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Abstract: Personally curated content in short-form video formats provides added value for partici-
pants and spectators but is often disregarded in lower-level events because it is too labor-intensive to
create or is not recorded at all. Our smart sensor-driven tripod focuses on supplying a unified sensor
and video solution to capture personalized highlights for participants in various sporting events
with low computational and hardware costs. The relevant parts of the video for each participant are
automatically determined by using the timestamps of his/her received sensor data. This is achieved
through a customizable clipping mechanism that processes and optimizes both video and sensor data.
The clipping mechanism is driven by sensing nearby signals of Adaptive Network Topology (ANT+)
capable devices worn by the athletes that provide both locality information and identification. The
device was deployed and tested in an amateur-level cycling race in which it provided clips with
a detection rate of 92.9%. The associated sensor data were used to automatically extract peloton
passages and report riders’ positions on the course, as well as which participants were grouped
together. Insights derived from sensor signals can be processed and published in real time, and an
upload optimization scheme is proposed that can provide video clips for each rider a maximum of
5 min after the passage if video upload is enabled.

Keywords: personalized clips; highlight generation; sensor tracking; video enrichment; sports data
science

1. Introduction

Organizers of sporting events consistently seek ways to enhance brand loyalty [1].
A first step in achieving this objective involves elevating the engagement level for both
spectators and athletes. Additional race coverage and content generation not only attract
more attention and spectators to the event but also serve as incentives for participation,
thereby positively impacting the revenue stream [2].

While strides are being made in traditional broadcasting to align with new media
trends, such as personalized short-form video content for effective communication with
younger audiences, events with lower budgets, such as youth races or non-televised sports,
still lag in this domain. In these cases, interested parties, like parents, fans, and family,
often lack access to real-time performance updates, relying instead on others to convey
information, despite the availability of tracking technology [3–6]. Participants may desire
action shots for social media, but the current reliance on roadside photographers or spec-
tators with mobile phones poses limitations. Even in broadcasted races, finding specific
participant clips remains a manual and time-consuming task. This manual process not only
hampers the creation of timely highlights but also limits the potential for delivering updates
on an individual’s position in the race, whether in real time or post-event, which could be
valuable for fans and sports federations, providing insights into challenging segments and
athlete performance.
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The issue of fragmented video content storage further complicates content discovery
(multiple sources), as there is no standardized platform for uploading available videos.
Automation of this process necessitates provision of additional metadata, such as who
appears in the video, which is a time-consuming task. In addition to video-driven platforms,
textual updates, including the number of groups in the race, intermediary lap times,
and lists of participants who are out of the race, are only available post-race through
manual processing of timing system data. Metrics that are harder to come by may possibly
be reported through subjective and sometimes incomplete memories about the event
situation. Automated systems could streamline the reporting of such metrics based on
objective measurements during the race.

While efforts by racing organizations have increased data availability for high-level
races, the solutions are often impractical for lower-budget races. An example at the
highest level is the collaboration between Nippon Telegraph and Telephone Corporation
(NTT) and Amaury Sport Organization (A.S.O.) at the Tour de France, which involves
sensors generating 2.5 million data points per stage to enrich broadcasting streams [5,7].
However, leveraging this data for personalized clips still requires substantial effort from
race organizers.

In this work, we present an automated workflow that combines video footage and
sensor data to generate low-cost personalized clips. Our setup is capable of reporting
changes in the race progression as well as general information about the participants
(intermediary times, relative position, etc.). The video and sensor data are captured
through a Sensor-driven Tripod for Recording Athlete Data (STRADA). All derivatives are
calculated from the data provided by the STRADA devices. The purpose-built device is
shown in Figure 1. The goal of this research is to provide race participants with a platform
(see Figure 2) that automates the processing and finding of video clips, as well as all the
necessary hardware to facilitate the video footage and identification metadata. In the
particular case shown in Figure 2, the platform shows all available clips for the athlete that
used the sensor with ID 304 and participated in the 13th Grote Prijs Peter Van Petegem on
4 March 2023.

The remainder of this paper is organized as follows: Section 2 discusses relevant
related work focused around automated highlight generation in various sporting events
and sensor-based tracking. In Section 3, the required hardware setup is presented with
relevant information about the configuration process and the workings of the internal
software. The section describes the flow from the STRADA device to the central server
where individualized video clips are generated on a custom streaming platform. Section 4
discusses the results from a field test during a junior cycling race. The core contributions
and general findings regarding the clipping solution are summarized in Section 5, and the
next steps to extend and improve the applicability of our solution are described.

Figure 1. Hardware setup of a STRADA device during junior cycling race field test in Sint-Maria-
Lierde.
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Figure 2. Sample view of a user consulting the generated highlights of an event. To the right of the
video player, a selection menu can be used to select which clip to watch, which also shows when the
clips were registered and by which device. In this case, the clips were coupled to the sensor with ID
304 worn by a rider with a yellow jersey.

2. Related work
2.1. Individualized Sensor-Based Tracking

Our device needs to pick up sensor data when sensors are in close proximity. There-
fore, we first explore existing methods to achieve this goal. One possible approach is
to further utilize existing timing systems, as they require athletes to be within a certain
range of a receiver to be detected. These systems typically employ wireless communica-
tion protocols and require athletes to wear active or passive tags. In large-scale sporting
events, radio-frequency identification (RFID)-based detection is prevalent [8,9]. A study
by Ehlerova et al. [10] demonstrated the effective use of ultra-high-frequency RFID tags
in various sports. The tags are detected through a receiver positioned in an overhead
banner along the race course. The additional hardware required for the athletes is min-
imal and provided by the organizers. Some opt to incorporate the RFID tags in stickers
attached to their bib numbers, while others opt for reusable and clippable hardware pods.
Although the impact on the athlete is limited, organizers do have to provide the reg-
istration checkpoints. These cannot always be easily incorporated into the course and
adding extra scaffolding to accommodate them adds more costs to an already costly sys-
tem (https://www.mylaps.com/active-sports/running/running-pricing/, accessed on 21
October 2023). This implies that a participant would get a new ID associated with their
RFID tag for each event that they attend, which would be harder to maintain for a central
collection platform that is not linked to one specific event/organization. Also, this setup
only provides timing information because the transmitted signals only include a means of
identification. The device presented in this paper can reuse performance-oriented sensors
that are already being worn (low burden of entry). In addition to a means of identification,
the sensors can also report extra sports-related parameters, such as heart rate, including
them in the textual updates during the race. Another technique described by Fasel et al. [11]
introduces a magnetism-based timing system for downhill skiing. By placing magnets
in the flag poles and equipping skiers with magnetometers, it is possible to detect distur-
bances in the magnetic field as they pass by the poles. The study utilizes purpose-built
magnets to enhance timing accuracy by reducing the detection range. However, stronger
magnets can be employed in applications where accuracy beyond 0.25 s is not a limitation.
One significant shortcoming of this setup concerning our research context arises when

