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Abstract

It is widely known how the human ability to cooperate has influenced the thriving of our spe-

cies. However, as we move towards a hybrid human-machine future, it is still unclear how

the introduction of artificial agents in our social interactions affect this cooperative capacity.

In a one-shot collective risk dilemma, where enough members of a group must cooperate in

order to avoid a collective disaster, we study the evolutionary dynamics of cooperation in a

hybrid population. In our model, we consider a hybrid population composed of both adaptive

and fixed behavior agents. The latter serve as proxies for the machine-like behavior of artifi-

cially intelligent agents who implement stochastic strategies previously learned offline. We

observe that the adaptive individuals adjust their behavior in function of the presence of arti-

ficial agents in their groups to compensate their cooperative (or lack of thereof) efforts. We

also find that risk plays a determinant role when assessing whether or not we should form

hybrid teams to tackle a collective risk dilemma. When the risk of collective disaster is high,

cooperation in the adaptive population falls dramatically in the presence of cooperative artifi-

cial agents. A story of compensation, rather than cooperation, where adaptive agents have

to secure group success when the artificial agents are not cooperative enough, but will

rather not cooperate if the others do so. On the contrary, when risk of collective disaster is

low, success is highly improved while cooperation levels within the adaptive population

remain the same. Artificial agents can improve the collective success of hybrid teams. How-

ever, their application requires a true risk assessment of the situation in order to actually

benefit the adaptive population (i.e. the humans) in the long-term.

Introduction

As Artificial Intelligence (AI) systems are making more and more decisions autonomously, we

are relinquishing decision control, for example by allowing intelligent machines to accomplish

some of our goals independently or alongside us (e.g., using Google translate to enable busi-

ness opportunities across different languages [1]), within the context of hybrid human-

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0297213 February 9, 2024 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Terrucha I, Fernández Domingos E, C.

Santos F, Simoens P, Lenaerts T (2024) The art of

compensation: How hybrid teams solve collective-

risk dilemmas. PLoS ONE 19(2): e0297213.

https://doi.org/10.1371/journal.pone.0297213

Editor: The Anh Han, Teesside University, UNITED

KINGDOM

Received: October 10, 2023

Accepted: December 29, 2023

Published: February 9, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0297213

Copyright: © 2024 Terrucha et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All computational

files used to reproduce the results contained in this

work are available from the Zenodo database at

https://doi.org/10.5281/zenodo.10406595.

https://orcid.org/0000-0003-2086-1644
https://orcid.org/0000-0002-9569-9373
https://orcid.org/0000-0003-3645-1455
https://doi.org/10.1371/journal.pone.0297213
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297213&domain=pdf&date_stamp=2024-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297213&domain=pdf&date_stamp=2024-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297213&domain=pdf&date_stamp=2024-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297213&domain=pdf&date_stamp=2024-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297213&domain=pdf&date_stamp=2024-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297213&domain=pdf&date_stamp=2024-02-09
https://doi.org/10.1371/journal.pone.0297213
https://doi.org/10.1371/journal.pone.0297213
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.10406595


machine socio-technical systems (e.g., sharing the road with self-driving cars [2]). Given the

extraordinary difficulties humans have demonstrated when trying to overcome global crises,

such as the COVID-19 pandemic [3] or climate change [4], the question can be raised on

whether and how AI agents may help to resolve the problems in coordinating the efforts in

those and similar mixed-motive situations.

Even though many different works have advocated for the introduction of beneficial AI to

promote human prosociality [5–7], others have pointed out that humans may be keen to

exploit this benevolent AI behavior in their own favor [8–11]. Thus, before flooding society

with AI applications with the promise that they could solve some of the most pressing societal

issues, it is worth asking: What behavioral responses can be expected in the presence of AI

partners? How may decision-making potentially be affected? Will hybrid groups involving AI

agents with predefined decision processes (and humans capable of adapting their own behav-

ior freely) actually achieve greater collective success?

We frame here these questions within the context of the Collective Risk Dilemma (CRD)

[4], a game that abstracts the conflict between helping the group to achieve a future goal at a

personal cost, or free ride on the efforts of others and just collect the gains associated with

achieving the goal (see Methods). The CRD is a public goods game with a delayed reward that

is associated with societal problems like pandemic control through vaccination, climate negoti-

ation to achieve CO2 reduction and energy-grid usage by prosumers. Many experiments to

assess human behavior have been performed [4, 12–15], where [16] found that replacing all

human action by artificial delegates has a positive impact on the success rate in the CRD. They

also showed that hybrid groups, i.e. groups made of both humans and artificial agents with a

pre-defined, non-adaptive behavior, do not achieve higher success rates than non-hybrid

(human-only) groups of the same total group size.

Here we expand on that experimental work and hypothesize that the way one evaluates the

performance of the hybrid team, namely, the control group used to compare it with, will influ-

ence the resulting observations. In the experimental work carried out in [16], on the one hand,

the control group is the original non-hybrid team of the same size, which by the substitution of

some group members by artificial agents forms the hybrid team. On the other hand, one may

consider also the notion of hybrid group formation via addition: artificial agents are intro-

duced in non-hybrid teams without substituting any pre-existing group members. Changing

the original non-hybrid team, or the context of team formation, in this manner, may have

repercussions on the performance metrics of the resulting hybrid team (see Methods). This

manuscript aims to unravel the behavioral dynamics of hybrid human-agent groups, and pro-

vide knowledge on how to better assess and curate human-AI teams to tackle mixed-motive

and competitive scenarios of varied risk probabilities in accordance to the non-hybrid context

from which they derive (substitution or addition).

