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ABSTRACT

Increasingly, homeowners opt for photovoltaic (PV) systems and/or
battery storage to minimize their energy bills and maximize renew-
able energy usage. This has spurred the development of advanced
control algorithms that maximally achieve those goals. However,
a common challenge faced while developing such controllers is
the unavailability of accurate forecasts of household power con-
sumption, especially for shorter time resolutions (15 minutes) and
in a data-efficient manner. In this paper, we analyze how transfer
learning can help by exploiting data from multiple households to
improve a single house’s load forecasting. Specifically, we train an
advanced forecasting model (a temporal fusion transformer) using
data from multiple different households, and then finetune this
global model on a new household with limited data (i.e., only a few
days). The obtained models are used for forecasting power con-
sumption of the household for the next 24 hours (day-ahead) at a
time resolution of 15 minutes, with the intention of using these fore-
casts in advanced controllers such as Model Predictive Control. We
show the benefit of this transfer learning setup versus solely using
the individual new household’s data, both in terms of (i) forecasting
accuracy (~15% MAE reduction) and (ii) control performance (~2%
energy cost reduction), using real-world household data.
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1 INTRODUCTION

The need for a clean and sustainable energy sector has led to sig-
nificant changes in the modern power grid, including increased
integration of renewable energy sources, use of advanced sensors
and monitoring devices and growth in electrification [14]. Such
changes have been pivotal in the rise of prosumers (i.e., active en-
ergy consumers that produce and consume energy) [5]. For our
work, we focus on households and residential prosumers operat-
ing with a financial objective of reducing energy bills. In most
cases, such residential prosumers rely on PV systems for producing
electricity and consuming it instantaneously, with the option of
injecting the excess to the power grid. Driven by increased volatility
in the energy markets [18], we note an increasing shift to storage-
based PV systems and more elaborate home energy management
systems (HEMS). Supported by increased adoption of sensors, smart
meters and other IoT devices, these HEMS make use of advanced
control algorithms to identify optimum control strategies for in-
dividual prosumers. Model Predictive Control (MPC) has been a
dominant control strategy for HEMS, with works such as [7, 9]
exploring its applications in diverse settings. In the HEMS con-
text, an MPC entails using a battery model along with forecasts
for PV production and household demand to model the household
and then using standard optimization algorithms to obtain suitable
control policies [4]. However, obtaining accurate forecasts for in-
dividual household-level demand and PV production has been a
major challenge.

Demand and PV production forecasting is an established re-
search domain with works such as [1, 10] presenting an overview
of forecasting techniques specific to household-level demand and
PV. Prior works have focused on a range of techniques such as
ARIMA-based models [2, 19], hybrid models [3] as well as advanced
deep learning methods [13, 20], including recently introduced trans-
former architectures [8]. While these recent deep learning-based
methods show significant improvements in forecasting accuracy, a
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common problem associated with these methods is their suscepti-
bility to overfitting and the need for large amounts of data to avoid
it [17].

Works such as [15, 23] have discussed the use of transfer learn-
ing to address this problem. However, these are limited to either
hourly time resolutions or work with aggregated forecasts instead
of modeling individual households. Only a few previous works
such as [13, 21] have utilized a time resolution of less than an hour
for their forecasting problems. Forecasting electricity demand of
an individual household on a quarter hour basis is an extremely
challenging problem, primarily due to the significant influence of
user-behavior, which can vary wildly and is difficult to model. Since
future power consumption is an important input to optimize HEMS
decisions, improving the quality of such forecasts, especially for a
quarter hour frequency, can boost the performance of the HEMS,
allowing these prosumers to participate more effectively in future
energy and consumer-centric markets [6].

The main goal of our work is to investigate how transfer learning
methods can help utilize data from multiple different households
to improve load forecasts of individual households and develop
better control strategies for them. The transfer learning method
presented in this work uses data from multiple households to train
a global model. This global model can then be finetuned on a new
household using only a few days worth of data to obtain a high
performing forecasting model for that household. We validate this
transfer learning methodology on real-world data obtained from
30 different households and by using the state-of-the-art Temporal
Fusion Transformer (TFT) [16] as the forecasting model. Through
our simulations, we analyze the day-ahead, quarter hour resolution
forecasting performance of our finetuned TFT models as well as
the control strategies obtained using these forecasts. Our main
contributions can be summarized as:

(1) We propose a transfer learning-based forecasting method us-
ing Temporal Fusion Transformers for day-ahead forecasting
of individual household-level demand with a quarter hour
frequency.

(2) We show that the fine-tuned models require less training
data, can generalize to unseen households, and can outper-
form locally trained TFT models.

(3) Using a simple MPC, we show that such fine-tuned mod-
els are effective in obtaining good control policies in home
energy management systems.

