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Abstract—Containerization has revolutionized application de-
ployments in current cloud platforms, enabling the flexible in-
stantiation of loosely-coupled microservices and enhancing opera-
tional efficacy. However, optimizing the performance of container-
based applications remains a challenge and a major topic in
cloud research. This paper studies the impact of queue sorting
in application scheduling, focused on complex inter-dependencies
among microservices. Queue sorting determines the deployment
order of containers in the infrastructure, typically based on
container priorities and resource requests. Optimizing these
algorithms directly influences scheduling efficiency and overall
application performance. This paper compares several schedulers
and sorting algorithms, leveraging extensive benchmark tests
conducted on the widely-used Kubernetes (K8s) platform. The
evaluation includes a novel sorting algorithm named Topological-
Sort, designed to prioritize containers for application scheduling
focused on microservice inter-dependencies. Results show the
significant impact of queue sorting on application performance,
with TopologicalSort algorithms outperforming default mecha-
nisms, yielding an average increase of 20% in throughput and
reducing response time by at least 15%. These results highlight
the importance of considering microservice inter-dependencies
for effective application deployment in modern container-based
environments.

Index Terms—Cloud, Orchestration, Containers, Kubernetes,
Performance, Queue Sorting

I. INTRODUCTION

In recent years, containerization technology has revolution-

ized how modern applications are deployed and managed [1],

[2]. Microservice-based architectures have gradually become

the widely accepted standard for application deployment in

today’s cloud platforms such as Amazon ECS [3], Kubernetes

(K8s) [4], and Red Hat OpenShift [5]. Traditional mono-

liths have been decomposed into multiple loosely-coupled

microservices, developed and deployed independently. This

paradigm shift improves deployment flexibility and scalability,

service portability, and operational efficiency, making contain-

ers the most popular choice for cloud-based infrastructures [6].

An essential part of the life-cycle management of con-

tainerized applications involves their scheduling on the in-

frastructure, considering various factors such as resource

availability (e.g., CPU, memory, and storage) and priority

levels. Scheduling systems determine a suitable node to host

each container, ensuring efficient execution to meet multiple

service-level objectives (e.g., latency requirements). However,
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efficiently orchestrating microservice-based architectures in

cloud platforms poses significant challenges due to microser-

vice inter-dependencies. Containers communicate and rely on

one another, forming complex dependencies essential for the

application’s proper operation. The existing literature often

overlooks these dependencies, resulting in suboptimal con-

tainer deployments and subsequent performance degradation.

This paper studies the impact of queue sorting in application

scheduling, which relates to the process of determining the

order in which containers are allocated in the infrastructure.

These algorithms typically optimize resource allocation and

reduce the overall execution time for scheduling, focused

on container priorities and resource requests. Only a few

works address container co-location or microservice inter-

dependencies [7]–[9]. This study investigates the impact of

different schedulers and sorting algorithms on application

deployment by performing extensive benchmark tests in dif-

ferent infrastructure topologies with multiple microservice

benchmark applications in the popular K8s platform.

Recently, in our previous work, a network-aware framework

named Diktyo [10], [11] has been proposed for the K8s

platform to enable network-aware placement of containerized

applications. A novel sorting algorithm named Topological-

Sort has been presented as part of the Diktyo framework,

developed to sort containers for application scheduling fo-

cused on microservice inter-dependencies. This paper aims

to provide insights regarding the performance of multiple

sorting algorithms in container scheduling and to identify

the most efficient algorithms for different workloads. Results

show that the applied sorting algorithm significantly impacts

application performance, with Diktyo TopologicalSort outper-

forming default sorting algorithms regarding the application’s

response time and throughput for several evaluated applica-

tions (Sec. V). This study helps application developers and

cloud providers to select appropriate sorting algorithms based

on the microservice inter-dependencies of their applications.

The main contributions of the paper are twofold:

• Sorting approach for microservice inter-dependencies:

Further insights are provided on why queue sorting and

microservice inter-dependencies play a major role in

application performance focused on the recent Topologi-

calSort plugin (Sec III).

