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ABSTRACT
Design space exploration for engineering design involves identify-

ing feasible designs that satisfy design specifications, often repre-

sented by feasibility constraints. To determine whether a design is

feasible, an expensive simulation is required. Therefore, it is crucial

to find and model the feasible region with as few simulations as

possible.

Model-based Active learning (AL) is a data-efficient, iterative

sampling framework that can be used for design space exploration

to identify feasible regions with the least amount of budget spent.

A common choice for the budget is the number of (sampling) iter-

ations. This is a good choice when every simulation has an equal

cost. However, simulation cost can vary depending on the design

parameters and is often unknown. Thus, some regions in the design

space are cheaper to evaluate than others.

In this work, we investigate if incorporating the unknown cost

in the AL strategy leads to better sampling and, eventually, faster

identification of the feasible region.
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1 INTRODUCTION
Consider a typical engineering problem where the engineer has

to search over a design space X ∈ R𝑑 to find an optimal solution.

Early in the design process, the engineer first explores the design

space (i.e., instead of optimization) to find distinct and feasible

design solutions. The design requirements are specified by a set of
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𝐿 constraints: 𝐺 (x) = (𝑔1 (x), . . . , 𝑔𝐿 (x))⊤ ≤ (𝑡1, . . . , 𝑡𝐿)⊤, where
𝑔𝑙 : R

𝑑 → R is the 𝑙-th constraint function with threshold 𝑡𝑙 .

As running simulations to calculate 𝐺 (x) is computationally ex-

pensive, there is a need for data-efficient sampling techniques for

feasible region identification (FRI). Active learning (AL) is a sequen-

tial approach that uses a surrogate model, a cheap approximation

of a simulation, to intelligently extend the data set D. The sam-

pling strategy of Bayesian AL is defined by an acquisition function

𝛼 (x,𝐺, t) which is optimized to find the next sample. In the case of

FRI, there are model-dependent acquisition functions that sample

along the boundary, like Entropy Feasible (EF) [4] and Probability
of being at the Boundary and Entropy (PBE) [6], and others that

sample inside the feasible regions, like Probability of Feasibility and
Variance (PoFV) [3].

A common choice for the surrogate model used by Bayesian

AL is a Gaussian Process (GP) [4] as it provides uncertainty infor-

mation for the prediction. In this work, we model each constraint

independently with a standard GP.

The AL strategy stops when a certain budget has been depleted.

Often the budget is defined by the number of iterations. This choice

is data-efficient and cost-effective when the simulations have an

equal cost. However, there exist engineering problems where the

simulation cost, measured in time, money, or energy, can vary in

the design space.

Research to date has focused on cost-aware Bayesian Optimiza-

tion methods for hyperparameter optimization. These cost-aware

methods either incorporate the known cost in the acquisition func-

tion [9] or model the unknown cost [5]. To our knowledge, cost-

aware extensions have not been investigated for engineering prob-

lems or acquisition functions for FRI.

Our contribution is to extend the PoFV acquisition function with

cost-aware strategies by adding a fixed cost component [8] or using

cost-cooling [5]. In both cases, the cost is unknown and modeled

by a GP. We test this extended approach on a highly-constrained

engineering problem with an artificial cost function.

2 COST-AWARE ACTIVE LEARNING ON A
REAL-WORLD PROBLEM

We focus on extending the PoFV acquisition function because the

cost can also influence the sampling in the feasible region. For

problems with multiple constraints, PoFV can be defined as:

𝛼 (x,𝐺, t) =
𝐿∏
𝑙=1

𝑝
(
𝑝 (𝑔𝑙 |x,D𝑙 ) ≤ 𝑡𝑙

)
𝜎2
𝑙
(x), (1)

where we multiply the probability of feasibility by the predictive

variance for each constraint.
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Algorithm 1 CAAL: Cost-Aware Active Learning

1: procedure CAAL(design space X, initial data set size 𝑁 , constraint

models 𝐺̂ = {𝑔1, . . . , 𝑔𝐿 }, cost model 𝑐 , budget 𝛽)

2: D = 𝐺
(
𝐻𝑎𝑙𝑡𝑜𝑛 (X, 𝑁 )

)
⊲ Initial space-filling data set [2]

3: Update {𝑔1, . . . , 𝑔𝐿 }, 𝑐
4: 𝑏 ← 0, 𝜅 ← 1 ⊲ Cumulative cost 𝑏, cost-weight 𝜅

5: while 𝑏 ≤ 𝛽 do
6: x∗ ← 𝑎𝑟𝑔𝑚𝑎𝑥x

𝛼 (x,𝐺̂,t)
𝑐 (x)𝜅 ⊲ 𝛼 from Eq. 1

7: Extend D with𝐺 (x∗ )
8: Update 𝑏, {𝑔1, . . . , 𝑔𝐿 }, 𝑐
9: 𝜅 ← 𝛽−𝑏

𝛽
⊲ Only when cost-cooling

10: end while
11: end procedure
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Figure 1: Speed Reducer problem: MCC of (a) all constraint
models combined; (b) less restrictive constraint model; (c)
most restrictive constraint model. The mean and standard
deviation of 10 runs are plotted for 𝛽 = 600.

We discuss two approaches to adding cost awareness. Firstly, we

consider the fixed cost approach by Snoek et al. [8]. The acquisition

value is divided by the predicted cost 𝑐 (x). We refer to this method

as PoFV-FC. Secondly, we use the cost-cooling approach by Lee

et al. [5]. The cost-cooling method further denoted as PoFV-CC

uses a cost-weight 𝜅. Hence, the influence of 𝑐 (x) decreases as
the AL method progresses. Algorithm 1 shows the cost-aware AL

method. Note that the fixed cost approach can be written with the

cost-weight, where 𝜅 = 1 at every iteration, and line 9 is skipped.

