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Abstract—Most spectrum surveys conducted worldwide
demonstrate that the radio-electric spectrum in use at any given
location and instant of time is below 25%. Current spectrum
management policies and spectrum utilization inefficiency is
becoming unsustainable for future development of radio tech-
nologies and services. In this context, dynamic spectrum access
is a promising technique for improving spectrum utilization
efficiency. A key scientific gap is identifying inaccurate spectrum
data from hidden nodes that is not homogeneously distributed in
the spatial domain and dynamically vary in time and frequency.
For bridging this gap, our paper presents the research results of a
spectrum feature extraction algorithm based on multi-correlation
and Random Forest. Our algorithm is capable of estimating the
spectrum utilization pattern in the spatial and frequency domain
with a minimum reliability of 92% for a real heterogeneous
networking scenario.

Index Terms—Spectrum Sensing, Spectrum Sharing, Spectrum
White Spaces, Machine Learning, Random Forest

I. INTRODUCTION

The radioelectric spectrum is a limited resource and the
most important utility for wireless networks. The traditional
assignment of spectrum has lead to bottlenecks and delays for
allocating spectrum sub-bands to new services and operators.
For instance in the case of Europe by early 2022 only 56% of
the 5G harmonized spectrum was allocated [1]. This negative
trend is having an impact also on the energy efficiency of
wireless networks and the operators’ cost-efficiency. Paradoxi-
cally, spectrum surveys performed worldwide demonstrate that
the spectrum utilization efficiency, as the ratio between the
allocated spectrum and the spectrum really in use at any given
location and instant of time, is lower than 25% [2], [3] and
below 11% in rural areas [4]. In this context next generation
technologies (e.g., 6G) will require a more sustainable and
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efficient paradigm for spectrum management and allocation
based on Dynamic Spectrum Access (DSA) [5].

For guaranteeing multi-band coexistence, cognitive radio
technologies must evolve to an intelligent enabled network
capable of determining the spectrum features in the spatial,
temporal, and frequency domain [5]. Despite the advances
on sensing and estimation, traditional cognitive radio relies
on distributed decision mechanisms based on data that is
not always reliable because of environmental conditions or
across multiple use cases. For instance, hidden nodes (i.e.,
locations in the shadow from at least one transmitter) have
a critical impact on interference [6]. Research on cooperative
spectrum sensing have addressed this issue [7]–[9]. However,
most algorithms presented in the literature allocate the spec-
trum based on a per-channel and per-location decision-making
mechanism [7], [8], [10]. This kind of mechanism might
not perform well in heterogeneous networking scenarios and
requires some heuristics for multi-band assessment, increasing
their computational complexity. In addition to the hidden node
effect, when the signal level is near the decision threshold for
allocating the spectrum, algorithms based on a per-channel
estimation accounting only for the total channel power, lose
accuracy as they lack a mechanism for correlation in the
frequency domain. Generally, beside a signal level pattern
between neighboring locations, within the channel bandwidth
the power allocation follows a pattern in the frequency domain
(e.g., OFDM signals).

We consider that spectrum fingerprinting by machine learn-
ing based on the correlation of spectrum vectors that include
the features of multiple frequencies (i.e., signal levels as a
function of frequency), will jointly lead to a more efficient
use of the spectrum and reducing the interference probability.
Rather than a channel-by-channel estimation, we consider



the whole spectrum as a fingerprint for each location. In
this paper we present a classifier learning algorithm based
on Random Forest for identifying outliers. In the context of
our research, an outlier corresponds to inaccuracies in the
spectrum data. The outcome of this algorithm is used for
extracting the spectrum utilization features considering data
from a real heterogeneous network scenario. For evaluating
the algorithm, we performed a large-scale spectrum survey in a
real heterogeneous networking scenario collecting 69,182 sig-
nal level samples in the spectrum between 170 and 1000 MHz
from a total of 71 locations, and considering two different
experimental setups. The novelty of our method is that we
simultaneously consider the spatial and frequency domain in a
multi-channel vector for the extraction of the spectrum features
in order to achieve a higher estimation accuracy.