• Evaluation with microservice-based applications: The

evaluation considers real-world microservice applications



TABLE I: Comparison of existing works related to application scheduling.

Authors Year Virtualization Dimension Main Focus
Microservice

Dependencies

Queue

Sorting

Evaluation

Method

Huang, K. C., et al. [15] 2015 VMs P P & R ✕ ✓ S

K8s PrioritySort [16] 2020 C P P ✕ ✓ K8s

Tang, B., et al. [17] 2022 C P & D P & R ✕ ✓ S

Hu, Y., et al. [18] 2017 C D D & QoS & T ✕ ✓ YARN

Narayanan, D., et al. [19] 2020 VMs D T & M ✕ ✓ S

Gao, Y., et al. [20] 2022 C D D & R ✕ ✓ YARN

Chung, A., et al. [21] 2018 VMs C R ✕ ✓ S

Liu, B., et al. [22] 2018 C C R & NB ✕ ✕ D

Ranjan, R., et al. [23] 2020 VMs & C C E & M ✓ ✓ S

K8s QoSSort [24] 2020 C C QoS & R ✕ ✓ K8s

Venkataraman, S., et al. [7] 2014 VMs L AP & L ✓ ✕ S + CT

Zhao, D., et al. [8] 2018 C L L & NB & R ✓ ✓ CT

Blöcher, M., et al. [9] 2021 C L & C & N L & NB & R ✓ ✓ S

Larumbe, F., et al. [25] 2017 VMs N & T NB & Top ✕ ✕ S

Rodrigues, L., et al. [26] 2019 C N NB & QoS & E ✕ ✓ S

Santos, J., et al. [27] 2019 C N & T NB & NL ✕ ✕ K8s

Ryu, B, et al. [28] 2020 VMs T Top & NB ✕ ✓ S

Muhammad, A., et al. [29] 2021 VMs T & N & C Top & NB & R ✕ ✕ CT

Volcano’s TaskTopology [30] 2021 C T & C T & R ✓ ✓ K8s

Diktyo’s TopologicalSort [31] 2022 C T AP ✓ ✓ K8s

Virtualization: VMs = Virtual Machines, C = Containers.
Dimension: P = Priority-aware, D = Deadline-aware, C = Cost-aware, L = Location-aware, N = Network-aware, T = Topology-aware.
Main Focus: P = Priorities, R = Resources, AP = App. Dependencies, D = Deadlines, QoS = Quality of Service, T = Throughput, Top = Topology-aware,
NB = Network Bandwidth, NL = Network Latency, M = Makespan, E = Energy Consumption, L = Location-aware.
Microservice Dependencies, Queue Sorting: ✓= addressed, ✕= not considered.
Evaluation Method: K8s = Kubernetes, S = Simulation, D = Docker, YARN = Apache YARN, CT = Custom-made Testbed.

typically used for benchmarking: a Machine Learn-

ing (ML)-based Multi-Stage Intrusion Detection System

(IDS) [12] capable of real-time cyberattack detection, a

test application named TeaStore (TS) [13], and a multi-

tier web application named Online Boutique (OB) [14].

Experiments in different K8s clusters show that Diktyo

sorting can increase throughput on average by 20% and

reduce the application’s response time by 15% (Sec. V).

The remainder of the paper is organized as follows: the

state-of-the-art on queue sorting is discussed in the next

section. Sec. III highlights the impact of microservice inter-

dependencies in application deployment, describing the Diktyo

approach focused on topological sorting. Sec. IV describes the

evaluation setup, followed by the results in Sec. V. Sec. VI

concludes this paper.

II. RELATED WORK

Container orchestration has been an active research topic

in recent years. Numerous studies have proposed various

scheduling policies to optimize container allocation in popular

cloud platforms. This section provides a review of the most

relevant works on application scheduling, mainly focusing on

approaches that investigate efficient queue-sorting algorithms.