2 PROBLEM FORMULATION

As discussed in §1, we focus on households and residential pro-
sumers. We consider a single household with a PV system, a small
residential battery (5kW, 10kWh), and a dynamic energy tariff. The
objective is to develop an energy management system that can
minimize the electricity cost for this household by effectively uti-
lizing the battery based on expected demand and PV generation
of the household. To develop this energy management system, we
formulate a simple MPC-based controller that works with a linear
model of the battery and forecasted demand and PV generation
profiles. This MPC is designed for a quarter hour control frequency
and requires day-ahead forecasts of demand and PV generation
profiles.
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2.1 MPC Formulation

The objective of the MPC-based energy management system is
to minimize the cost of energy consumed by the household. We
model the battery using a simple linear model with constant round
trip efficiency (7 = 90%). We assume a dynamic energy tariff with
time-varying prices for consuming energy (A{°") and injecting en-
ergy (A;nj ) to the grid.! Relying on forecasted values of PV gen-
eration (Pi3 V) and demand (P{°"), the MPC must choose battery
actions (u;) at each time step (t) to minimize the cost of energy
consumed over a horizon (T). For our problem, At = 15mins. This
optimization problem is presented in Eq. (1). Here, E; refers to the
energy state of battery at step ¢, while Em3X, /™% and 4™ are the
energy and power constraints of the battery. PC is the power at the
meter and we denote power consumed with positive values.

T
min ct
Uui,...ut —t
AnpSAr PS>0
sticr =1 fn & o vt
ACPPAt PP <0
(1)
PtG = Pfon +PFV + Uy A4
Eir+nusAt  uy >0
Et+1 = { i ! vVt

E; + %utAt tup <0
0 < E; < EMaX; min < < MaX vy

Note that, this MPC is formulated as a simple, linear MPC, utilizing
a linear model of the battery along with forecasted values of energy
consumption and PV generation (i.e., the forecastors are not used
in the optimization).

2.2 Demand Forecasting

The MPC problem formulated in Eq. (1), requires forecasted values
for PV generation and electricity demand of the household. For
this work, we focus on forecasting only the demand (P;°") and
assume exact values for PV production. However, our methods
can be extended to PV production forecasting as well. With the
intention of using these forecasts for control applications, we model
this electrical demand forecasting problem as a univariate stochastic
forecasting problem.

3 METHODOLOGY

This section describes our transfer learning-based forecasting ap-
proach and provides details related to the forecasting model (Tem-
poral Fusion Transformer) and the experimental setup used for our
simulations.

3.1 Temporal Fusion Transformer (TFT)

Building upon the success of the attention mechanism and the
transformer architecture in natural language processing domains,
the TFT architecture was proposed for multi-horizon time series
forecasting [16]. In addition to the self-attention and cross-attention
layers used in transformers, TFT uses specialized components, such

'We assume that price obtained for injecting energy into the grid is 40% of the price
paid for energy consumption. This number can vary depending on the energy contract.
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as variable selection networks and gated connections, to effectively
encode temporal relationships and obtain an interpretable and ac-
curate forecasting model. These specialized components and the
transformer architecture enable TFT to operate on long input series
and efficiently capture long-term trends and dependencies in such
series [16].

For our work, we use the TFT implementation from Darts [11].
Each input consists of a series of past 672 quarter hours (7 days)
of electrical demand for the house, along with temporal features
such as hour of day, day of week, etc.2 The model output is the
predictions for the next day’s demand (96 steps). We train our TFT
models as stochastic predictors using a quantile regression loss
function [24]. This leads to trained models that are able to predict
when peaks in demand are likely, whereas deterministic forecasters
trained with, e.g., mean squared error loss are not able to capture
this uncertainty. Further, our quantile forecasts can also be adapted
to work with stochastic MPCs in the future.

3.2 Transfer Learning

Transfer learning is used to improve a model from one domain by
transferring information from a related domain [22]. In deep learn-
ing, transfer learning has been applied to leverage large amounts of
data from different sources to pre-train a large model followed by
finetuning this model on limited data from the target domain. We
follow a similar approach to first train a global TFT model, followed
by finetuning this global TFT on individual household’s data. We
now describe the training and fine-tuning steps for our work.

3.21 Global Model. The main idea behind a global model is to
use a large set of data to learn good representations related to the
commonly occurring patterns in the data. For our case, a global
TFT model was trained using 15 months of data from 25 different
buildings, amounting to approximately 1M data points. The global
TFT model was trained using a quantile regression loss function
and had a forecast horizon of 96 steps (24 hours). About 15% of the
data was used as validation set for linearly decaying the learning
rate and early stopping to avoid overfitting.