Two types of participants are considered in the hybrid groups, i.e. adaptive individuals

that can change their behavior over time based on the outcome of their interactions (a

proxy for potential human responses) and artificial agents that capture an automated proba-

bilistic response that does not change as a result of the interactions (a proxy for average arti-

ficial agent behavior). We apply a social learning approach (see Methods) to alter the

strategy of the first type of individuals. They can switch between the possible actions in

function of their success in the interactions; both when there are other adapting individuals

or stochastic artificial agents in groups of a given size. Such social adaptation can be

achieved in different ways (e.g. Roth-Erev learning [17], Q-learning [18]), but here an evolu-

tionary game theoretical approach is considered wherein strategic behaviors change in the

adaptive individuals population by imitating those individuals that are performing the best

[19–23].
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In our model, the automated response of every artificial agent does not consider continuous

learning; rule-based systems are often used in AI products and they are hard-wired in the sys-

tems, as learning on the fly might be costly or even dangerous. Thinking about real-world AI

applications, one should always consider that producers of AI products want to give guaran-

tees on what the product does (also on what its limitations are, which is why we model agent

behavior as a stochastic process that includes errors), and that allowing for extensive adapta-

tion while in use may be very risky. It is also important to note that in this work, we are not

considering the artificial agent designer, neither the dynamics involved behind them, whose

self-interest might lead to the implementation of different behaviors in the artificial agents. We

are simply probing: If we consider this space of behaviors for artificial agents, what kind of

human behaviors may potentially emerge given constant hybrid interactions? Even though

CRD scenarios may be used to model very high risk events like a pandemic or the climate

change, the same kind of non-linearity could be observed within many industrial or software

hybrid teams, where, if the project is not delivered, may suffer the consequences of losing their

bonuses or even their jobs. Moreover, many teams may already could be considered hybrid if

one takes into account the productivity software agents that are already used to make develop-

ment or business processes more efficient.

We will show that, at least when the risk is high, the adaptive individuals in hybrid teams

will exploit the benevolence of the artificial agents in their group, by avoiding to contribute

with cooperative efforts when their artificial counterparts are already meeting the threshold

needed, as previously hinted to in [11]. On the contrary, when the artificial agents added to

each group are associated with a lower capacity to contribute for the collective endeavor,

because the risk of loss is high, the adaptive population will boost its cooperation levels to com-

pensate for the bad behavior of the agents. However, when we assess whether or not the hybrid

team performs better than the original non-hybrid team, we generally find that success rates

only increase in lower risk situations. The exception being when the original non-hybrid team

was actually unable to reach the threshold on its own, in which case adding artificial members

to its group will always increase the success rate in the long-term.

Related work

In [8] it is pointed out that more experimental research is needed to really understand how

human strategic decision-making changes when interacting with autonomous agents. Follow-

ing on this [9], compiles a review of more than 90 experimental studies that have made use of

computerized players. Its main conclusions validate that indeed, human behavior changes

when some of the other players are artificial, and furthermore, the behavior deviates to become

more rational (or in other words, selfish), where humans are observed to actually try to exploit

the artificial players.

This last conclusion was both supported by [10, 11]. The first finds that humans cheat

more against machines than against other humans, and thus prefer to play with machines, in

an experiment that tested honesty in opposition to the possibility of higher financial gains.

The latter recently published an experimental study that concludes that humans are keen on

exploiting benevolent AI in various different classical social dilemma games. Within the con-

text of the CRD used for the present work [16], groups participants in hybrid teams with AI

agents. Even though 3 out of the 6 group members were AI agents that were successful in

avoiding the risky outcome in previous treatments, the hybrid groups were not more suc-

cessful than only-human groups. Looking closer at the results, one can see that the average

payoff of the humans in hybrid teams actually increases. These experimental results already

hint towards the adoption of a compensatory behavior on part of the human members of the
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group once they are informed about the addition of somewhat collaborative agents to the

group.

In contrast with aforementioned works [5, 6] point, towards the possibility of engineering

prosociality in human behaviour through the use of pro-social AI agents. In the pursuit of this

idea [7], assembles a comprehensive review on the use of robots and virtual agents to trigger

pro-social behaviour. Out of 23 studies included, 52% reported positive effects in triggering

such cooperative behavior. However, 22% were inconclusive and 26% reported mixed results.

Moreover, while recent experimental works show that programming autonomous agents [24]

that include emotion [25] or some form of communication [26] may positively impact human

cooperation, it is still unclear what are the mechanisms facilitating this effect.

More directly related to our theoretical study, there are different works on the dynamics of

how evolving populations adapt their behavioral profile given the introduction of agents with

a fixed behavior (usually cooperative) either at the group level or at the population level [27–

32]. With our research questions, we also aim at understanding how the introduction of agents

with a fixed behavior, not necessarily cooperative, affects the evolution of cooperation.