Priority-aware scheduling has been extensively studied in

the last few years [15]–[17]. These algorithms typically sched-

ule workloads based on their priority or resource requests. In

[17], the authors aim to meet the deadline constraints of high-

priority tasks. However, practical implementations of these

methods are missing since most scheduling algorithms are

evaluated only by simulations. Deadline-aware methods [18]–

[20] focus mainly on meeting the deployment time restrictions

of applications while scheduling them in the infrastructure.

Apache YARN [32] has been vastly applied as an evaluation

platform, especially for works related to batch job scheduling.

In addition, several proposals focus on theoretical modeling,

such as Integer Linear Programming (ILP) models, to find the

optimal scheduling based on a particular objective. The main

drawback of these modeling approaches is that they cannot

find a feasible solution within an acceptable time, thus limiting

their applicability in operational environments. Nonetheless,

the modeling can serve as an optimal benchmark for heuristic-

based algorithms.

Cost-aware algorithms [21]–[24] have been widely studied

in recent years. These works focus mainly on optimizing

resources, such as CPU and memory usage, based on the

workloads that need scheduling. These proposals relate to task

assignment or job scheduling problems rather than deploying

long-running applications with several microservices as typical

K8s workloads. Location-aware scheduling has been investi-

gated recently [7]–[9]. These works optimize application per-

formance focused on resource dependencies [9] or data locality

[8]. The performance of data-intensive applications such as

Apache Hadoop or Spark jobs depends on the data awareness

of the scheduler since jobs share data and communicate with

each other [33]. Thus, dependent microservices are typically

co-located in the same compute node to improve performance.

However, practical implementations of these methods are

still scarce since most algorithms are mainly evaluated via

simulations or custom-made testbeds.
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Fig. 1: The Kubernetes (K8s) scheduling workflow [34].

Network-aware scheduling [25]–[27] has recently gained

growing consideration with the goal of optimizing network

bandwidth to reduce traffic congestion and improve application

performance. Despite this attention, practical implementations

of these methods are lacking since most network-aware al-

gorithms are evaluated only through simulations. Existing

works focus mainly on Virtual Machine (VM) placement,

and only a few studies address container allocation [26],

[27]. Topological-aware scheduling has also been addressed

lately [28]–[31]. The focus of these efforts is to optimize

network bandwidth [28] and resources [29] by placing VMs

or microservices according to cluster topology information

or application characteristics. The authors of these studies

strive to improve performance by prioritizing these factors.

Also, the Volcano project provides several plugins for K8s

focused on task scheduling. In particular, the TaskTopology

plugin [30] groups containers into buckets based on task

affinities to minimize data transmissions between dependent

tasks. The proposed TopologicalSort plugin [31] is designed

to incorporate application dependencies and determine precise

sorting strategies for long-running applications with numerous

microservices as typical K8s workloads.

To summarize, Table I compares all works referenced above,

including the proposed TopologicalSort algorithm, which is

integrated into the Diktyo framework. TopologicalSort goes

beyond the current literature since it considers the microser-

vice dependencies of the applications to determine the optimal

order for deploying complex microservice-based applications

in K8s clusters. Prior works mainly concentrate on theoretical

models and heuristics evaluated via simulations or small

testbeds, which limits their practical applicability in large-scale

production clusters.