https://www.mylaps.com/active-sports/running/running-pricing/
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attempting to enable real-time detection. Detected peaks should be linked to an individual
athlete, but in sports where multiple athletes can pass the detection point in a group, this is
not possible. One partial solution involves deploying base stations along the course that
connect with the athlete’s magnetometer. However, the duration of time that the device
is in range may be too limited to establish a three-way handshake connection for many
sports, especially skiing.

Advancements in wearable sensor technology have led to the emergence of low-power
sensor networks, commonly referred to as wireless body sensor networks [12,13]. These
networks involve attaching sensors to the body or sports equipment, with a central com-
ponent responsible for processing and storing various data streams for an individual
athlete. This end-to-end connection between a sensor and a central component is used
in different commercial products. For example, running pods and heart-rate monitors
communicate with sports watches during running events and power, speed, and cadence
sensors interact with the head unit on bicycles. The choice of communication technology
may vary depending on the specific context. Two widely adopted wireless technologies
in the field of sports and fitness monitoring devices are Bluetooth low energy (BLE) and
the low-power standard of Adaptive Network Topology (ANT+) [14]. Both operate within
the 2.4 GHz ISM frequency band, offering comparable data throughput and range. Iden-
tification is provided with each message by using a unique device identifier. However,
there are key differences between these protocols. When connecting an ANT+ device
with a tracker, the device remains visible to other scanners in the vicinity that support
ANT+. This is because an ANT+-capable sensor broadcasts its values. On the other
hand, BLE establishes a one-to-one connection. The number of simultaneous connections
varies but can be set by the physical layer (BLE controller). If this limit is reached, the
device will not be able to transmit data to other devices. Note that BLE can replicate
broadcasting behavior by changing the data included in the advertisement packet [15].
This does require a change in firmware and will not work out-of-the-box. Consequently,
with ANT+, the transmitted values can be received by third-party devices without interfer-
ing with the intended functionality for the athlete. Originally designed for sport equipment,
ANT+ is now compatible with a wide range of sports-related sensor types through stan-
dardized device profiles [16]. The practical feasibility of using ANT+ for real-time data
capturing has been demonstrated by De Bock et al. [17]. They created a data collection
network in an indoor cycling track that gives real-time feedback to coaches. In their
setup, sensor values are transmitted and collected using specialized devices called WASP-
N (https://support.npe.fit/hc/en-us/articles/360033283551-WASP-N-Product-Brief, ac-
cessed on 5 September 2023). These devices serve as translation units, bridging ANT+
messages to a local WiFi or Ethernet network. Figure 3 provides an overview of how these
components are integrated to capture and centralize athletes’ data. Multiple WASP-N
receptors are strategically positioned along the cycling track. Each receptor multicasts the
received ANT+ datagrams within a local network. The multicast packets are then received
and processed by a central computer, which is connected to the same network and utilizes
the application programming interface (API) provided by the WASP-N manufacturers.
These devices work well in controllable environments but always require a nearby network,
which introduces an extra hardware cost. It is also not as easily incorporated into a single
packaged device. They are designed for a central computer that collects data from multiple
WASP-N devices. Since, in our setup, the collection and preprocessing are carried out by
the same device and devices may be spread out very far away from each other, a lot of
functionality would be unused (especially the bridging capabilities). Another drawback
is that the computing unit that processes the signals has to run the Windows operating
system because alternatives cannot use the provided API.

https://support.npe.fit/hc/en-us/articles/360033283551-WASP-N-Product-Brief
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Figure 3. Schematic overview of sensor data flow using WASP-N devices [17].

2.2. Video-Based Identification

Tracing participants in sports footage can be accomplished through visual identifi-
cation methods. Most sports require an identification number on participants’ jerseys.
However, automatically recognizing these numbers poses a challenging computer vision
task due to pose variations in different sports and diverse recording setups (such as differ-
ent camera angles, zoom levels, etc.). Text/digit extraction has many practical applications
in addition to sports-related contexts and reading text in uncontrolled environments is
still actively being researched [18–20]. Liu and Bhanu demonstrated the use of region
proposal networks to identify areas suitable for number recognition [21]. These regions
are classified as either background, player, or digit. Geometrically related player and digit
regions, identified through overlapping segmentations and calculated using a proposal
association score, are combined into a single bounding box and fed into a digit recognition
network. Alternatively, another approach to identify areas likely to contain a number
involves searching for body parts where numbers would be placed [22–24]. The result-
ing areas are then further processed by the recognition network. One implementation
of this method known as human parsing utilizes the backbone of a ResNet classification
network, incorporating Context Embeddings with Edge Perceiving (CE2P) [25] to obtain a
segmentation mask of different body parts. Sportograf provide a practical example of im-
plementing this idea into a service. For mass sporting events, they offer number recognition
services for bib numbers worn during the event. Sportograf assign photographers along
the race course, and participants can subsequently search for their bib number or upload
a selfie (see https://helpdesk.sportograf.com/en/support/solutions/articles/77000538
006-search-by-selfie-face-recognition (accessed on 23 August 2023) for facial embedding
search). Once a number is associated with an individual, it enables automated searching of
associated pictures without human intervention [26].