Methods

The one-shot Collective Risk Dilemma (CRD)

In this manuscript we adopt the N person one-shot CRD [18, 33–38]. Here, a group of N indi-

viduals must each decide whether to Cooperate (C), by contributing a fraction c of their initial

endowment b, or to Defect (D) and contribute nothing. If the group contains at least MC play-

ers, i.e., the group contributes in total Mcb (M� N) to the public good, then each player may

keep whatever is left of their initial endowment. Otherwise, there is a probability r that all play-

ers will loose all their savings and receive a payoff of 0, hence the dilemma. Thus, the expected

payoff of a D and a C player can be defined in functions of the number of Cs in the group, j:

pDð jÞ ¼ bð1 � r þ ryð j � MÞÞ ð1Þ

pCð jÞ ¼ pD � cb ð2Þ

where θ(x) is the Heaviside unit step function, with θ(x) = 0 if x< 0 and θ(x) = 1 otherwise.

CRD with hybrid interactions

We consider a population H of Z adaptive individuals which are randomly sampled into

groups of size N − a to play the CRD with a artificial agents from population A (whose individ-

uals display a fixed averaged behavior). This allows us, as explained in the section below, to

investigate the population dynamics of this dilemma. When engaging in group interactions,

each adaptive individual can either cooperate C or defect D. The state of the population is then

defined by the number of cooperators k 2 [0, Z]. The behavior of the fixed artificial agents is

defined by their probability of cooperating in each interaction, p 2 [0, 1], thus, they implement

a stochastic (or mixed) strategy. In each group we can calculate the expected payoff of Ds or Cs

in function of the number of cooperators from the adaptive population, i, the number of fixed

agents a and the payoff of a D (C) πD(C):

PDðCÞði; a; pÞ ¼ ppDðCÞð j ¼ iþ aÞ þ ð1 � pÞpDðCÞðj ¼ iÞ ð3Þ

The behavioral dynamics exhibited by the population of adaptive individuals are governed

by a social learning mechanism, where two randomly chosen individuals compare their fitness

and imitate the one who is more successful within their social environment [19–23]. Their
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fitness is the measure of the success of their current strategy (their payoff) averaged over all dif-

ferent group interactions. It can be defined as a function of the aforementioned variables by

taking into account the population state and the payoffs given by Eqs (1) and (2). Following on

this, the fitness equations for cooperative (C) and defective (D) strategies, can be written as:

fC ¼
Z � 1

N � a � 1

� �� 1
PN� a� 1

i¼0

k � 1

i

� �
Z � k

N � a � 1 � i

� �

PCðiþ 1; a; pÞ ð4Þ

fD ¼
Z � 1

N � a � 1

� �� 1
PN� a� 1

i¼0

k
i

� �
Z � k � 1

N � a � 1 � i

� �

PDði; a; pÞ: ð5Þ

Each individual in the adaptive population may change its strategy profile at a given evolu-

tionary step in the following way: an agent with a D (C) strategy is randomly selected from the

population H to adapt. With probability μ it will mutate into a C (D) strategy, otherwise, with

probability 1 − μ, it will compare its fitness with another randomly selected individual (assum-

ing the newly selected individual has a different strategy) [19–23, 33, 39]. In case imitation is

selected, a D (C) strategy will turn into a C (D) with a probability

PðD! CÞ ¼
1

1þ e� bð fC � fDÞ
ð6Þ

described by the Fermi function. This changes the state of the population H of adaptive agents

from k to k + 1. This probability becomes higher with a larger difference between the fitness of

the two agents, fC − fD, or with a larger selection strength of the process, β.

The transition probabilities that regulate the stochastic dynamics of population H, by defin-

ing the probability of increasing (+) or decreasing (-) the number of cooperators within a pop-

ulation are given by:

TþðkÞ ¼ Z� k
Z ð1 � mÞ k

Z� 1
PðD! CÞ

� �
ð7Þ

T � ðkÞ ¼ k
Z ð1 � mÞ

Z� k
Z� 1

PðC! DÞ
� �

ð8Þ

where P(C! D) is obtained by replacing C with D, and D with C in Eq (6).

From these equations, we can construct the complete Markov chain of the Z + 1 different

states that fully describe the evolutionary process of the population H. From this Markov

Chain we can compute the stationary distribution P(k), the average cooperation level C and

the average group success sG of each population configuration.

To compute the stationary distribution P(k), we retrieve the eigenvector corresponding to

the eigenvalue 1 of the tridiagonal transition matrix S = [pij]T [20, 22, 23]. The values pij are

defined by the equations:

pk;k�1 ¼ T�ðkÞ ð9Þ

pk;k ¼ 1 � pk;k� 1 � pk;kþ1 ð10Þ

where the formulas that define T±(k) can be consulted in Eqs (7) and (8).

From this it follows that the cooperation level C of population H (for a given set of parame-

ters N, M, r, a and p) by averaging the fraction of cooperators in each population state, k/Z,
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over the stationary distribution of states P(k) as given by:

C ¼
XZ

k¼0

PðkÞ
k
Z

ð11Þ

As already mentioned, within the context of the CRD [4, 18, 33–38] another relevant quan-

tity to derive is the probability of success of each group in reaching the threshold necessary of

M cooperators to avoid the collective risk.