II. METHOD

The dynamic spectrum access by cognitive radio devices is
unreliable when the allocation decisions are fully distributed
and independently taken by each BS based only on the
reported information from their end-terminals. Our aim is
validating the hypothesis that up to a certain spatial distance
the spectrum occupancy is correlated enough for inferring a
certain pattern based on the data from multiple neighbors. In
this context hidden nodes play a critical role in false spectrum
allocation when some end-devices report inaccurate data due
to the effect of shadowing [11]. For improving the trade-off
between spectrum occupancy and interference [3], we present
a method based on the Random Forest algorithm in order to
identify outliers from the spectrum dataset. Locations reporting
inaccurate data (outliers) follow a different spectrum pattern
compared to their neighbors. Their trend is to report lower
signal levels on certain frequencies. If this data is not identified
in the spectrum dataset a false detection of white spaces
occurs (i.e., spectrum wrongly identified as not occupied),
maximizing the interference probability.

First, we performed a spectrum survey in a rural scenario for
collecting the signal levels as a function of the geo-locations
and sensed frequencies (Subsection II-A). Second, for a certain
given maximum distance between locations we find the spatial
correlation between the spectrum vectors (signal levels as a
function of the frequency) and the Cumulative Distributed
Function (CDF) of the correlations (Subsection II-B). Finally,
we tag the Spectrum Occupancy as a function of the mea-
sured signal levels for each collected sample in the survey.
A Random Forest algorithm is applied for finding outliers
between samples in the spatial and frequency domain in order
to improve the estimation of spectrum utilization patters for
DSA applications (Subsection II-C).

A. Scenario and Experimental Measurement Setup

For the spectrum measurements we consider a rural scenario
in Nevele, Belgium. This is a mostly flat area with detached
isolated houses and farms. We defined a grid of different
locations for measuring the signal levels [dBm] across the
spectrum between 170 MHz and 1000 MHz, during a period

TABLE I
MEASUREMENT SETUPS

Parameter Setup 1 Setup 2 Unit
Number of Locations Nloc 50 21

Sweep Band 170-1000 170-600 MHz
600-1000 MHz

Resolution Bandwidth 100 3 kHz
Spectrum Vector Frequency Resolution 1.32 0.68 MHz
Distance Resolution 1 0.5 km
Signal Level Percentile 99 99
Noise Floor -112 -116 dBm

of 0.5 h [4]. The measurements across the different locations
are not synchronized and therefore not correlated in the time
domain. The maximum signal fading recorded during the time
of the measurements was approximately 5 dB. Therefore, at
each measurement location we account for the 99 th -percentile
of the signal levels through time. This is done for accounting
for the maximum levels and removing the temporal variations
caused by fading.

Some settings of the measurement setup have an important
impact on the results. In particular those parameters related
to the noise floor might impact the final outcome of the
experiment. For instance, we have found that when the noise
floor is too close to the decision threshold for the spectrum
allocation or the recorded signal levels, most machine learning
algorithms will not provide any accurate estimation as it will
learn the signal noise rather than extracting any signal feature.
For this reason we defined two setups for the measurements.
Table I lists the settings for each measurement setup.

In the first setup (Setup 1), each measurement location
in the grid is located at a distance of approximately 1 km
(spatial resolution), while for the Setup 2 the spatial resolu-
tion is 0.5 km. For reducing the noise floor in the second
setup we paralleled the measurements by splitting the total
evaluated bandwidth in two segments in order to reduce the
resolution bandwidth of the measurement device (FSH8 R&S).
For this, we considered the characteristics of the services
according to the regulator assignment. In the sub-600 MHz
sub-bands there is a predominant High-Power High-Tower
infrastructure of broadcasting services and above 600 MHz the
predominant services are Low-Power Low-Tower from mobile
infrastructure. The output from the measurement campaign
is a matrix containing the geolocation of each measurement
location in the grid (GPSx [º]; GPSy [º]), the sensed frequency
(Freq [MHz]) and the signal level corresponding to the setup
defined percentile across the time domain (L [dBm]).

B. Spectrum Vectors: Correlation and Fingerprinting

From the collected data at each location, we define a set
of spectrum vectors S of signal levels as the function of
the sampled frequency for any given location. Therefore the
spectrum vector of a certain location i can be defined as:

Si = {Lif1 ;Lif2 ; ...;Lifn} (1)

where Li is the 99 th -percentile of the signal level measured
for the frequency fn at the location i .



