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Abstract—This paper presents a study on the use of hyperspec-

tral imaging (HSI) for non-invasive, real-time monitoring of skin
ischemia. We propose a novel ischemia index based on reflectance
in a limited number of wavelengths, which can be calculated
and visualized in real-time with low memory requirements. The
index is tested on hyperspectral images of healthy and ischemic
forearms, obtained by performing lower arm occlusion, and is
compared to five other state-of-the-art indices from literature
using binary support vector machines (SVMs). The results show
that the proposed index is able to robustly distinguish between
healthy and ischemic tissue in real-time, thus highlighting their
potential to be used in a clinical setting.
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I. INTRODUCTION

Adequate blood supply is essential for cell homeostasis and
metabolism. Skin ischemia, in which blood supply to part
of skin tissue is restricted, leads to tissue hypoxia limiting
these essential mechanisms. Monitoring of ischemic conditions
provides information of, for example, tissue states during
surgery [1], monitoring of wound healing [2] and assessment
of peripheral arterial disease [3]. Classical methods such as
oximeters [4], blood gas analysis, diffuse reflectance spec-
troscopy [5], and angiography [6] are often invasive, require
skin contact or contrast agents, and often only provide local
measurements.

HSI has proven capable of detecting tissue ischemia without
the need for invasive procedures [7]. However, current HSI
methods have poor temporal resolution, limiting real-time
feedback. Recent advances in snapshot cameras have made
it possible to acquire the complete spectrum in one instance,
enabling real-time monitoring. While HSI shows potential,
current methods are often complex and computationally ex-
pensive, requiring a large amount of training data. Hence, they
are often built on simulated data using (multi-layered) Monte
Carlo simulations on a skin model [8], [9].

We hypothesize that a limited number of wavebands can
detect skin tissue ischemia, reducing the computational de-
mand and possibly increasing the diagnostic accuracy. A novel
ischemia index based on light reflectance in a small number
of wavebands is proposed, and real-time ischemia maps are
calculated with low memory requirement. We use a dual
snapshot system to optimize the spectral domain and highlight
the real-time capabilities. The index is tested on hyperspectral

images of the upper arm and compared two five other state of
the art ischemia indices.

II. METHODOLOGY

A. Camera Setup

IMEC’s snapshot UAV VIS+NIR camera (Imec, Belgium)
was used in this study, consisting of two separate snapshot
mosaic cameras with Fabry-Pérot interference filter arrays in
the same housing. The first camera will be referred to as
the VIS camera and the second as the NIR camera. The
cameras have a spectral range of 459-590 nm and 605-841 nm
respectively. Both cameras have a resolution of 272x512 pixels
and a full width at half maximum of about 10 nm. Together
they record 31 spectral bands. The camera was mounted at a
height of 50 cm, and both a halogen desk lamp and LED bars
(Effilux, France) were used as the light sources in the camera’s
spectral range.

B. Measurement Protocol

To obtain hyperspectral images of ischemic skin tissue, 14
human test subjects had their upper arm occluded for five
minutes using a pressure cuff, ensuring arterial and venous
occlusion [8]. The skin colour of the test subjects ranged from
I to IV on the Fitzpatrick scale. The first experiment used
the desk lamp and included 12 test subjects of whom four
images were taken, two (palmar and dorsal side of the upper
arm) before cuffing and two during cuffing (after 5 minutes
of cuffing), resulting in one VIS and one NIR hypercube per
image. Using the LED bars, a second experiment included two
test subjects of which one image was taken of the dorsal side
before cuffing and one during cuffing.

C. Preprocessing

Figure 1 shows the complete processing pipeline. To correct
for non-uniformity, dark-corrected images were normalized
using a white reference measurement (Spectralon, SphereOp-
tics GmbH). The normalized hypercubes were then segmented
by applying Canny edge detection followed by a flood fill
to exclude background pixels. The VIS and NIR hypercubes
were then registered using the SimpleITK rigid registration
method. The hypercubes were divided into 250 superpixels
using SLIC algorithm [10], using the various wavebands as
the color space of the images. Each slice of the resulting
hypercube corresponds to a map of superpixels, where each
superpixel is the mean reflectance value of all pixels within it.



Fig. 1. Illustration of the full pipeline: (1) two hypercubes are captured using a snapshot hyperspectral camera, (2A) the hypercubes are normalized, (2B)
the tissue is segmented from the hypercubes, (2C) the VIS and NIR cubes are registered, (2D) the full hypercube is divided into superpixels and finally (3)
the various indices are calculated.

D. Ischemia Indices

The computation of the indices was always done per super-
pixel. This results in a 2D image of superpixels, where each
superpixel contains a single value, the index. The images using
the desk lamp are used as training and validation, while the
LED images are used as a test set. The super pixels of images
acquired before and during cuffing are labeled as healthy and
ischemic respectively.

Fig. 2. Absolute reflectance (top) and its first derivative (bottom)
In figure 2, the top graph shows the average reflectance per

waveband and its standard deviation for all 12 test subjects
of the desk lamp experiment. The bottom graph displays the
first derivative of these values. It was decided to work purely
with derivative values as these are less dependent on the light
source and normalization.

In the following section, RX , R′
X , AX and A′′

X respectively
denote the absolute reflectance, the first derivative of the
reflectance, the absolute absorption and the second derivative
of the absorption at waveband(s) X .