III. TOWARD IMPROVED QUEUE SORTING IN KUBERNETES

A. The Kubernetes (K8s) scheduling workflow

Microservices in K8s are commonly deployed via a pod,

which is the smallest working unit in K8s capable of hosting

one or more containers running within the same execution en-

vironment [4]. Moreover, a K8s deployment can be employed

to efficiently manage multiple instances of pods running in

the cluster. Therefore, an entire microservice-based application

is composed of several K8s deployments. The deployment

of pods is typically determined by specific deployment re-

quirements and the available resources of the K8s cluster

(Fig. 1). The component responsible for scheduling opera-

tions is named Kube-Scheduler (KS), the default scheduler

in K8s. All pods submitted for scheduling are inserted into

a queue (i.e., activeQ) through an informer. The scheduling

queue consists of three main queues: activeQ, backoffQ, and

unschedulableQ. Pods awaiting scheduling in activeQ are

processed individually, meaning a single pod is fetched for

scheduling based on the applied queue sort plugin. Once a

pod is selected from activeQ, it is removed and passed into the

scheduler pipeline, along with the relevant information of the

cluster node obtained from the internal cache. In the event of a

scheduling failure, the pod is placed in either unschedulableQ

or backoffQ, depending on why the operation failed. Typically,

the pod is placed into the backoffQ if the node and pod

caches are modified during the pod’s scheduling. The wait and

binding processes occur asynchronously and in parallel. The

wait process ensures that pod-associated resources are ready,

such as the successful creation of volumes. Meanwhile, the

binding routine persistently stores the associations between

pods and nodes in K8s.

To facilitate the development of new scheduling algorithms,

K8s released a scheduling framework [35] that enables devel-

opers to implement their own methods and contribute to the

K8s project. Thus, developers can create plugins that integrate

with the existing scheduling components without interfering

with the main scheduling components. The framework pro-

vides various extension points, serving as entry points for

custom algorithm implementation. These extension points are

primarily responsible for the following functionalities:

• QueueSort: sort pods in the scheduling queue.

• PreFilter: pre-process information about the pod.

• Filter: filter out nodes that cannot run the pod.

• Score: rank nodes that have passed the filtering phase.

• NormalizeScore: modify scores before final ranking.

K8s is currently the de facto standard for deploying ap-

plications in the cloud, widely used by most companies, and

currently lacks context and network awareness in application

scheduling. This challenge was tackled by developing the

Diktyo framework that applies several extension points to han-

dle microservice dependencies and topology awareness in the

K8s scheduling process, which will significantly impact most

industries. Instead of exploring novel designs that can take

years to influence the current systems, we focus on solving

this issue by designing missing components based on readily

available features in K8s since network and topology aware-

ness are urgent needs [36]. The proposed TopologicalSort

plugin is detailed next, where pods in the scheduling queue

are sorted based on microservice inter-dependencies aiming

to improve the performance of container-based applications in

K8s clusters.



B. The influence of microservice inter-dependencies

Network latency is a primary concern when deploying

multi-tier applications since it affects the overall application

performance [37]. These applications typically include tens to

hundreds of microservices with complex inter-dependencies.

Current allocation strategies do not schedule dependent mi-

croservices with latency awareness, possibly resulting in large

distances between compute nodes hosting dependent microser-

vices. In addition, network bandwidth plays a key role,

especially for applications with high volumes of data transfers

among microservices. Spark jobs have regular data transfers

between mappers and reducers, and if the available network

bandwidth is insufficient to handle all these transfers, then

the performance degrades. These applications can benefit

from topology-aware scheduling strategies that determine the

service placement based on application dependencies and their

specific requirements in terms of latency and bandwidth. The

network latency and bandwidth may vary according to the

compute nodes hosting dependent microservices within the

underlying cloud infrastructure.

The Diktyo framework proposes two Custom Resources

(CRs) (i.e., AppGroup and NetworkTopology) to consider

both the application dependencies and the cluster network

topology when scheduling pods in K8s. Diktyo provides

network-aware algorithms implemented as three scheduling

plugins based on the K8s scheduler framework [34]: Topolog-

icalSort, NodeNetworkCostFit and NetworkMinCost. This

paper focuses on the impact of queue sorting in applica-

tion performance and how Diktyo optimizes performance by

considering application dependencies to sort pods needing

allocation. Further details about the Diktyo framework are

available in [10], [11], [38] since the framework has been

accepted in the open-source repository of the K8s scheduling

community as an alternative scheduler for K8s workloads.

C. Diktyo’s Topological Sorting

To determine Diktyo’s optimal allocation order, developers

need to specify all pod dependencies, indicating which pods

communicate with each other. An application might consist of

several interdependent pods, ranging from two to hundreds.