For the whole dataset we find the correlation between all
the spectrum vectors that are within a given maximum distance
dmax of 0.5 km or 1 km. The distance dij between any given
pair of locations i and j for including them in the same cluster
of radius dmax is calculated based on their geolocation and the
haversine function. The correlation coefficient (ρ) between the
spectrum vectors (Si ,Sj ) of any pair of locations within dmax

is defined by Equation 2:

ρ(Si ,Sj ) =
E [(Si − µSi) · (Sj − µSj )]

σSi · σSj
(2)

where E is the expectancy (weighted mean), µ is the mean,
and σ is the standard deviation. In this way the correlation is
not referred to the deviation of the mean but a weighted mean
where a group of values might be more representative (higher
weight) than others in the vector.

Further a cumulative distribution is applied to the obtained
correlations for all the possible combinations of locations. This
allows estimating a spectrum fingerprinting if the spectrum
correlation is strong enough for most of the sub-clusters (i.e.,
CDF > 90%). Notice that if the data within any given sub-
cluster is not enough correlated a Random Forest algorithm
might retrieve random outcomes as it is not possible defining
a spectrum utilization pattern within any given area. For a best
case, if the spectrum vectors within a cluster are not strongly
correlated the number of trees for finding a pattern will be
too high, leading to an exponential decrease of the algorithm
computational performance.

C. Outlier Detection and Estimation of Spectrum Occupancy
Pattern

The end goal of our algorithm is finding the data from
certain measurement locations, that based on the pattern
identified by an absolute majority of their neighbors, seems
to be inaccurate (i.e., outliers). For this we will use the
classification features of the Random Forest algorithm for
finding the outliers. This is performed by estimating and
further quantifying the distance between any data sample
on any given decision tree (proximity). For instance, if it
seems that two samples belong to the same leaf on a certain
percentage of the decision trees it is assumed that the two
samples are identical or similar enough. Once we are able
to find any outlier in both the spatial and frequency domain
we can use the outliers as a mask for filtering the initially
estimated Spectrum Occupancy from the recorded signal levels
at each independent location. Algorithm 1 defines the proposed
algorithm for finding the outliers and estimating the spectrum
occupancy pattern.

The algorithm includes as inputs the geo-location of
each measurement (GPSx ;GPSy) and each sensed fre-
quency (Freq). The output Y is a binary tag defining the
spectrum occupancy (SpectrumO) based on the individual
signal levels L for each given input X (combination of
GPSx ;GPSy ;Freq). Equation 3 defines the tag assignment
Y as a function of the signal level:

Y (X) = 1 ∀L(X) > −95dBm
Y (X) = 0 ∀L(X) < −95dBm (3)

We consider an occupancy threshold of −95 dBm based on
traditional cognitive radio technologies and previous research
findings in [2], [3], [12]. Nevertheless, any other threshold can
be considered if there is enough margin between the detected
signals and the noise floor for the chosen learning method.

First, the algorithm creates a matrix [X ;Y ] from the inputs
and tagged output (line 3 to 5 in Algorithm 1). The machine
learning tree bagger function will create up to 100 random
decision trees for classifying any given output as a function
of the three-dimensional input (line 6 in Algorithm 1). The
samples are randomly distributed across the trees for having
a low correlation on the prediction of each tree, maximizing
the reproducibility of the algorithm results. Otherwise, certain
combinations of inputs will have a higher chance of being
correctly classified than others. As any given tree might lead
to a different outcome, for classification tasks a decision
based on a majority vote (or a certain percentile) is typically
implemented. Before assessing the proximity between samples
in the trees the algorithm compacts the implemented model for
achieving a higher computational efficiency.