3.2.2  Finetuned Models. The global model obtained from the previ-
ous step forms the base forecasting model that is to be finetuned for
individual households. The finetuning step used a similar training
loop as the global model. However, the learning rates and number
of epochs in the training loop were significantly reduced. This en-
sures that during the finetuning phase, the changes to the weights
of the TFT are limited and the model does not overfit on the small
dataset corresponding to a single household.

3.3 Experiment Setup

The transfer learning approach presented above was implemented
on the data obtained as a part of the anonymous BD4NRG research
project. This dataset corresponds to 30 real-world households for a
period of close to 18 months and contains quarterly measurements
of power consumption. The data was preprocessed using standard
methods that included filtering null values, aligning time series, and
removing outliers. Following this, data from 5 households was held

2While works such as [8] recommend using other covariates such as outside air
temperature, unavailability of such data led to this design choice.
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out as test set. The remaining 25 households were used to pretrain
the global model. The data from these 25 households was first scaled
using a min-max scaler and then split into training and validation
sets (85% - 15%). For finetuning, we used data from households in
the held-out test set. Finetuning was performed using training data
of different sizes (from 14 days to 42 days worth of data) and 1 week
worth of validation data. This was followed by testing on 6 weeks of
unseen test data. To ensure a common test score across all training
sizes, the test set was fixed, and training days corresponded to the n
days preceding this test set. The results presented in §4 correspond
to this test data.

4 RESULTS AND DISCUSSION

The main idea behind the proposed transfer learning-based fore-
casting method is to obtain data-efficient forecasts on an individual
household-level that can then be used for developing home energy
management controllers. To investigate this idea, we first studied
the forecasting performance of the finetuned TFT models followed
by an evaluation of the control policy obtained when using fore-
casts from these models. In both cases, the finetuned TFT models
were compared with “local” TFT models, i.e., TFT models initialized
with random weights and trained solely on data obtained from a
single household. This comparison allows us to examine the added
value of transfer learning for forecasting performance as well as
control performance.

4.1 Forecasting Performance

We tested the forecasting performance of our finetuned TFT models
by providing the model with appropriate inputs at the beginning of
each test day and obtaining their forecasts for the next 24 hours (to
follow the MPC formulated in §2). Each input contained past obser-
vations only (i.e., forecasts of the model were never used as inputs)
and the process was repeated over the entire test set (6 weeks). The
forecasts were compared using Mean Absolute error (MAE). Fig-
ure 1 presents the comparison of forecasting performance between
our finetuned TFT models and TFT models trained only on local
data. The markers depict the mean MAE over the 5-test households
and the error bars indicate the standard deviation. It is evident from
the figure that the finetuned models are performing significantly
better (~ 15%) than the local TFT models.

4.2 Control Performance

Following the forecasting performance, we now investigate the
impact of the forecasts obtained from our finetuned TFT models
on the quality of control policies for a simple HEM system. Based
on the MPC presented in §2 and using anonymous day-ahead elec-
tricity prices, we evaluate the performance of a control strategy
that uses a small residential battery (5kW, 10kWh) to reduce the
household’s energy cost over a 7-day period. Figure 2 shows the
mean performance of such an MPC while using forecasts from ei-
ther our finetuned or local model over the 5-test houses. It can be
observed that the MPC with the finetuned model performs slightly
better than the local trained models, with an overall cost reduction
of ~ 2%. However, this difference in performance between the two
controllers is lower as compared to the improvement observed for
the forecasting performance, with the performance of finetuned
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Figure 1: Forecasting Performance of Finetuned TFT model
compared with TFT models trained using only local data. The
points represent average MAE values over the 5-test house-
holds and the error bars represent the standard deviation.
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Figure 2: Comparing mean performance of MPC using fore-
casts from fine-tuned model and a locally trained model over
a 1-week period for all 5-test houses.

models even dropping for a few training sizes. This performance
gap can be due to simplistic nature of the MPC, the dimensioning of
the battery or the small test size (1 week) used for these experiments
and will be investigated further in future work.

5 CONCLUSION

Based on the results presented in §4, it is evident that for low train-
ing sizes, the finetuned models perform better than the models
trained only on individual household data. This supports our hy-
pothesis that using data from different households in a transfer
learning-based approach can lead to data-efficient forecasting mod-
els that can produce good quality forecasts and can be used in
advanced controllers such as MPCs to develop home energy man-
agement systems. Following up on these results, we plan to expand
the scope of our study in two main research areas. The first one
focuses on improving the fine-tuning methodology. This involves
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creating domain-specific finetuning strategies that can leverage the
temporal representations learnt by the global model and combine
prior knowledge about the household to fine-tune the forecaster
more efficiently. The other research direction will focus on open-
source contributions. This involves pretraining global models on a
larger set of household data and integrating these global models
with platforms such as HuggingFace [12].3
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