The preference is to schedule pods with tighter constraints

first, meaning those with a higher number of dependencies

to avoid potential blocking and starvation issues. However,

it is not a straightforward task to determine which pod has

tighter constraints. Diktyo addresses this challenge by using

six heuristic topological sorting algorithms [39] to calculate

the preferred scheduling order of an application, based on

the specified dependencies in the AppGroup CR. These algo-

rithms include Kahn, Tarjan, AlternateKahn, AlternateTarjan,

ReverseKahn, and ReverseTarjan.

Alternate Kahn modifies the order given by Kahn by select-

ing the first element of Kahn as its first element, the last of

Kahn as its second, the second of Kahn as its third, and so on.

AlternateTarjan follows the same pattern as AlternateKahn but

modifies the order of Tarjan. ReverseKahn and ReverseTarjan

essentially reverse the preferred order given by Kahn and

TABLE II: Topological sorting for the different applications.

Multi-Stage IDS application (3-deployments)

Algorithm Topological order

Kahn & Tarjan [P1, P2, P3]
Alt. Kahn & Alt. Tarj. [P1, P3, P2]
Rev. Kahn & Rev. Tarj. [P3, P2, P1]

Default (Cycle) [P1, P2, P3]
K8s Priority & QoS [P1, P2, P3]

TeaStore (TS) application (7-deployments)

Kahn [P1, P4, P3, P5, P7, P2, P6]
Alt. Kahn [P1, P6, P4, P2, P3, P7, P5]
Rev. Kahn [P6, P2, P7, P5, P3, P4, P1]

Tarjan [P1, P4, P3, P5, P7, P6, P2]
Alt. Tarj. [P1, P2, P4, P7, P3, P6, P5]
Rev. Tarj. [P2, P6, P7, P5, P3, P4, P1]

Default (Cycle) [P6, P2, P5, P4, P3, P7, P1]
K8s Priority & QoS [P6, P2, P5, P4, P3, P7, P1]

Online Boutique (OB) application (11-deployments)

Kahn [P1, P10, P9, P8, P7, P6, P5, P4, P3, P2, P11]
Alt. Kahn [P1, P11, P10, P2, P9, P3, P8, P4, P7, P5, P6]
Rev. Kahn [P11, P2, P3, P4, P5, P6, P7, P8, P9, P10, P1]

Tarjan [P1, P8, P7, P5, P4, P2, P11, P9, P10, P6, P3]
Alt. Tarj. [P1, P3, P8, P6, P7, P10, P5, P9, P4, P11, P2]
Rev. Tarj. [P3, P6, P10, P9, P11, P2, P4, P5, P7, P8, P1]

Default (Cycle) [P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11]
K8s Priority & QoS [P10, P2, P8, P4, P7, P1, P5, P3, P9, P11, P6]

Tarjan, respectively. These algorithms have been developed for

Diktyo since it is unclear which algorithm might be preferred

for a particular use case. While deploying pods with tighter

constraints might be preferred in most cases, it might be

undesirable for specific applications. The alternate sorting

algorithms allow the sequential deployment of tighter pods

and more flexible pods alternately, which can be beneficial

when tighter pods need allocation and dependent pods are not

yet deployed in the system. Table II presents the determined

order for all sorting algorithms based on the microservice-

based applications shown in Fig 2. Also, a default algorithm

has been developed for Diktyo to handle cyclic applications

since the aforementioned algorithms do not support cyclic

dependencies. The aim is to specify bidirectional dependencies

even if there is only one-way communication because certain

pods can be placed close to pods that communicate with

them. Depending on the selected sorting algorithm, significant

differences are observed in the deployment order. The K8s

PrioritySort and QoSSort are also shown to highlight the dif-

ferences between the proposed TopologicalSort and available

sorting algorithms. However, both provide an identical order

in our evaluation, as all pods have the same priority level, and

resource limitations are higher than resource requests (Sec. IV

- Table III).