At the population level, we compute the fraction of groups in each population state that are

successful by resorting to the multivariate hypergeometric sampling, as follows

sGðkÞ ¼
Z

N � a

� �� 1
PN� a

h¼0

k
h

� �
Z � k

N � h � a

� �

�

�ðpyðhþ a � MÞ þ ð1 � pÞyðh � MÞÞ
ð12Þ

where θ(x) is the Heaviside unit step-function as in Eqs (1) and (2) of the main text.

Finally, similarly to what was done in Eq (11), we calculate the averaged group success by

weighing the group success of each population state of Eq (12) over the stationary distribution

of the evolutionary process P(k):

sG ¼
XZ

k¼0

PðkÞsGðkÞ ð13Þ

The code used to compute all the aforementioned quantities and reproduce the results that

constitute this manuscript is made available at [40].

Forming hybrid teams through substitution or addition

As mentioned above, hybrid teams are formed by N − a adaptive individuals and a artificial

agents with a fixed behavior. Using Eqs (11) and (13) we are able to calculate the average coop-

eration level and success rate of a population H that evolves by playing the CRD in hybrid

teams with that configuration. To determine how well the adaptive population fares when

playing in hybrid teams, we should be able to compare these metrics with the results obtained

for non-hybrid teams, i.e. teams with a = 0, therefore only made of N adaptive individuals.

To this end, we introduce the idea of a control population, corresponding to a population

HC that evolves by playing the CRD in non-hybrid teams, and for which we compute both its

cooperation level CC and its success rate sC (subscript C refers to the control) following Eqs

(11) and (13), respectively, by adjusting the parameters N and a according to the control con-

figuration of its non-hybrid teams. We assume that hybrid teams are a result of either one of

two different processes—substitution or addition -, so that the control chosen to evaluate the

relative results of the hybrid team configuration differ, depending on the process used to form

the hybrid team.

The process of substitution refers to the formation of a hybrid team out of a non-hybrid

team of N group members by substituting a number a of these group members by artificial

agents. In this case, the non-hybrid team used as control will have N of adaptive individuals

only (a total group size NC = N), whereas the hybrid team whose performance we are evaluat-

ing will also have N group members, where N − a are adaptive individuals and a are artificial

agents. To calculate cooperation level and success rate for the control population with a non-

hybrid team group configuration—CS and sS (with a subscript S for substitution) -, we simply

take Eqs (11) and (13) and substitute a! 0, maintaining all the other variables already used to
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compute C and sG for the case of hybrid teams. In this case, we can write the relative gain in

cooperation level DCS and the relative gain in success rate DsS by the process of substitution as

shown below in Eqs (14) and (15), respectively.

DCS ¼ CG � CS ¼ CG � CGða! 0Þ ð14Þ

DsS ¼ sG � sS ¼ sG � sGða! 0Þ ð15Þ

Another way to form hybrid teams, rather than substituting group members by artificial

agents, is to simply add new members to the non-hybrid team which are artificial agents—a

process we define as addition. In this case, the non-hybrid team used as control will be made of

NC = N − a adaptive individuals only, and it is to be compared with hybrid teams made of N −
a adaptive individuals and a artificial agents, so N = NC + a. We consider this case to be a more

useful comparison for real applications, since from the ethical standpoint on the future of

work, hybrid teams should be created as an attempt to enhance human performance, rather

than to substitute human labour [41]. In this case, to calculate the cooperation level and suc-

cess rate of the control population, CA and sA (with a subscript A for addition), we use the

same Eqs (11) and (13) as for the accompanying hybrid scenario but we substitute a! 0 and

N! N − a, since for this control there are no artificial agents and the group size of the team is

considered to be the same as the number of adaptive individuals that are in the hybrid team

(NC = N − a in this case). For this case of addition, Eqs (16) and (17) show how to calculate the

gain in cooperation level (DCA) and in success rate (DsA) obtained by the formation of hybrid

teams.

DCA ¼ CG � CA ¼ CG � CGða! 0;N ! N � aÞ ð16Þ

DsA ¼ sG � sA ¼ sG � sGða! 0;N ! N � aÞ ð17Þ

Results and discussion

Compensation ensures high success, but adaptive individuals do not

cooperate when artificial agents do

To probe the question of whether or not to introduce artificial agents and form hybrid teams

to tackle a CRD, one of the first metrics to study is the success rate (Eq (13)) obtained by such

groups. Fig 1 shows how the average group success of an evolving population of adaptive indi-

viduals fares if they were playing the CRD within hybrid teams in three conditions; i) a<M<

N − a (Fig 1A), ii) a = M = N − a (Fig 1B) and iii) a>M> N − a (Fig 1C). The difference

between all three panels is in which type of individuals, i.e. adaptive (who are proxies for

humans) or fixed (who are proxies for artificial agents) behaviour individuals, can achieve

group success by themselves: in Fig 1A the threshold can be solely met by the adaptive ones, in

Fig 1B both the adaptive and the artificial agents can reach the threshold alone, while in Fig 1C

only the artificial agents can reach the threshold M by themselves. In all three scenarios, artifi-

cial and adaptive agents can cooperate together to reach the threshold M because (N − a) +

a = 6 which is always bigger than M = 3.