However, the applicability of these solutions depends on how the sports footage
is captured. For static cameras with a fixed zoom during the recording, it may not be
possible to view each bib number adequately if the resolution is too low. For sports where
participants find themselves in larger groups close to each other, occlusion poses an extra
challenge. Therefore, to cover most of the participants, multiple cameras would be required
or a human operator who tries to find the optimal viewer experience, but for low-budget
events, this is often not feasible.

https://helpdesk.sportograf.com/en/support/solutions/articles/77000538006-search-by-selfie-face-recognition
https://helpdesk.sportograf.com/en/support/solutions/articles/77000538006-search-by-selfie-face-recognition
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2.3. Highlight Generation in Sporting Events

Historically, there has been much research conducted into video summarization of
sports broadcasts. With the growing amount of available video information, organizers
can be quickly overwhelmed. Therefore, automatic detection of semantically important
events in video and further summarization of video to help the indexing, browsing, and
consuming of the video have become increasingly important [27]. Highlight generation
can be seen as a subtask in summarization and can be further divided into triggers based
on events and excitement [28]. Machine learning-driven video summarization in sports
has emerged as a transformative tool, streamlining the process of distilling lengthy sports
footage into concise and engaging summaries. These systems can automatically identify
key events, highlights, and pivotal moments within a game/race. For instance, a deep
neural network-based approach was used by Tejero-de-Pablos et al. [29] to extract two types
of action-related features and classify video segments into interesting or uninteresting parts.
De Bock et al. [30] suggested a rider/team jersey recognition tool for cyclocross analysis. It
is combined with skeleton-based pose detection, based on Alphapose and extended with
a spatiotemporally aware pose tracker, to analyze course traversal (time spent running,
chosen path in a sand bank, etc.) and can automatically flag interesting segments based on
those quantifiable parameters for a specific rider. The presented results of their approach
were obtained using a multi-GPU system for model inference. This is not feasible for edge
devices as it would significantly increase their cost and size. Specialized hardware, like the
Intel Neural Compute Stick or Google Coral, can mitigate the computational challenges
of edge devices, offering efficient and cost-effective alternatives to GPU-based setups for
pose-estimation models. These accelerators leverage dedicated neural processing units,
reducing both the size and power consumption of edge devices. Although recent findings
suggest that lightweight pose-estimation models can also perform this task with limited
computational power [31,32], it would still lack an identification mechanism. The men-
tioned techniques are still relevant, but in our system, we use sensor-based tracking, while
the video analysis techniques are kept as postprocessing steps on the central server; for ex-
ample, smart cropping and generating pan–tilt–zoom (PTZ)-like recordings from static
video to obtain a more dynamic clip [33]. In most cases, these techniques do not pro-
vide personalized analyses. They can be extended with instance recognition, but even
then different instances are not easily linked unless an identification number is visible in
the footage.

Based on the literature presented in this section, we can unify different parts to create
a personalized clipping algorithm. Sensor-based presence detection is preferred over
video-based techniques. Running different video detectors in real time requires more
expensive hardware, thus decreasing the scalability of the system. As well as that, the
identification numbers of participants should always be visible. Otherwise, the system
will not be able to automatically link the clips to the right person. To also accommodate
fast-paced sports, the broadcasted messages used in ANT+ are more suited than the BLE
protocol. ANT+ also takes preference over RFID since the more accurate timings that RFID
provides do not outweigh the extra costs of the registration banner/mat and of providing
everybody with a tag vs. reusing already available sensors and capturing the signals with a
cost-effective antenna.

3. Materials and Methods

Athletes, recreational or professional, use a mixed collection of sensors on their equip-
ment and on the body. These are primarily used to measure performance during a race or
training session, but the broadcasted signals from these sensors can be used to sense when
someone is near the STRADA device as well (see Section 2.1). The proposed methodology,
shown in Figure 4, consists of several building blocks that lead to the availability of person-
alized video clips for athletes wearing one or more ANT+-capable sensors. The first step is
to deploy the device in an interesting position along the track. The positions can be decided
through the personal experience of the organizer or by analyzing the GPS coordinates of
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the course. Incoming recordings, which we will call video blocks because they have a fixed
duration, are prepared for transmission to the central server. This preparation consists
of optimizing the amount of video data that needs to be uploaded based on the received
sensor values. The sensor values, which include the ID, type, and value, are also stored in a
structured format and used as input for the individualized clipping algorithm together with
the uploaded video data. The final results (output of the clip algorithm + metadata) are then
published on a central streaming platform such that they can be viewed. The remainder of
this section elaborates further upon the device used to capture the relevant data, as well as
each of the steps that are required in the personalized clip generation.

Figure 4. Different steps in the video processing pipeline to produce individualized clips/highlights.

Sensors that communicate through ANT+ were selected to register when somebody
is nearby the device, mainly because of their widespread presence in existing sports
equipment, as well as the non-invasive communication mechanism. While BLE may be
sufficient for devices that stay close to each other, it does cause some problems if it is
used to deduce locality through proximity. Athletes will constantly move in and out the
detection zone of the scanner, initializing/terminating the connection while doing so. BLE
requires handshaking, which leads to loss of information when a sensor is in range for a
limited amount of time. Therefore, ANT+ provides a good alternative with its broadcasting
scheme. As the proposed system reuses sensors that are often already worn by athletes,
it does not introduce an extra burden for the participants to obtain results. This partially
shifts the responsibility from the organizers to the participants, as each participant provides
their own means of detection. This also allows permanent setups, like placing a camera on
a famous hill where cyclists can log in and download their clips without registering with
an organizer who distributes the tags. Athletes are more likely to be more familiar with
ANT+-capable sensors, so they can select an appropriate sensor themselves. RFID sports
solutions also exist, but they are not as readily available in finished products that can be
used by the consumer with limited configuration. The ANT+ directory website provides
a list of supported sensors. Some of the main categories are heart-rate monitors, smart
watches, bike computers, and activity monitors.