The cost-aware approaches are tested on an adapted version of

Golinski’s Speed Reducer problem [7] with seven design variables

and seven constraints (see supplementary material A). Experiments

show that 𝑔7 is the most restrictive constraint, while 𝑔3, 𝑔4, and 𝑔5
are not restricting the design, so always feasible. The feasibility ratio

on a data set of 1000 samples is 56.54%. We chose an exponential

cost function as described in the supplementary material.

Figure 1 compares the cost-aware acquisition functions. The

models are tested on 1000 samples using the Matthews Correlation
Coefficient (MCC) [1], a balanced correlation coefficient. Figure 1a

combines the performance of all constraint models. All methods

give similar results. However, the individual performance depicted

in Figures 1b and 1c shows that less restrictive models have been

learned better with the cost-aware methods. No improvement is

visible for the most restrictive constraint model, which defines the

feasible region.

Looking at the final data set, PoFV-CC and PoFV-FC sampled

on average 2–3 additional samples, compared to PoFV using the

same budget. Of those samples, there is an increase in the number

of feasible designs, which the engineer can further use. 77.2% of the

PoFV data set is feasible, while 81.9-83.3% is feasible for, respectively,

PoFV-CC and PoFV-FC.

3 CONCLUSION
Although the cost-aware methods do not lead to significant model

performance improvement, the final data set contains more designs.

Furthermore, there is an increase in the number of feasible designs

that the engineer can use in the next steps of the design process.

Future research should focus on testing the approaches on more

real-world problems with artificial and actual cost functions. On

top of that, the cost-aware extensions can also be combined with

other acquisition functions.

ACKNOWLEDGMENTS
Ioana Nikova gratefully acknowledges the financial support from

the Flemish Agency on Innovation and Entrepreneurship (VLAIO)

for the Baekeland Research Project HBC.2021.0841. This work has

also been supported by the Flemish Government under the Flanders

AI Research Program.

REFERENCES
[1] Sabri Boughorbel, Fethi Jarray, and Mohammed El-Anbari. 2017. Optimal classifier

for imbalanced data using Matthews Correlation Coefficient metric. PloS one 12, 6
(2017), e0177678.

[2] JohnH. Halton andG. B. Smith. 1964. Algorithm 247: Radical-inverse quasi-random

point sequence. Commun. ACM 7 (1964), 701–702.

[3] Arun Kaintura, Kyle Foss, Ivo Couckuyt, Tom Dhaene, Odysseas Zografos, Adrien

Vaysset, and Bart Sorée. 2018. Machine learning for fast characterization of

magnetic logic devices. In 2018 IEEE electrical design of advanced packaging and
systems symposium (EDAPS). IEEE, 1–3.

[4] Nicolas Knudde, Ivo Couckuyt, Kohei Shintani, and Tom Dhaene. 2019. Active

learning for feasible region discovery. In 2019 18th IEEE International Conference
On Machine Learning And Applications (ICMLA). IEEE, 567–572.

[5] Eric Hans Lee, Valerio Perrone, Cedric Archambeau, and Matthias Seeger. 2020.

Cost-aware Bayesian optimization. arXiv preprint arXiv:2003.10870 (2020).
[6] Alma Rahat and Michael Wood. 2020. On Bayesian search for the feasible space

under computationally expensive constraints. In Machine Learning, Optimization,
and Data Science: 6th International Conference, LOD 2020, Siena, Italy, July 19–23,
2020, Revised Selected Papers, Part II 6. Springer International Publishing, 529–540.

[7] Tapabrata Ray. 2003. Golinski’s speed reducer problem revisited. AIAA journal 41,
3 (2003), 556–558.

[8] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian

optimization of machine learning algorithms. Advances in neural information
processing systems 25 (2012).

[9] Kevin Swersky, Jasper Snoek, and Ryan P Adams. 2013. Multi-task bayesian

optimization. Advances in neural information processing systems 26 (2013).

2287



Cost-Aware Active Learning for Feasible Region Identification GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

A GOLINSKI’S SPEED REDUCER PROBLEM
For this work, we adapt the original Speed Reducer problem [7] to

have seven constraints from the original eleven. The constraints

and variables are as follows:

𝑔1 (x) = 27 − 𝑥1𝑥22𝑥3 ≤ 0,

𝑔2 (x) = 1.93 −
𝑥2𝑥

4

6
𝑥3

𝑥3
4

≤ 0,

𝑔3 (x) = 1.93 −
𝑥2𝑥

4

7
𝑥3

𝑥3
5

≤ 0,

𝑔4 (x) = 𝑥2𝑥3 − 40 ≤ 0,

𝑔5 (x) =
𝑥1

𝑥2
− 12 ≤ 0,

𝑔6 (x) = 1.5𝑥6 − 𝑥4 + 1.9 ≤ 0,

𝑔7 (x) = 1.1𝑥7 − 𝑥5 + 1.9 ≤ 0,

where 2.6 ≤ 𝑥1 ≤ 3.6, 0.7 ≤ 𝑥2 ≤ 0.8, 17 ≤ 𝑥3 ≤ 28, 7.3 ≤ 𝑥4, 𝑥5 ≤
8.3, 2.9 ≤ 𝑥6 ≤ 3.9, and 5 ≤ 𝑥7 ≤ 5.5.

The artificial cost functionwas chosen based on the variables that

define the most restrictive constraint 𝑔7. By choosing the variables

𝑥5 and 𝑥7 we want to influence the learning of the most restrictive

constraint with the cost. Hence, the exponential cost function used

in the experiments is:

𝑐 (x) = 𝑒𝑥7

2𝑥5
.
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