Starting by Fig 1A, one can immediately distinguish between high-risk scenarios where suc-

cess rate is almost always very high, and low-risk scenarios where reaching success appears to

be more difficult (almost) independently of other variables. Prior work on the CRD [18, 33–

38] identified this non-linearity in the game, which is related to the fact that in high-risk
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situations, individual payoffs are highly dependent on collective success whereas in lower risk

CRDs, it is more profitable to take the risk than to cooperate. In Fig 1A, where a<M and

therefore the success of the hybrid team depends on the N − a adaptive participants of the

group, this trend is clearly identifiable. In this case, variable p (see Eq (3)), that identifies the

given average level of cooperative behavior of the artificial agents in the group, appears to sim-

ply dim the risk boundary that separates high and low success rates, with the transition being

very abrupt for lower p but smoother for higher p, in which case the success rate is never very

low, even for low-risk scenarios.

When a = N − a = M in Fig 1B, and therefore the threshold could be met by either the artifi-

cial or the adaptive agents (or a combination of both, as in all cases), we see that indeed when p
is high—the artificial agents are very cooperative -, high success rates are uniformly achieved

for any risk factor. This is due to the fact that cooperation by the artificial agents alone is suffi-

cient to secure collective success for this case of a�M. However, for high risk, there is a

shadow of lower success rates for decreasing p. A semi-circle of high success can also be

observed in the top left region (high risk and low p). Since within this semi-circle the coopera-

tive level of the agents p would not be sufficient to ensure collective success, this semi-circle

must be associated with high levels of cooperation on the part of the adaptive individuals. Yet,

and this is highly intriguing, a shadow of lower success separates this semi-circle from the

region where the artificial agents are cooperative enough to achieve success by themselves.

When comparing that region of reduced success between the two extremes with the results in

Fig 1A, the adaptive individuals seem to have become less effective in achieving the goal, even

for high risk.

Finally, Fig 1C depicts a situation where the adaptive population by itself would not be able

to meet the required threshold to avoid collective disaster: N − a<M. The figure shows how

Fig 1. Average group success obtained for an adaptive population of individuals playing a CRD in hybrid groups. All images portray hybrid groups of

group size N = 6 where at least M = 3 must be cooperators in order to avoid risking losing their endowments with risk probability r in the y–axis. The x–

axis shows the probability of the a artificial agents in the group, who implement a fixed stochastic strategy, cooperating: p. Average group success is

illustrated following the color bar on the left side of the figure. In (A) hybrid groups are made of N − a = 4 adaptive individuals and a artificial agents, so

that a<M< N − a and adaptive individuals are able to meet the threshold on their own. In this case, for higher risk r, the hybrid groups achieve higher

success, a trend that is fairly independent from the probability of the artificial agents cooperating p. In (B) a = M = N − a = 3, again adaptive individuals can

meet the threshold M on their own, but the dilemma is harder since all of them would have to cooperate in order to do so. Two regions of high success are

surrounded by a shadow of lower success rates: when p is very high, independently of risk probability r; and a semi-circle on the top left corner of the

picture where risk is high and p is low. (C) represents hybrid groups made of N − a = 2 adaptive individuals and a = 4 artificial agents, so that adaptive

individuals would not be able to meet the threshold M on their own as a>M> N − a. In this case, average group success appear to change only in

accordance to the probability of the artificial agents cooperating p, independently from the risk of collective loss r. These results follow Eq (13), using the

parameters: Z = 100, μ = 0.01, β = 2, b = 1, c = 0.1.

https://doi.org/10.1371/journal.pone.0297213.g001
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collective success is completely dependent on the cooperation level encoded in the behavior of

the artificial agents in the group, i.e. p. When p is sufficiently high, then maximum success

rates are observed, and when p drops towards 0, success rate plummets accordingly.

To explain high success rates in regions of low p, or when a<M, in Fig 1, we hypothesize

that the cooperation level of the adaptive population must be compensating the insufficient

cooperative effort of the artificial agents in these cases. To support this hypothesis, Fig 2 shows

the average cooperation level observed for the adaptive population only, following Eq (11).

In Fig 2A, where adaptive individuals can reach the threshold on their own N − a>M, we

observe that their cooperation level alone is able to explain how the success rate changes with

respect to r and p, showing an almost fully correlated result to the one of Fig 1A. Interestingly

the cooperation level for the adaptive population presented in Fig 2B can only account for one

of the regions of high success previously identified in Fig 1B, given that the other one is con-

nected with the cooperative efforts of the artificial agents. Assigning an important role to the

artificial agents in the group, alters the overall behavior of the adaptive individuals: they

become more cooperative in the high-risk region but restrict their effort to a specific area of

the parameter space. Finally, since the adaptive population presents no cooperation whatso-

ever in Fig 2C, we can confirm that the success rates observed in Fig 1C are fully justified by

the efforts of the artificial agents in this case. Overall, we see that success can be obtained for a

wide array of different parameters (r and p) through a mechanism of compensation developed

by the adaptive population to cooperate whenever the artificial agents are not cooperating

enough.

However, the same mechanism will lead adaptive individuals to fully refrain from coopera-

tion when the number of artificial agents in the group and their cooperative effort is perceived

to be sufficient to attain collective success. In a way, the compensation mechanism can then

almost be described as an exploit of the artificial agents by part of the adaptive population.