3.1. Recording Device Hardware Setup

The STRADA device functions as a modular system centered around a Raspberry
Pi model 4B (RPI), which serves as its primary computing unit. Signal reception from
sensors is facilitated by connecting an ANT USB-M antenna. Signal processing is performed
using a Python implementation of the ANT+ protocol, along with the accompanying USB
drivers, both of which are available in a publicly accessible repository fork (https://github.
com/s-team-ghent/idlab-ant, accessed on 15 November 2023). The USB connectivity
offers a notable advantage in terms of replaceability, contrasting with alternatives that
require soldering to a microcontroller. One major disadvantage of using USB-enabled
ANT+ antennas is that they do not report the received signal strength indicator (RSSI)
values of the sensor signals. This is unlike some of the nRF components (nRF5340 or

https://github.com/s-team-ghent/idlab-ant
https://github.com/s-team-ghent/idlab-ant
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the nRF52 series), which need to be soldered to be used. Although RSSI values would
possibly improve the versatility of the system’s applicability across more situations, it is not
a hard requirement for this set-up to work. Video footage is collected through the standard
Raspberry Pi Camera Module 3. Precise control over image processing and better access to
the internals are achieved by combining functionality from the libcamera and Picamera2
Python libraries. To ensure automated video synchronization between devices, an accurate
system clock is needed. When a device is connected to a Network Time Protocol (NTP)
server, either in the local network or through the Internet, this is achieved automatically
and maintained by the operating system. However, when the compute unit has no means
of communication to one of these servers, it loses its accurate representation of time when
powered down or through accumulated clock drift. Since the STRADA devices will have
to operate in environments without connectivity, they need a hardware clock as fallback.
This can be achieved by using a coin battery-powered DS3231 RTC module on the I2C pins
on the Raspberry Pi. From the datasheet [34], we know that the module has an estimated
clock drift of ±2 parts per million (ppm; every million seconds, the clock will have drifted
2 s); thus, periodically connecting the device to the Internet will reset the built-up drift.
The different components are encased in a custom 3D-printed housing and mounted on
top of a tripod.

Video is recorded in blocks of 5 min. This fixed duration is a trade-off between the
time it takes to transfer/process each block and the delay in reaching the streaming platfor-
m/spectator. The camera records video blocks in a continuous loop. This is required for
multiple reasons. Firstly, athletes moving towards the device may be in-frame before their
sensor signals are picked up by the antenna. This would occur, for example, in instances
where the line of sight between the sensor and the antenna is heavily obstructed, as the du-
ration of the detection window size is inversely proportional to the amount of obstruction.
Secondly, in order to support duration extension at the start or end of the clip, video from
before and/or after the detection interval is needed. For each newly started video block,
the starting time is registered through the integrated hardware clock. These timestamps are
used in later steps to synchronize video streams from different cameras and to accurately
cut specific parts of video using the timestamp values of the incoming sensor signals.

3.2. Clipping Algorithm

Once the video blocks and sensor data are available on the server, the data can be
fused together as input for the individualized clipping algorithm. The first part of this
algorithm only utilizes the sensor data to find the different clip boundaries for a given
sensor ID. This is parameterized by five parameters:

• t_grouping controls the grouping factor during the aggregation phase of the data. All
values that lie within t_grouping seconds form a single instance. This will define the
initial clip boundaries using a hard limit on the received timestamp values of the
sensor data;

• t_before then increases or decreases the duration at the start of the previously found
instances. If the updated start time exceeds the coverage limits of the videos, it will
be replaced with the closest possible value. Note that t_before is dynamically altered
based on the sensor type to combat the difference in transmit power;

• t_after is the counterpart of t_before and is used to change the end boundary of the clip.
The same explanation from t_before is applicable to this parameter;

• t_max_duration and t_min_duration are used to filter out clips that are too long (i.e.,
when someone with a sensor is standing stationary close to the setup) or too short
to be considered as usable clips (typically at least 2–3 s). This filtering operation is
performed before the buffering operation.

Using the generated metadata, the algorithm can start to select which video blocks
are needed to encode the requested video clip. Figure 5 shows a visual representation
of the different steps of the clipping algorithm. In case multiple files are needed, slices
of each file are created, taking the required buffer period on top of the initial boundaries
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into account. Previous steps are performed without re-encoding any intermediary steps.
Avoiding re-encoding is a considerable speed gain for the algorithm, and re-encoding is
at the moment only required when adding virtual overlays to the results or for further
compression of the clip.

Figure 5. Visual representation of the clipping algorithm. (a) Timeline of the transferred blocks on
the server. Red and green boxes represent the calculated clip boundaries. As the red clip lies on a
video block boundary, an intermediary step is needed. (b) If necessary, required video blocks can be
combined and unwanted video footage removed according to the clip boundaries. (c) Result of the
clipping algorithm. As the end boundary of the green block lies outside of the recording window
(this may occur if the extension is larger than the max buffer configured on the device), it is clipped
to the last available time recorded.

3.3. Video Block Optimization

To facilitate buffering operations preceding or following the reception of sensor signals,
the STRADA device operates in a continuous recording mode. The recorded video blocks
are subsequently transmitted to the central server for further processing into individualized
clips. However, it is important to note that only video data corresponding to the time of
the reception of sensor data (inclusive of a buffer interval) are required for clip generation.
In online mode, the device transmits sensor data upon arrival and video data once the
block is completed. To optimize the upload process, the video block optimizer intelligently
minimizes data transfer without losing relevant information. This approach not only
reduces upload time but also mitigates long-term evolution (LTE) costs when deployed
in the field. Alternatively, the device can operate in offline mode, which is suitable for
situations where real-time updates are not a requirement. A hybrid approach is also feasible,
wherein textual updates are made possible by uploading sensor data. The processing of
video data occurs post-event when a fast and reliable Internet connection is available. This
flexible operational mode allows users to adapt the device’s functionality based on their
specific needs and connectivity constraints.

The video block optimization procedure leverages some assumptions about the kind of
events we wish to record to optimize the length of each video block. Mainly, this concerns
whether the amount of sensors in the detection range of the device is constant or whether
it spikes and then stays zero for a period of time. Take, for example, a local (lower-level)
cycling race. Riders are very often close together in a peloton on a course mostly consisting
of multiple and repeating laps. Barring breakaways, riders who have dropped from the
main peloton and fallen too far behind are taken out of the race to prevent a fragmented
field of participants. This allows the race organizers to secure the bunch while other traffic
can flow through (momentarily) unused parts of the circuit. This implies that the passages
of each rider will be relatively close to each other and, until the next lap, there will be
mostly dead air that is of no use for the clipping algorithm. The device would receive
sensor data while the riders pass through the detection zone and then remain idle until
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the next lap. So, in cases where no sensor signals are received during the duration of one
video block, it will not be uploaded. If only a quarter of the block is needed, the other
parts will be discarded. This is also the case in other sports. During a training session
involving snowboard jumps on a dry slope, we analyzed the amount of movement in the
raw video and concluded that only 11% of the recorded video contained footage of the
jumps. The amount of movement in the video was calculated using the MOG2 background
subtraction algorithm and by counting the number of white pixels. The same procedure
was also applied to an endurance exercise in track cycling. In that case, only 16% of the
video contained the rider in view of the camera.