The proximity or similarity between any given sample
in any built decision tree is later quantified by the Outlier
Measurement function (line 8 in Algorithm 1). The proximity
quantification considers both the spatial and frequency inputs
(three-dimensional distance). This means that not only the
correlation between neighboring locations is considered but
also the self-correlation within any portion of the spectrum
vector. This is particularly important when the received signal
significantly varies across the spectrum occupancy decision
threshold leading to inconsistent occupancy tags. Based on the
proximity assessment we define the outliers as the samples for
which the proximity value is not within the 80 th percentile
(line 9 in Algorithm 1). Here TF contains a binary array
defining the outliers while U ,L,C (Upper threshold, Lower
threshold, and Center value) are scalars quantifying a certain

Algorithm 1 Machine Learning Algorithm
Inputs: GPSx ,GPSy ,Freq
Output: SpectrumO
1: Nloc: Number of measured locations
2: Nfreq: Number of frequency samples per location
3: for i = 1:Nloc
4: [X(i) , Y(i)] = [Inputs(i) , Output(i)]
5: end for;
6: ML TB = TreeBagger (100, X, Y, classification, OOBpredictor);
7: CML TB = compact (ML TB);
8: Proximity = Outlier Measure (CML TB,X);
9: [TF,U,L,C] = isoutlier (Proximity, Percentiles = [0 80]);
10: for i = 1:Nloc
11: for j = 1:NFreq
12: n = NFreq*(i-1)+j;
13: if (Y(n) == 1) OR (TF(n) == 1);
14: SpectrumO(i) = 1;
15: else
16: SpectrumO(k) = SpectrumO(k)
17: end if;
18: end for;
19: end for;



scale of the median average deviation. The U ,L,C are only
used for fitting and optimizing our model (e.g., fitting the
number of trees).

Because of the relative small size of our dataset, we did not
accounted for a higher percentile (e.g., 90 th − 95 th ) because
that causes that a single pair of locations within a cluster might
define the proximity function and therefore the outliers. For
the 80 th percentile, the combination of more than 2 pairs of
locations is needed for defining the proximity function used
as reference for extracting the outliers. In addition a higher
percentile might lead to over-fitting due to the limited total
number of spatial samples and neighbors around each location.
For larger datasets a higher percentile might be considered
(i.e., lower proximity between samples are considered as
outliers). Nevertheless, over-fitting still can occur. An over-
fitting in the frequency domain will be equivalent to a very
narrow-band allocations (as small as the frequency resolution),
which could be impractical for most DSA applications. For
instance, for our scenario a > 95 th percentile in the outlier
criteria leads to a ten times higher U ,L,C , which is equivalent
to include in the outliers, samples that are not correlated
enough either in the spatial or frequency domain. Instead of
defining the outliers based on a majority vote for a certain
percentile of the outliers measured proximity, Grubbs method
can also provide a fine-tuned result without over-fitting but at
a cost of a lower computational performance as the outliers
are extracted in a one-by-one basis.

Finally, the spectrum occupancy pattern is generated by
using the TF vector of outliers as a mask of the initially
considered occupancy from each independent spectrum vector.
In this way if either a certain location within a cluster has a
frequency identified as occupied or the frequency is marked
as outlier, the specific frequency is considered occupied,
otherwise as white space (line 10 to 19 in Algorithm 1).

D. Simulations for Algorithm Validation

For validation purposes, we also performed a total of 20
simulations with a pseudo-random generated dataset and a
known outcome (ground truth). The signal levels for the
dataset are pseudo-randomly generated with a maximum devi-
ation from the noise floor equivalent to the maximum fading
from our measurements. The spectrum occupancy is then
tagged considering Equation 3. Here we apply Grubbs method
as it is not possible to define for this dataset a fair percentile for
the voting decision. For each simulation we recursively remove
the identified outliers samples from the original dataset and the
new dataset if used for the next iteration of the algorithm.

Simulation ground truth: As the signal levels are pseudo-
randomly generated the correlation should be near 0. Also
the tags will be pseudo-randomly distributed with the same
probability. The algorithm will find some random outliers
but after each new simulation the gradient of the number of
outliers will decrease and the number of identified outliers will
trend to a constant value. For the dataset of our measurements,
if the correlation is strong enough, in a few simulations
after extracting the outliers, the number of new outliers will

trend to 0. As a consequence, the gradient descent of the
number of outliers identified after each simulation will be
significantly higher for our experimental dataset than for the
pseudo-random generated dataset. Therefore, the ground truth
for the validation can be defined as:

lim
n→nm

NTF (n) = 0 ∀ρ(Yi;Yj)→ 1 (4)

and:
lim

n→nm

NTF (n) = k ∀ρ(Yi;Yj)→ 0 (5)

where NTF is the percent of identified outliers as the function
of the simulation index n , k > 0 is a constant, and nm is
the maximum number of simulations and satisfies that the
minimum length of the vector TF (n) is at least 50% of
the original dataset size (length of TF (0 )). The ground truth
condition also fulfills that:

∂NTF (n)

∂n
>
∂N

′

TF (n)

∂n
(6)

where N
′

TF (n) is the percent of outliers corresponding to the
artificially generated dataset.

III. RESULTS

A. Nearest Neighbors Correlation
Fig. 1 shows the cumulative distribution function of the

spectrum correlation between all the neighboring locations
up to a distance d, for the analyzed measurement setups
and frequency sub-bands. Results findings in Fig. 1 show a
strong correlation between the spectrum vectors from each
neighboring location for both distances d=0.5 km and d=1 km,
except for the spectrum sub-band between 600 MHz and
1000 MHz for the measurement Setup 1 at a distance between
neighbors up to 1 km. This is caused by the combination
of two factors. First, for the measurement Setup 1 there is
a lower spatial and frequency resolution, and a higher noise
floor due to the filter resolution bandwidth. With the Setup 1
also for the frequency range from 170 MHz to 1000 MHz
we did not obtain the best correlation. Second, in the upper
bands analyzed there is a predominant Low-Tower Low-Power
infrastructure with smaller cells compared to the predominant
High-Tower High-Power infrastructure in the lower sub-bands.
As the minimum distance between measured locations is
equivalent to the cell size there is a higher variability between
spectrum vectors at different neighboring locations. Therefore,
the effect of the limitations of Setup 1 has a higher impact on
the spectrum correlation between neighbors for the sub-band
between 600 MHz and 1000 MHz.

An important result is that in the surveyed area for both
segments of spectrum we obtained a correlation higher than
0.85 between any neighboring location up to a distance of
1 km with a 95% probability (considering the measurement
Setup 2). Based on these results a relatively small and compu-
tationally efficient machine learning might filter the data for
detecting the uncorrelated data between the spectrum vectors
at any given location compared to their neighbors (i.e., finding
outliers).



Fig. 1. Cumulative distribution of the spectrum correlation between neigh-
boring locations. f : Frequency range, d: Radius of the cluster.

B. Outliers Detection

Fig. 2 shows the outliers identified by the Random For-
est algorithm across the spectrum vectors at each measured
location for the Setup 2. For a more clear representation of
the results the figure presents a near 2D-projection over the
frequency axis. In the spectrum mainly assigned to mobile
services there is a higher variation in the identified outliers
for different neighboring locations (in Fig. 2b). There are
two factors influencing the variance in the received levels
across the neighbors. First, poor coverage of mobile services
in rural areas particularly of the 4G services (e.g., down-link
allocated to band B20 from 791 MHz to 821 MHz). Second,
sporadic access to the services by the end-terminals (e.g., up-
link assigned to B20 from 832 MHz to 862 MHz). This is the
contrary to what happens in locations with higher population
density where the access probability (emission probability) of
the end-devices is higher and more uniformly distributed in
both the temporal and spatial domains.

These results reveal that the strict masking method proposed
in Section II should be applied for DSA if there is uncertainty
or inconsistency in the sensed data between neighboring lo-

Fig. 2. Findings of outliers within the Spectrum Vectors at each geo-
location. a) Spectrum sub-band 170 < f [MHz ] < 600 , b) Spectrum sub-
band 600 < f [MHz ] < 1000

Fig. 3. Spectrum occupancy comparison between traditional cognitive radio
allocation algorithm (upper tiles) and our algorithm (lower tiles).

cations. In general, for scenarios with higher heterogeneity of
infrastructure sharing the same spectrum or when the coverage
is poor, the probability of false detection of white spaces, and
therefore interference, is higher.