Indeed, a negative consequence of this evolution of the adaptive population, is that even for

high risk scenarios, less than optimal success rates are obtained in Fig 1B and 1C. In Fig 1B,

Fig 2. Average cooperation level obtained for an adaptive population of individuals playing a CRD in hybrid groups. The same set-up (using the same

parameter choices) used in Fig 1 is recreated, but now we calculate average cooperation level following Eq (11). In (A) where N − a = 4 are adaptive

individuals and a artificial agents, so a<M< N − a, we see that the average level of cooperation in the adaptive population appears to solely explain the

average group success observed in Fig 1A. In (B), where a = M = N − a = 3, adaptive individuals can again meet the threshold M on their own, but the

dilemma is harder than in A), since all of them would have to cooperate in order to do so. High cooperation levels associated with the adaptive population

are restricted to an enclosed semi-circle on the top left of the figure, for high risk probability r and for lower cooperation levels on the part of the artificial

agents p. (C) represents hybrid groups made of N − a = 2 adaptive individuals and a = 4 artificial agents, so that adaptive individuals would not be able to

meet the threshold M on their own as a>M> N − a. In this case, the adaptive population does not cooperate at all.

https://doi.org/10.1371/journal.pone.0297213.g002
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the shadow of less than optimal average success rate could have been avoided if the adaptive

population was to cooperate more outside of the semi-circle observed in Fig 2B; and in Fig 1C

success could have extended for a wider range of p values if the adaptive population would

have cooperated a bit to complement the efforts of less cooperative artificial agents. In both

cases, a possible expectation mismatch about the artificial agents’ efforts led the adaptive popu-

lation to relax too much their own cooperative load.

Hybrid teams achieve higher success rates in low-risk CRDs than teams

without artificial agents

One of the main arguments for introducing artificial agents in a group to form hybrid teams

with adaptive agents, is precisely to test it as a solution to enhance group success in the CRD, a

question experimentally analysed in [16]. We thus analyse the two types of hybrid group for-

mation mechanisms discussed in the Introduction (see also Methods), and ask the question of

when do the results reported in Figs 1 and 2 actually signify an improvement in success and

cooperation when compared with non-hybrid teams (see next Section). In Fig 3 the results for

the substitution approach (see Methods) are provided wherein a of the non-hybrid group

members are replaced by artificial agents. The expected gain in group success is calculated

using Eq (15), where the observations as in Fig 1 are subtracted from the success of fully non-

hybrid groups.

A general pattern can be identified where we observe that success is generally enhanced in

low risk scenarios or in high risk scenarios where there are few agents (N − a� a, in panels A

and B) and they are not very cooperative (low p). However, when risk is high and agents are

cooperative, success appears to decrease in comparison with groups that would be made of

N = 6 humans with the same threshold M = 3. For the special case of Fig 3C where N − a< a,

when the agents are not cooperative and risk is high there is a big decrease in success when

compared with groups made only of adaptive individuals, probably because the latter do not

cooperate at all as we have observed in Fig 2C when grouped in hybrid teams of such a

configuration.

Fig 3. The effect of substitution, as a process to form hybrid teams, on success rate. The parameters referring to each hybrid group configuration are

shown on top of each panel, as is the control parameters that allow us to calculate sS (success rate for the non-hybrid groups before substitution). As in Fig

1: in (A) N − a = 4 and a = 2, in (B) N − a = a = 3 and in (C) N − a = 2 and a = 4. The plot shows that substituting part of the group by artificial agents with

different cooperative levels only improves success when the risk probability is low. For high-risk CRD scenarios, substituting a high number of group

members by artificial agents will greatly reduce the success rate that would otherwise be obtained by adaptive individuals playing the game alone. All images

are produced following Eq (15) and use the same other parameters as the previous figures in this manuscript.

https://doi.org/10.1371/journal.pone.0297213.g003
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Of course, substituting adaptive individuals by artificial agents is not the ideal application

in a real-world scenario. AI ethics and the concerns for the future of work [41] indicate that AI

agents (for which the artificial agents in this model try to account for) should be introduced in

working teams to enhance the work that is already being performed, rather than to substitute

human labour. With this in mind, we investigate the effect of addition (see Methods) as

another process of forming hybrid teams. In Fig 4, we therefore compare the hybrid team con-

figuration with a non-hybrid team made of the same number of NC adaptive agents, thus with-

out the added a artificial agents.

Similarly to Fig 3, we observe that when the risk of collective disaster is low, adding artificial

agents to the group will always benefit collective success. However, when the risk is high and

we add a small number of cooperative agents to the group, this can hurt group achievement

(Fig 4A and 4B). The main difference between substitution as shown in Fig 3 and addition as

now plotted in Fig 4, as a mechanism to better group performance in the CRD, is that adding

artificial agents to a group that would otherwise not be able to meet the threshold M will always

increase the success of that group as long as the artificial agents are somewhat cooperative

(p> 0). We also observe that for low p in Fig 4 there is no slight improvement of success in

high risk scenarios, something that was also observed in Fig 3A and 3B, but a situation that we

do not consider of relevance since it would be unlikely for an institution or organization to

purposefully add non-cooperative agents to a hybrid team tackling a high-risk CRD.