The optimization algorithm considers all sensor signals as equals: only their presence
is important and not where they originated from. It is initialized with a maximal buffer
size (in seconds) for before and after a sensor signal is received. This imposes a new
constraint on the clipping algorithm where the selected buffers of a device configuration
must lie within the chosen interval of the optimizer. The value of t_before lies within
[−(clip_duration + max_buffer_start), max_buffer_end]. The same constraint applies to t_after
when the max start and end sizes are swapped. As before, the device records a block of
a set duration, but before uploading, it transforms the fixed-duration block into variable-
length blocks by grouping the sensor information received during the current iteration.
The algorithm contains a list of timestamp pairs. A new pair (head and tail) is created if a
timestamp value exceeds the maximal buffer size or if the list is empty. If a new timestamp
lies within the buffer, the tail value is set to the sum of the timestamp and the buffer size.
This results in a list with the start and end timestamps for each segment, which can then be
used to cut specific parts of the video block.

The available video blocks will no longer be continuous, or at least this cannot be
guaranteed. In most cases where there is no relevant sensor data captured during a given
block, there will be large gaps in the processed videos that are transferred. The transformed
segments will always deliver an equal or net decrease in file size. The performance gain is
of course heavily influenced by the use case. More insights regarding the quantification
of this procedure are discussed in Section 4. From a user perspective, both methods are
functionally equal. The optimization algorithm guarantees that the extra duration of the
chosen maximal buffer window is available for every possible sensor value. Note that
it may even be longer in a situation where different sensors are picked up with a delay
smaller than the buffering window; since the windows overlap, they will all be fused into a
single segment. However, this property of longer buffers is not guaranteed and should not
be used in later calculations.

3.4. Streaming Platform

The users can consult the online streaming platform for all functionalities discussed
above. Organizers and athletes both require minimal manual input to configure a new
event or obtain highlights. A new event needs a name and a list of STRADA devices. Users
only have to link the ANT+ IDs of their sensors used during the event to their account.
Discovery of which events someone participated in is fully automated. During the event,
when sensor data and recordings are processed by the central server, a user will see a new
discovered event as soon as values from his/her registered sensors are received. Organizers
use this platform mostly to control the various event parameters as well. They can set
the official start and end times of the event, as well as the input parameters for both the
recording configuration and the clipping algorithm for each device. Only timestamps of
sensor values in that interval are considered for the clip generation. Server-side parameters
(see Section 3.2) for each device are also managed through the platform and can be altered
after the event has ended, allowing specific clips to be regenerated.

4. Results

In the previous section, the building blocks for the individualized clipping mecha-
nism were discussed. In this section, we further elaborate on the implementation of the
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introduced building blocks and some preliminary results are showcased. The anonymized
dataset can be found in an online repository for replication of the experiments (https:
//github.com/robbedec/datasets/tree/master/STRADA/lierde, accessed on 15 Novem-
ber 2023).

The setup was deployed for an in-field test during a junior cycling race in Sint-Maria-
Lierde (13th Grote Prijs Peter Van Petegem), Belgium. The race consisted of 10 laps of
6.5 km. The positions of the devices, shown in Figure 6, were on the two prominent hills on
the course. During the race, which lasted for 1 h and 45 min and included 112 participants,
28,383 sensor values were captured from 378 unique sensors. The distribution of sensor
types was as follows: 194 heart rate, 127 power, 59 cadence, and 3 unknown (device profiles
not supported by the STRADA device). Some of them were capable of reporting multiple
metrics. Before the race, participants could opt into the study by providing the sensor IDs of
their sensors, as well as their personal transponder codes used by the timing system of the
organizers at the finish line. Out of the 21 registrations, 16 provided a correctly formatted
ANT+ ID. To improve this in the future, we plan to design a booth that participants can
visit. This will contain a screen that displays the ANT+ IDs of the sensors in the vicinity
(preferably limited to those inside the booth).

Figure 6. Locations of the STRADA devices projected on the race profile of a single lap.

The ground-truth information was obtained by combining the pass-through times
after each lap at the finish line for those who signed up for the pilot project and information
regarding which collection of sensors belonged to which rider. The time intervals for when
the peloton passed by each camera were extracted manually from the pre-optimized video
data and are summarized in Table 1. As there was no official classification standard for the
peloton during the race (the cut-off for being a backmarker), we utilized the classification
metric imposed by the Union Cycliste Internationale (UCI). The UCI provide regulations
on how the time gaps are calculated for stages expected to end in a bunch sprint, or in other
words, which riders are given the same time because they are considered a homogeneous
group [35]. Following this official document, we stopped the peloton timer when the final
rider crossed the center line after whom no other rider crossed the line within three seconds.
One immediate observation about the peloton passing times was that Caudenberg passages
were mostly longer. This was in line with the expectations when considering the course
profile and was also verified through the videos. The climb in the Caudenberg section is
objectively easier compared to the Stuivenberg section (immediate steepness), and thus
quicker speeds naturally transformed into a longer peloton, with most people drafting in
two to three lines (after lap five, riders also used a greater portion of the road; see Figure 7),
while in the Stuivenberg section, riders were almost fully spread over the whole width of
the road.

https://github.com/robbedec/datasets/tree/master/STRADA/lierde
https://github.com/robbedec/datasets/tree/master/STRADA/lierde
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Table 1. Peloton passages extracted from the raw video stream. The timer lasted from when the
first rider crossed the frame’s vertical center line until the last participant of the peloton crossed the
same line.