The TopologicalSort plugin reorders pods in the schedul-

ing queue based on the calculated order. Each microservice

receives an index based on the preferred allocation order,

and TopologicalSort prioritizes pods with lower indexes. For

example, consider the TS application and the correspondent

order based on the KahnSort algorithm shown previously in

Table II. Depending on the selected two pods from TS by

the plugin, the result of TopologicalSort can be significantly

different while favoring low indexes (Fig. 3).



c

P1

Pre-binary cZero-day

P3

c

P2

Pre-multiclass

(a) Multi-Stage IDS application [12].

P6

Database

WebUI Registry

Image 
Provider

Auth Persistence Recommender

P2

P3 P4 P7P5

P1

(b) TeaStore (TS) application [40].

Email

Checkout

Ad

Payment

Shipping

Currency

Product Catalog

Frontend

Recommendation

Redis-cart

CartP8

P10

P6

P4

P1

P3

P2

P9

P11

P7

P5

(c) Online Boutique (OB) application [14].

Fig. 2: Illustration of microservice inter-dependencies in typ-

ical container-based applications. Blue lines represent addi-

tional dependencies included in the cycle version.

Application Group Kahn Topology Order

Deployment

P1

P2

P3

P4

P5

P6

P7

Preferred order index

P1 1

P4 2

P3 3

P5 4

P7 5

P2 6

P6 7

TopologicalSort Plugin Operation

pInfo1.Pod pInfo2.Pod orderP1 > orderP2 Result

P1 P3 False True

P6 P2 True False

P3 P7 False True

P4 P6 False True

P2 P3 True False

Fig. 3: Example of the TopologicalSort plugin operation [11].

IV. EVALUATION SETUP

This section presents an overview of the implemented

testbed used to evaluate the performance of the container-

based applications. Sec. IV-A shows deployment requirements

for the respective applications, and Sec. IV-B presents the K8s

cluster topologies.

A. Container-based Applications

Table III shows the deployment requirements for the three

evaluated applications. The first application (Fig. 2a) is a

Multi-Stage IDS [12] designed to detect both known and

unknown cyberattacks in real-time utilizing ML models. The

multi-stage detection process is split into three containerized

K8s deployments. Identified anomalies are forwarded to a

multi-class classifier to determine the attack class. Otherwise,

TABLE III: Deployment properties of the evaluated container-

based applications.

Application Deployment
CPU R/L

(in m)

MEM R/L

(in Mi)

Multi-Stage

IDS

pre-binary (P1) 500/1000 256/512
pre-multiclass (P2) 400/800 192/384
zero-day (P3) 100/200 64/128

TeaStore
(TS)

webui (P1) 500/1000 512/1024
registry (P2) 150/500 384/768
image (P3) 500/1000 512/1024
auth (P4) 500/1000 512/1024
persistence (P5) 500/1000 512/1024
db (P6) 150/500 128/256
recommender (P7) 150/500 384/768

Online
Boutique

(OB)

frontend (P1) 100/200 64/128
cart (P2) 200/300 180/300
product (P3) 100/200 64/128
currency (P4) 100/200 64/128
payment (P5) 100/200 64/128
shipping (P6) 100/200 64/128
email (P7) 100/200 64/128
checkout (P8) 100/200 64/128
recommend. (P9) 100/200 64/128
ad (P10) 200/300 180/300
redis-cart (P11) 70/125 200/256

TABLE IV: Expected latency (in ms) in Edge-cloud.

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

n1 – – 10 10 10 10 15 15 15 15
n2 – – 10 10 10 10 15 15 15 15
n3 10 10 – 3 3 3 5 8 8 8
n4 10 10 3 – 3 3 8 5 8 8
n5 10 10 3 3 – 3 8 8 5 8
n6 10 10 3 3 3 – 8 8 8 5
n7 15 15 5 8 8 8 – 13 13 13
n8 15 15 8 5 8 8 13 – 13 13
n9 15 15 8 8 5 8 13 13 – 13
n10 15 15 8 8 8 5 13 13 13 –

attacks are classified as unknown. The second application

(Fig. 2b) is TS [13], a microservice benchmark framework.