C. Spectrum Feature Extraction: White Space Availability

Based on the results findings from the previous section
we applied the outliers mask as a boolean AND function
to the spectrum allocation individually performed from the
sensed data at each location. If a sensor has detected a certain
frequency as white space but the mask determine it is an
outlier, then it is considered as occupied spectrum. Fig. 3
shows the spectrum occupancy individually determined based
on traditional cognitive radio decision (upper tile) compared
to our proposed feature extraction based on the identification
of outliers by machine learning and Random Forest algorithm,
for a) the frequency range from 170 MHz to 600 MHz and b)
from 600 MHz to 1000 MHz.

For the sub-bands in Fig. 3a allocated mainly to broad-
casting services (e.g., T-DAB and DVB-T/T2), a traditional
estimation of the spectrum occupancy by cognitive radio de-
vices (upper tile) might classify nearly 95% of the spectrum as
white spaces. However, because of potential interference, the
coexistence is not guaranteed, particularly for the sub-bands
with higher heterogeneity of infrastructure characteristics and
variability of coverage. Our algorithm allocated approximately
29% less white spaces (lower tile) but shielded the access to
bands with lower data reliability. In the sub-bands assigned
mainly to mobile services (Fig. 3b) the feature extraction
by our algorithm was capable to identify as occupied the
spectrum in use by the mobile operators (791-862 MHz and
890-960 MHz including up-link, down-link and band-guards)
with a reliability of 92%. The segment from 880-890 MHz
was allocated by the regulator for uplink, but not detected in
use by any device at the time of the measurement campaign.
We did not consider that segment in the reliability estimation
as it is not related to the performance of our algorithm.

D. Simulations and Validation

Fig. 4 shows the simulations performed for validating the
designed algorithm (Algorithm 1) considering the method
and ground truth presented in Subsection II-D. After just 2



Fig. 4. Algorithm Validation

iterations there is a clear trend towards 0 of the number of
extracted outliers from the highly correlated dataset of our
measurements (criteria from Equation 4 is satisfied). At the
same time, the moving average of the extracted outliers from
the pseudo-random generated dataset shows a tendency to a
constant value (approximately towards 2% extracted outliers
per simulation). As the maximum correlation for this dataset
is also near 0 (|ρ| < 0 .1 ) the criteria from Equation 5 is also
satisfied. Finally, the gradient for the measurement dataset is
almost 10 times higher than for the pseudo-random dataset
after just 3 simulations (validation criteria from Equation 6 is
also satisfied).

E. Model Error, Inputs Relevance and Computational Perfor-
mance

The mean error of the machine learning model was 1.8% for
100 trees. The permuted delta error of the machine learning
inputs shows that there is a high spatial correlation (> 0 .85 ),
as expected from the results presented in subsection III-A.
The frequency input has a higher relevance for the model
prediction in the order of 12:1 compared to the spatial inputs
(geo-location). This is likely because the self-correlation in
the frequency domain is more limited, particularly for sub-
segments with a larger signal variation. This is caused either
by the randomness and sporadic use of some services (uplink)
or variations across the signal level threshold defining the
spectrum occupancy. The average computational time of the
Algorithm 1 was approximately 62 seconds considering a
computational capacity of only 16 GFLOPS. For 10 trees the
computational time decreases to 14 seconds but at a cost of a
higher mean error by approximately 2%.

IV. CONCLUSIONS

In this paper we presented the machine learning spectrum
feature extraction from a spectrum survey dataset. We pre-
sented an algorithm based on multi-correlation and Random
Forest capable of finding outliers from spectrum data in both
the spatial and frequency domain.

We found that in the surveyed rural area there is a 95%
probability of having a strong correlation (higher than 0.85)
between spectrum vectors up to a distance of 1 km between
sensing locations. This shows that spectrum fingerprinting is
reliable for extracting spectrum features like the spectrum
occupancy or white space availability. Our proposed algorithm
is capable of finding the outliers across the multi-domain
inputs even when the signal levels are near the decision
threshold defining the spectrum occupancy or in sub-bands
with a higher heterogeneity of technologies’ architecture and
radiation footprints. Despite the randomness and sporadic
access to the uplink sub-bands of the mobile services the
proposed algorithm was capable to identify and fully shield
the access to the mobile bands in use by the local operators,
not being the case of a distributed allocation by traditional
cognitive radio algorithms.
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