Stuivenberg Caudenberg

Start Time Duration (s) Start Time Duration (s)

Lap 1 13:07:18 8 - -
Lap 2 13:17:26 6 13:13:59 11
Lap 3 13:27:35 5 13:24:13 13
Lap 4 13:38:04 7 13:34:20 7
Lap 5 13:48:05 5 13:44:26 12
Lap 6 13:58:57 5 13:55:20 6
Lap 7 14:09:56 7 14:06:06 5
Lap 8 14:20:31 5 14:16:53 6
Lap 9 14:31:38 5 14:27:51 5
Lap 10 14:41:55 6 14:38:13 7

Figure 7. Comparison of peloton density in the Caudenberg section between a fast passage of an
elongated peloton (left) with riders drafting with two to three people next to each other and a more
relaxed passage with riders using a greater portion of the road and thus with a peloton that was not
elongated (right).

As mentioned in Section 3.3, the Did Not Finish (DNF) state is a very common occur-
rence, as everybody too far behind the peloton is taken out of the race. In this race, only
55 participants completed 10 laps, with most DNFs noted in laps three to six, where 21, 9,
10, and 7 occurrences, respectively, were registered. With the individualized lap times avail-
able, an overview can be created of how many laps each rider completed. Tables 2 and 3
contain the durations of the generated clips of the camera in the Stuivenberg (respectively,
Caudenberg) section for each lap. The absence of a value in these tables was either due to a
failure to detect the sensor values when the lap number was smaller than or equal to the
abandonment value or because the participant was taken out of the race. Note that due to a
technical issue the Caudenberg device started recording after the first passage. Its table of
generated clips therefore contains one column and also one row less because a participant
was taken out of the race after the first lap (ID 45538). From these tables, the detection rates
can be calculated and correspond to 92.56% for the Stuivenberg device and 93.33% for the
one placed in the Caudenberg section.

The ability to receive transmitted sensor values is mostly dependent on the distance
between the sender and receiver. Empirical testing shows that, with a direct line of sight,
the ANT+ antenna can pick up signals from a Garmin chest monitor from approximately
75 m away; without the range extender of hLine antenna, this is reduced to 3–4 m. If we go
back to the cycling example, this implies that clips will generally be longer when riders are
riding solo or in smaller groups since there is much less occlusion compared to someone in
the middle of a peloton. Other factors, such as sensor position and transmission power,
also have an impact on clip duration. These problems can be alleviated by positioning the
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receiver antenna and possibly decoupling it from the camera module to place it at a higher
vantage point. This can improve the chance of a less occluded line of sight. With regard
to the other problems shown in Figure 8, device position is also vital to obtain quality
clips, as people will always find a way to stand in front of the device if they are able to.
With larger groups passing the device very close to each other, there will always be more
occlusion due to the different bodies blocking the signal. In the case of cycling, the position
will also have an impact; for example, power sensors are placed closer to the ground (e.g.,
in the pedals) compared to heart-rate monitors. To partially overcome this problem, clip
extension methods were implemented. These alter clip duration based on sensor type
(accommodating differing transmission powers and positions) but will only help if at least
one sensor value is picked up during a passage.

Table 2. Overview of clips generated from the Stuivenberg camera. Clip duration is given in seconds.
The “Abandoned” column indicates how many laps were completed. If the amount of laps equals 10,
the race was completed. Absences in the table are either due to failed detection when the lap number
was smaller than or equal to the abandonment value or because the participant was taken out of
the race.

Device ID Lap 1 Lap 2 Lap 3 Lap 4 Lap 5 Lap 6 Lap 7 Lap 8 Lap 9 Lap 10 Abandoned

5948 2 5 2 3 5 2 2 8 - 8 10
10435 3 5 12 4 4 8 3 3 15 5 10
19096 3 7 3 5 3 6 3 12 3 6 10
19791 5 2 2 4 6 2 5 - 5 17 10
20414 6 3 2 - 4 3 3 4 3 4 10
24554 2 4 2 2 2 5 8 2 2 4 10
33243 6 2 3 6 2 5 11 4 4 4 10
42627 13 4 11 7 5 12 7 6 14 7 10
48354 4 3 4 5 9 3 6 7 4 7 10
58537 5 - - 2 4 2 2 2 3 - 10
22312 2 2 - 5 3 - - - - - 5
24663 - 2 2 8 16 - - - - - 5
56060 2 2 3 4 - - - - - - 4
15454 5 9 5 - - - - - - - 3
42276 - 10 17 - - - - - - - 3
45538 21 - - - - - - - - - 1

Table 3. Overview of clips generated from the Caudenberg camera. Clip duration is given in seconds.
The “Abandoned” column indicates how many laps were completed. If the amount of laps equals 10,
the race was completed. Absences in the table are either due to failed detection when the lap number
was smaller than or equal to the abandonment value or because the participant was taken out of
the race.

Device ID Lap 2 Lap 3 Lap 4 Lap 5 Lap 6 Lap 7 Lap 8 Lap 9 Lap 10 Abandoned

5948 4 2 2 5 6 13 18 9 5 10
10435 4 4 9 4 5 3 5 20 4 10
19096 3 4 - 4 4 5 2 4 3 10
19791 4 4 6 3 4 3 3 13 5 10
20414 18 12 4 6 4 5 5 3 5 10
24554 3 - 2 4 2 5 4 4 2 10
33243 7 8 2 4 6 3 4 6 2 10
42627 5 4 14 16 11 5 - 5 5 10
48354 4 5 5 3 3 3 13 3 10 10
58537 2 3 2 - 5 2 - 2 - 10
22312 2 4 3 4 - - - - - 5
24663 - 3 6 - - - - - - 5
56060 - 5 2 - - - - - - 4
15454 2 4 - - - - - - - 3
42276 25 16 - - - - - - - 3
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Figure 8. Examples of two common problems when deploying the STRADA device in the wild.
Spectators will be oblivious to the effects of standing in front of the camera. A second problem occurs
when athletes pass by the device in very large groups, causing sensory overload and blocking each
others’ signals with their bodies.