Using SKLearn’s recursive feature selection and a max-
imum of 4 wavebands, the first derivatives at wavebands
538nm, 582nm and 774nm were found to be able to distin-

guish best between healthy and ischemic conditions on the
train/validation set. Based on this, the following index was
designed

I1 = R′
538 +R′

582 − 2 ·R′
774

Five indices from other works were compared to the pro-
posed novel index. The wavebands available in this work do
not exactly match the ones used in these other works. In
these cases, either the nearest wavelength (if the mismatch
was smaller than 3 nm) or an interpolation of the two nearest
wavelengths available in the hypercube was used (the maximal
mismatch was 9 nm). The first of the compared indices is
from [11], developed to detect ischemia in pig intestines using
hyperspectral images. Their index is calculated as follows:

I2 = C(|sum(R′
765:830)|+ |sum(R′

765:830)|)

where C is a constant coefficient to normalize the index. Three
other comparable indices originate from [12]. Their goal was
to design indices for the non-invasive detection of wound
perfusion. Their experiment was performed on hyperspectral
images of the palmar side of human hands. The first index
was

I3 =
min(A′′

570:590)
r1

min(A′′
570:590)
r1

+
min(A′′

740:780)
r2

Where r values represent normalization constants. The second
index that is tested from [12] is:

I4 =
mean(A530:590)− r1

mean(A785:825) · (r1 − r2)

Their third index, which we define as I5, was analogous to
I4, but using A825:955 and A655:735 instead. [13] detected
deoxygenation in fingers using hyperspectral images of the
dorsal side of the hand. They use the following absorbance
ratio:

I6 =
|A600|
|A569|



Fig. 3. Perfusion maps of the six different indices. Index 1 represents the novel indices proposed in this work.

III. RESULTS AND DISCUSSION

To test the indices’ ability to differentiate between healthy
and ischemic tissue, a binary SVM classification was per-
formed on pre- and during-cuffing images, with pre-cuffing
labeled as healthy and during-cuffing as ischemic. The various
superpixels were used as data samples, i.e. one superpixel
corresponds to one input sample containing a single feature, its
index value, with their label being either healthy or ischemic.
The SVM used had a linear kernel and was not optimized
further, as it was essentially used to find an optimal threshold
for a single feature. For each index, 12-fold cross validation
(alternately using the images of one subject as a validation
set) was performed using the desk lamp image data. The 12
SVMs were then each tested using the test set, i.e. the with
LED lighting images. As an additional test, for each image, the
superpixel index values were averaged out to create a single
validation or test sample. The accuracy and standard deviation
averaged through all 12 folds are shown in table I.

TABLE I
ACCURACY OF DETECTING HEALTHY VS PERFUSED TISSUE

Validation Accuracy Test Accuracy
Index Superpixels Full image Superpixels Full image
I1 0.87± 0.05 1.00± 0.00 0.80± 0.03 0.96± 0.01

I2 0.74± 0.09 0.85± 0.12 0.50± 0.01 0.50± 0.00
I3 0.54± 0.06 0.56± 0.15 0.52± 0.03 0.63± 0.16
I4 0.51± 0.06 0.54± 0.14 0.49± 0.01 0.48± 0.07
I5 0.72± 0.08 0.75± 0.14 0.62± 0.05 0.52± 0.07
I6 0.62± 0.07 0.71± 0.14 0.53± 0.06 0.50± 0.00

The results demonstrate that I1 was the best performing
index, with I1 achieving the highest accuracy in all cases.
This index also kept a low standard deviation through all
tests, indicating its robustness to different subjects. I2 and
I5 showed the highest validation accuracy among the five
comparable indices. However, the SVM trained on I5 tended
to classify most validation samples of a single participant
as part of the same class, while I2 did not show a clear
patient based bias. The classification based on I3 tended to
always predict an ischemic state on the validation full images,
resulting in an accuracy of around 50%. Based on superpixels,
I3 showed a patient specific biased, classifying nearly all
validation superpixels of a patient as the same class. I4 was

able to classify a few test subjects well but showed severe
patient specific bias in some cases. Finally, the SVM trained
on I6 was less dependent on the test subject, but often miss-
classified healthy tissue as ischemic. As for the test set, the
accuracy using proposed index I1 showed a slight decrease, but
still achieved a good performance with 80% on superpixels and
96% on the full images. All other indices, with the exception
of I5 either stayed at or dropped to an accuracy of around
50%. For the test set using the whole hand, only I3 had an
accuracy that wasn’t near 50%. In this column, both I2 and I6
classified all images as a single class, resulting in a standard
deviation of 0.

In figure 3, perfusion index maps of the dorsal side of
the hand of a single test subject are shown, with their range
set to emphasize differences between healthy and ischemic
conditions. It must be emphasized that these images are
of a single test subject and thus do not reflect the inter-
patient variability. Indices I1, I2, and I5 showed the clearest
difference between pre- and during-cuff conditions. However,
I2 had the issue of becoming zero in ischemic cases, which
sometimes caused confusion in classification. I5 values were
very dependent on their location, which sometimes caused
confusion between healthy and ischemic tissue.

The full pipeline of creating a perfusion map from a HSI
hypercube took approximately 1 second on an Intel Core i7
CPU. Furthermore, this time will be shortened further if only
the wavebands necessary for the ischemia index are taken into
consideration from the start. The use of a GPU would also
further enhance the real-time capabilities.

IV. CONCLUSION

In summary, we proposed a new ischemia index for assess-
ing skin tissue perfusion, which was tested on hyperspectral
images of the human forearm. The index achieved better clas-
sification accuracy compared to five state-of-the-art indices.
Furthermore, the proposed index showed to be more robust
to changes in lighting. The use of a novel snapshot camera
and superpixels enabled real-time imaging and creation of
perfusion maps. The development of snapshot HSI cameras
that capture only necessary wavebands will further enhance
the real-time abilities of ischemia detection with hyperspectral
information.
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