50.5 64.8 44.1

Proprietary dataset VICReg
Not rotation augmented 37.1 55.4 35.4 51.6 38.0
Rotation augmented 35.0 52.8 39.7 49.8 37.9

Classification
Not rotation augmented 37.4 58.9 35.5 59.0 48.4
Rotation augmented 37.2 52.4 51.1 60.6 45.5
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