In some laps, there was significant variation in clip duration. This is also verifiable
through the graph in Figure 9. Intuitively, this indicates that the rider is solo or in a small
group such that the signal blocking is limited and/or is moving very slowly. The outliers
indicated in the box plot were extracted and are summarized in Tables 4 and 5. These show,
for each outlier, the time difference (in seconds) between the start of the clip and the middle
of the peloton passage interval for that lap from Table 1. They also indicate whether the
participant was taken out of the race after completing the lap in which the outlier was
generated. Following the peloton classification rule of 3 s, it can be concluded that all clips
were generated for people who were not part of the peloton. In extreme cases where a
rider is multiple minutes behind, the camera information can be used to inform the race
organizers how many participants are expected to be taken out of the race at the end of the
lap. Reporting this information in real time is also useful to inform spectators about the
current race situation.
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Figure 9. Comparison of the clip durations between both devices for each lap.
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Table 4. Clip duration outliers (Stuivenberg).

Lap Device ID TTP (s) * ABD †

1 42627 12.0 False
1 45538 65.0 True
3 10435 9.5 False
3 42276 263.5 True
3 42627 5.5 False
5 24663 148.5 True
6 42627 6.5 False
7 33243 6.5 False
8 19096 7.5 False
9 10435 13.5 False
9 42627 11.5 False
10 19791 71.0 Finish

* Time to peloton: number of seconds between the start of the clip and the middle of the peloton passage at the
camera for that lap. † Abandonment: indicates whether the rider was taken out of the race after the lap with an
outlier clip duration.

Table 5. Clip duration outliers (Caudenberg).

Lap Device ID TTP (s) * ABD †

2 20414 13.5 False
2 42276 56.5 False
3 20414 9.5 False
3 42276 201.5 True
4 42627 9.5 False
5 24663 111.0 True
5 42627 14.0 False
6 42627 8.0 False
7 5948 12.5 False
8 42627 26.0 False
8 48354 12.0 False
8 5948 18.0 False
9 10435 15.5 False
9 19791 9.5 False
10 48354 6.5 Finish

* Time to peloton: number of seconds between the start of the clip and the middle of the peloton passage at the
camera for that lap. † Abandonment: indicates whether the rider was taken out of the race after the lap with an
outlier clip duration.

Although the previous insights utilized the ground-truth times of when the peloton
passed the camera, it is also feasible to derive these timings automatically for each lap
through the collected sensor data. With these data available, it is possible to answer the re-
search question about how to keep spectators, parents, and others in the loop about position
changes during the race. The data are used to create improved textual updates since the
system can provide the relative position of the user of a particular sensor compared to the
peloton. For this, the full dataset of the sensors is used since it does not require knowledge
about sensor–transponder pairs. However, some filtering is advised. For example, some
sensors registered 180% to 196% more values (compared to the average) for a particular
camera. It is not possible that the owners of these sensors participated in the race since they
would have been in frame for a total time of somewhere between 16 and 33 min. A more
logical classification for these sensors would be that they belonged to a spectator, perhaps
somebody on their Saturday afternoon cycling session who temporarily stopped close to
one of the devices to watch the race. In fact, all of these outliers were heart-rate monitors,
sensors that do not go into idle mode when the bike is not moving because they are worn
on the body. Figure 10 visualizes the number of unique sensors over time during the race.
Since this graph contains 1 h and 45 min worth of second-level data, it condenses the peaks
visually, but if zoomed in further (see Figure 11), the values appear to have a more fluid
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buildup when the riders move in and out of the detection range of the device. Note that,
because of the large amount of occlusion inherent to the peloton, the detection zone is much
smaller compared to the theoretical limit of ANT+. Also, because ANT+ devices operate
mostly at 1–2 Hz (manufacturer-specific), detection failure may occur if, for example, a
large and fast-moving group passes the device (only in frame for a couple of seconds),
which is the case for road cycling. This graph also highlights the larger spread in lap three
(Stuivenberg), where 21 participants achieved the DNF result after completing the lap.
The spikes in between the peloton indicators can be attributed to smaller groups who fell
behind, as well as cyclists on a recon/warm up, since after this particular race, another age
group raced on the same course.
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Figure 10. Graphs showing the numbers of unique devices over time during the race. Values were
averaged using a moving average of 10 s for visualization purposes. Peaks correspond to the passing
of a large group (peloton) and correspond to the number of laps that each device recorded. For a
zoomed in portion of a lap, see Figure 11.

Figure 11. Enlarged portion of the first lap for the Stuivenberg device shown in Figure 10 without
averaging. During the passage, riders constantly moved in and out of the detection range.

The N highest peaks were extracted from the underlying data (N corresponds to
the number of laps) and labeled as the temporal trigger of the peloton passage. Ideally,
a presence interval calculated around the distances before and after the camera between
which sensor signals can be received should be used. Collecting accurate ground-truth
data is very difficult as it depends on group size, transmit power, battery level, ambient
weather information, and more. Therefore, it is more convenient to utilize the intervals
extracted from the video data shown in Table 1. Since in both cases the riders are moving
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towards the camera, the intervals should be shifted forward because the extracted video
timings do not take into account that sensor signals are still picked up when the rider is out
of frame. The mean offset between the detected peak and the middle of the peloton interval
was 3.8 ± 0.9 s for the Stuivenberg section and 1.9 ± 2.0 s for the Caudenberg section.

Due to the optimization algorithm that processes the video block before it is uploaded,
a certain percentage of the video data may be discarded without information loss. A com-
bination of varying input parameters for the algorithm is shown in Table 6. The buffer
window denotes the number of seconds (video data) that need to be available before and
after the timestamp of every sensor value. The quantile parameter is used to filter out
sensor outliers as described above. In addition to the quantile filtering, there is also the
option to filter based on the participants who registered for the study before the race.
As expected, the amount of video data that could be discarded decreased when the buffer
window increased. However, the rate at which it decreased was not proportional to changes
to the buffer window. This was caused by the fact that some of the participants rode con-
sistently close to each other such that the buffers needed to create their individual clips’
overlap when run through the optimizer. It is also apparent that utilizing a select group
of individuals significantly reduced the amount of data that needed to be uploaded (see
row of limited participants). For this particular race, the Stuivenberg device could discard
91.24% of the total video time of 1 h and 45 min while still guaranteeing 10 extra seconds
before and after every sensor value. As such, it may be a good idea for organizers to input
a list of ANT+ IDs that the camera should record, and it will discard values originating
from sensors that are not registered before the race. The only option that the system loses is
that, while participants can register retroactively, the event discovery will only work if the
users specifically register their IDs before the race.