At high risk, highly cooperative artificial agents put the cooperative

capacity of adaptive individuals at risk

Even though success in avoiding the risky outcome is an important metric when studying the

CRD, we find it relevant to also understand how the introduction of artificial agents to form

hybrid teams affects the evolution of cooperation. As previously mentioned in the introduc-

tion, the world is growing more dependent on the use of AI applications to support human

Fig 4. The effect of addition, as a process to form hybrid teams, on success rate. Again we re-use the same hybrid team configuration for each of the

panels as in the previous figures. The control is now given by addition, changing the control parameters to the ones indicated in each panel title: in (A) the

control group configuration consists of N = 4 adaptive agents, in (B) of N = 3 adaptive agents and in (C) of N = 2 adaptive agents. Note that unlike in Fig 3,

the group configuration of the control in panel C is unable to meet the threshold without the added artificial agents. The results plotted follow Eq (17) and

show that adding artificial agents to the group only improves success when the risk probability is low or when the adaptive individuals would not be able to

reach the threshold M on their own (as in panel C where N − a<M). For high-risk CRD scenarios where N − a�M, adding artificial agents will only

reduce or, at best, maintain the success rate they would otherwise already achieve on their own.

https://doi.org/10.1371/journal.pone.0297213.g004
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decision-making and performance, though we still have little understanding of how this

machine dependence might affect human skills in the long-term. Limiting our study to social

dilemma situations, the skill in question is precisely the human capacity for cooperation. Fig 5

presents what the effect of forming teams through a process of substitution might have on the

average cooperation level obtained by the population of adaptive individuals. The figure shows

again the results for the 3 different cases, as was done in Fig 3, now following Eq (14) to calcu-

late the gain in cooperation.

Examining Fig 5, we can see that cooperation can be enhanced by the constitution of hybrid

teams through the substitution of some group members by artificial agents, but only if certain

conditions are met. When risk is high, we see that cooperation can be enhanced when the arti-

ficial agents in the group are not so cooperative (low p) and there are still at least as many

humans in the group as the number of cooperators needed to meet the threshold (N − a�M),

as in panels A and B of Fig 5. However, when the artificial agents are cooperative (high p), risk

is high (high r)—reference to panels A and B—or the number of adaptive agents in the group

would not suffice the cooperation requirements to achieve success on their own (N − a<M)

—panel C -, then the adaptive population would exhibit higher levels of cooperation if not

playing the CRD in a hybrid team. Again, following the analysis of Figs 3 and 4, we find that

when the risk of collective disaster is low enough, substituting adaptive individuals by artificial

agents has essentially no effect on cooperation (the exception being the small boost found in

the case of N − a>M> a in Fig 5A).

As previously discussed however, the hybrid team configuration might spur from the addi-

tion of artificial agents to a team made of N − a adaptive agents, instead of substituting a adap-

tive agents from a team of N. To study this effect of addition in the forming of hybrid teams,

we produce Fig 6, where we use Eq (16) to plot the difference between the results already

shown in Fig 2 and the results that an adaptive population would have obtained if playing in

teams made only of N − a = 4 (panel A), N − a = 3 (panel B) and N − a = 2 (panel C) with

a = 0.

Fig 5. The effect of substitution, as a process to form hybrid teams, on cooperation level. All images were produced using the same parameters as the

ones in Fig 3, now following Eq (14) to calculate the gain in cooperation level, rather than the effect on success rate. As indicated in the titles of each panel,

the hybrid team configuration once again refers to: in (A) N − a = 4 and a = 2, in (B) N − a = a = 3 and in (C) N − a = 2 and a = 4. The plot shows that

substituting part of the group by cooperative artificial agents will generally decrease the cooperation exhibited by the population if it was grouped in non-

hybrid groups of the same group size N. The exception being the case of panel A, where N − a>M> a for the region of low-risk. Substituting part of the

group by less cooperative artificial agents might increase cooperation in the adaptive population when N − a� a and risk is high, although it is an unlikely

scenario in real-life applications for these to be introduced in high-risk CRD scenarios.

https://doi.org/10.1371/journal.pone.0297213.g005
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Fig 6 further restricts the positive impact that hybrid teams might have in the evolution of

cooperation on the adaptive population: only when the risk is low (low r) and the artificial

agents added to the team could not reach the threshold on their own (a<M)—focus on Fig

6A -, does the addition of artificial agents benefit the cooperation capacity of the adaptive pop-

ulation. Whereas for low p and high risk r there was also a positive impact in the cooperation

capacity when addressing the case of substitution in Fig 5, in this case of addition no difference

is observed within this set of parameters. Similarly, even though substituting the greater part of

a team by artificial agents would seriously impair that team’s cooperative capacity when the

risk is high (Fig 5C), adding artificial agents to a team that would not be able to meet the

threshold on their own (N − a<M) does not change the cooperation level of that cooperative

capacity (Fig 6C).