Table 6. Overview of optimization schemes with differing initialization parameters. Values denote
the percentage of video footage that can be discarded without losing clip duration for the given
buffer window.

Stuivenberg Caudenberg

Buffer window
(in seconds) 5 10 20 5 10 20

Quantile = 1.0 26.84% 17.02% 4.73% 45.03% 35.98% 24.10%

Quantile = 0.9 54.40% 41.37% 24.08% 52.33% 42.52% 29.10%

Quantile = 0.8 57.59% 44.68% 27.08% 57.30% 46.87% 32.86%

Limited to study participants
(N = 16) 94.17% 91.24% 84.75% 93.05% 89.79% 84.56%

Device Limitations

With the initial specification of the ANT+ protocol, it can only support 65,536 unique
values for the device ID. Therefore, there is a real chance that, at very large events, colli-
sions will occur between different sensors. The chance of collisions was reduced with the
introduction of extended device IDs (specified in 5.2.3.1 of the ANT+ specification [36]).
By using four extra bits from the transmission type, the protocol can support 1,048,576
unique values. The transmission type contains the individual transmission characteristics
of a device, like the assigned page number. With the addition of the extended ID, manu-
facturers can rotate some of the characteristics, such as the page number, for new devices
and thus increase the number of available IDs. Nonetheless, this increase in available IDs
does not completely rule out collisions. In this case, the available clips on our streaming
platform must aggregate multiple series of clips.

The transmission range of sensors can be affected by many variables and stating the
exact severity of occlusion is therefore not possible. The radio signal might be attenuated
and the range considerably reduced by obstacles such as guardrails and, more importantly,
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the bodies of other riders surrounding the sensor. Signals from other electrical devices
and high air humidity may also negatively impact the transmission range. Therefore,
the position of the antenna is vital with regard to the number of missed passages. This
can be handled by placing the device higher in the air or by decoupling the antenna via a
longer cable. The antenna can then be placed at a better vantage point while the camera
can film from a normal point of view. Some detection failures can also be prevented by
combining data from multiple devices. If a rider passes three devices in the same group
but is not detected at one of the first two devices, we can use that information to assume
that they also should have been in the same group at the missed passage. Another point to
consider is that cyclists often have multiple sensors attached. This redundancy allows us to
combine multiple clip series and compensate for missing clips if one of the sensors is not
detected during a passage.

There is also a limitation imposed by the antenna regarding the number of sensor
nodes it can support. The ANT USB-M module used in this research allows up to 300 nodes
at a 1 Hz transmission rate in the same radio frequency space (https://www.thisisant.com/
developer/components/antusb-m, accessed on 9 January 2024). This needs to be taken
into consideration if the device is to be deployed in events where a very large number of
participants are expected to pass the detection zone at the same time. In addition to the
number of sensor-equipped participants, it should also be noted that multiple sensors per
person are not uncommon in some sports.

With the range-extending part on the hLine antenna, we can control the distance at
which we want to detect a sensor (±75 m vs. 4 m without obstructions). If an event required
the short-ranged version (e.g., the athletics example mentioned in Section 5), a detection
problem could arise if the sensors move too fast through the detection zone. Since most
common sensors operate at 1–2 Hz, it could occur that the device transmits its message
right before entering the detection zone and in the 0.5–1 s interval passes through the zone
such that the next message is transmitted when the sensor has exited the designated zone.
In this situation, it is advised to use multiple decoupled antennas spaced with a few meters
in between (the exact value would be sport-specific). The device would then collect the
values from all antennas and merge them together into a single source in order not to
disrupt the next steps.

5. Conclusions and Future Work

In this paper, we presented a sensor-driven tripod that unifies sensor and video data
to generate personalized highlights for participants of various sporting events wearing
ANT+-capable sensors. It combines simultaneous recording of video footage and sensor
data through a purpose-built device using commercially available hardware costing around
EUR 115. The presence of identifiable sensor signals indicates the proximity of an individual
to the device and is then used to calculate clip boundaries in the raw video stream once
available on the processing server. The setup was tested with two devices along the
course of a youth road-cycling race. The system achieved a detection rate of 92.9% for
the study participants, generating a video clip for each instance, and was also able to
accurately detect when the peloton went past the camera for each lap through the sensor
signal distribution. The produced insights and content can be made available on an online
platform during or after the race (based on the device configuration and upload scheme) to
provide spectators with information for different POIs along the course and participants
with social-media-appropriate content to share on their own platforms.

Later iterations of this work can focus more on the service delivery for users, leveraging
computer vision techniques to improve the visual quality of the highlights or to generate
metadata about the highlights’ content. The quality consistency of the recorded videos is
currently only handled by the onboard capabilities of the camera (high dynamic range,
auto focus). However, there exist techniques that can be used to improve the results in
postprocessing as well. Illumination regression [37,38] or histogram equalization [39] could
be appended to our pipeline and leave users more satisfied with the results. An example

https://www.thisisant.com/developer/components/antusb-m
https://www.thisisant.com/developer/components/antusb-m
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of the additional functions we could provide by using computer vision would be finding
common athletes in a series of clips. The data would allow the system to couple a soft
identity in the given context of the race. This may help to identify participants who are
unable to discover their own ANT+ identifier by showing a possible visual match for
the IDs (further filtered using the team jersey, etc.). We also undertook some preliminary
experiments regarding smart cropping the footage. This would be useful in cases where
we do not want to show the full video but only a crop of a specific region that contains
the subject [33]. The challenge would then be to keep the subject in frame through a
content-aware AI system. An alternative deployment option for the presented hardware
could also be for fuzzy localization on smaller tracks. Some antennas, such as the hLine,
can remove the range-extending part of the antenna, leaving a receiving radius of ±3 m.
Covering the width of a running track in this configuration would be possible by using two
devices and placing them perpendicularly on the shortest line that crosses the track. When
at least one of the devices receives a signal, it would act as a kind of fuzzy gate-crossing for
applications where fault tolerances of 1–2 s are allowed. For gates that cannot be covered
by two devices, a more sensitive and directional antenna may be required.
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