Conclusions

In this work we investigated what behavior is selected by social learning in the context of the

one-shot CRD, when interactions occur in hybrid groups made of adapting individuals (a

proxy for human decision-making) and artificial agents with fixed probabilistic behaviors (a

proxy for average AI behavior). This model is used as a thought experiment to reason about

the behavior one could expect in hybrid groups of humans and AI agents. It focuses on mixed-

motive situations where there is a conflict between individual and common interests, but also

a risky outcome where the lack of cooperation does not immediately correspond to collective

loss. One of the main contributions of this work is to reveal the importance of context and

choice of the control group: even though it appears in hindsight as an obvious result, the addi-

tion of artificial agents to a group that would not be able to reach the threshold on its own

always increases success (Fig 4C). However, the wrong choice of control, for example, if one

would compare the hybrid team with a non-hybrid team of the same group size, its

Fig 6. The effect of addition, as a process to form hybrid teams, on cooperation level. To reproduce this figure, the same parameters already used in Fig

4 are used as input into Eq (16). Therefore, as indicated in the subtitles of each panel: in (A) there are N − a = 4 adaptive agents in both the control and the

hybrid case, with a = 0 in the control and a = 2 otherwise; in (B) N − a = a = 3 for the hybrid teams and N − a = 3 but a = 0 in the control; and in (C) N −
a = 2 for both scenarios, but a = 4 in the hybrid case and a = 0 in the control. The plot shows that adding artificial agents to the group can only boost

cooperation in the adaptive population when the risk r is low and N − a> a. Otherwise, their addition will only decrease or the level of cooperation

observed for a population where groups of the same N − a number of adaptive individuals try to tackle the CRD on their own. When the risk is high and N
− a� a, adding a cooperative artificial agents to the group can greatly impair the cooperation level observed in the adaptive population, as shown in panels

A and B.

https://doi.org/10.1371/journal.pone.0297213.g006
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performance appears to be very negative both in terms of group success in the high-risk region

(Fig 3C) and in terms of the cooperation level (Fig 5C). To our knowledge, this work is the

first concerned with this discussion on how the context of the hybrid team formation may

influence its relative performance.

The model allowed us to understand that the benefits of introducing artificial agents in

teams to help solve a CRD highly depends on the risk associated with the failure to do so:

when the risk of loss is low, the introduction of artificial agents in the group always increases

success; when it is high, this is not true. We find this model of special interest since most social

dilemmas faced by our society also have a probabilistic, rather than deterministic, nature (for

example, dealing with pandemics [3] or climate change [4]). Even so, humans will rely on

biases and heuristics to evaluate risk, and will often misinterpret it [42]. Within this context,

the proposed model is ever more relevant as it shows that an under- or overestimation of the

risk of collective loss may lead to a wrong decision of whether or not to form hybrid teams to

tackle the dilemma.

Moreover, with the model, we have disentangled how the changes in success rate are related

to the effort produced by the artificial agents: whenever the latter are perceived as highly coop-

erative, the behavior of the adaptive population evolves to exploit the artificial agents’ benevo-

lence. An effect that has also been shown experimentally in [11]. However, when the artificial

agents are low contributors, the adaptive population shifts to compensate those low contribu-

tions. Yet, this is only true for higher risk levels, as in this case, reaching the goal is the only

means to secure payoff. These results are supported experimentally: in [16], hybrid teams were

not significantly more successful than only-human teams, but humans were observed to con-

tribute less at the expense of the artificial agents in their groups in a high-risk collective-risk

dilemma. On the other hand, when risk is low and there is not enough incentive for the adap-

tive population to change their behavior, the addition of artificial agents to the group does

seem to increase the group success rate. If the hybrid team does not solely depend on the artifi-

cial agents to meet the threshold, their addition might even contribute to a spike in the adap-

tive population in the long-term.

Even though previous experimental work [11, 16] corroborates some of the results reported

here, additional behavioral experiments are needed to truly validate all the conclusions. Such

experiments are left for future research given that a thorough experiment design with multiple

controls (in this case, by using different human-only group sizes to test the hypothesis of addi-

tion vs substitution) would require a significant effort and resources.

In general, the discussed research suggests that there is potential benefit of using AI to

increase the success rates of human-AI groups working together in low-risk scenarios. Never-

theless, our findings clearly show that the addition of artificial agents will not always be benefi-

cial if the AI designer is also concerned with at least maintaining the cooperation level of the

adaptive individuals before the hybrid team was formed. By working alongside cooperative AI,

humans might eventually adapt to relax their own cooperative efforts. Hence, we must either

identify AI policies that avoid this scenario and still promote cooperation to avoid collective

risks or promote other modes of interaction in-between hybrid teams. Our model provides a

tool to explore different risk scenarios simulated with different compositions of hybrid teams.

Such a tool could become the first step in assessing how to safely constitute hybrid teams to

effectively solve CRD-like problems.
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13. Milinski M, Röhl T, Marotzke J. Cooperative interaction of rich and poor can be catalyzed by interme-

diate climate targets. Climatic change. 2011; 109(3):807–814. https://doi.org/10.1007/s10584-011-

0319-y

PLOS ONE The art of compensation

PLOS ONE | https://doi.org/10.1371/journal.pone.0297213 February 9, 2024 15 / 17

https://doi.org/10.1016/j.trc.2020.102885
https://doi.org/10.1016/j.trc.2020.102885
https://doi.org/10.1073/pnas.0709546105
http://www.ncbi.nlm.nih.gov/pubmed/18287081
https://doi.org/10.1016/j.chb.2020.106547
http://www.nber.org/chapters/c14013
http://www.nber.org/chapters/c14013
https://ssrn.com/abstract=3485475
https://ssrn.com/abstract=3485475
https://doi.org/10.1016/j.isci.2021.102679
http://www.ncbi.nlm.nih.gov/pubmed/34189440
https://doi.org/10.1073/pnas.1102493108
https://doi.org/10.1007/s10584-011-0319-y
https://doi.org/10.1007/s10584-011-0319-y
https://doi.org/10.1371/journal.pone.0297213
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