TS consists of seven K8s workloads with distinct performance

characteristics allowing the evaluation of scheduling and auto-

scaling techniques. Lastly, the third application (Fig. 2c) is the

OB application [14], an e-commerce application consisting

of eleven K8s deployments. It is a web-based marketplace

where users can browse and purchase items. Recent studies

have utilized OB to demonstrate novel advancements in the

microservice research domain.

B. Cloud Infrastructure

Fig. 4 shows the two evaluated infrastructure topologies.

Firstly, Fig. 4a represents a highly available cluster where

nodes are deployed across a single region. These nodes have

similar network connections, resulting in negligible delays in

the order of microseconds. Secondly, Fig. 4b shows a multi-

region cluster with different network connections. Table IV

shows the expected network delays for this topology. Both

topologies have been set up by using the imec Virtual Wall

(VWall) infrastructure [41] at IDLab, Belgium. Network de-

lays are emulated using TC [42]. Table V lists the software

versions applied to set up the K8s cluster.
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TABLE V: Software Versions of the Testbed.

Software Version

Kubeadm & Kubectl v1.22.4
Operating System Ubuntu 20.04.2 LTS
Docker docker://20.10.12
Linux Kernel 5.4.0-67-generic

TABLE VI: The testbed methodology: evaluated topologies,

applications, schedulers, and sorting algorithms.

Methodology Measurements

Infrastructure 2x types: Cluster, Edge-cloud
Application 3x types: Multi-Stage IDS, TS, OB
Scheduler 2x types: KS, Diktyo

Sorting Alg. 9x types: Priority, Cycle, Kahn, ... , Tarjan.
Scenarios 3x types: Initial, ScaleUp, ScaleDown

C. Testbed Methodology

An extensive set of experiments evaluates the performance

of the three applications when deployed with different sched-

ulers and with various sorting plugins, as outlined in Table VI.

Each experiment runs for three scenarios: the Initial phase,

where one instance of each workload was deployed; the

ScaleUp scenario, where all workloads were scaled up to

five replicas; and the ScaleDown phase, where three instances

per workload were terminated. To assess the performance

in terms of response time and throughput, a load generator

based on the locust load tool [43] was utilized. Emulated

users generated a mix of GET and POST requests to simulate

realistic workload conditions. Sec. V shows results with a 95%

confidence interval, with each configuration running at least

ten times to ensure statistical significance.
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Fig. 5: Benchmark of the QueueSort plugins for the OB

application. The execution time increases logarithmically over

the number of pods.

V. RESULTS

Time Complexity has been accessed via the Go testing

package that provides an integration testing utility that can

benchmark the performance of the queue sorting plugins.

Implemented integration tests evaluated the execution time and

scalability of all plugins: PrioritySort, QoSSort, and Topolog-

icalSort. Fig. 5 shows the plugins’ execution time based on

the number of pods in the scheduling waiting queue for the

OB application. Each test must run the code N times. During

its execution, N is adjusted until the benchmark function lasts

long enough to be timed reliably. The following output: 36378

- 31.52 ns/op means that the operation (i.e., plugin algorithm)

executed 36378 times at a speed of 31.52 ns per operation.

The execution time of all plugins increases logarithmically

with the number of nodes while remaining below 1 second

for 10000 nodes. The PrioritySort plugin is significantly faster

than both QoSSort and TopologicalSort, while TopologicalSort

is slightly more scalable than QoSSort. TopologicalSort can

handle 10000 pods in about 1.57 ms while QoSSort and

PrioritySort need 2.5 ms and 0.13 ms, respectively. These

results highlight that the proposed TopologicalSort algorithm

introduces minimal overhead in terms of execution time to

the K8s scheduling process. Furthermore, it demonstrates high

scalability even with a substantial number of pods (10,000).

Latency results concerning the application’s response time

in Fig. 6 demonstrate that the higher the number of K8s de-

ployments, the higher the impact queue sorting has on applica-

tion performance. Relatively small differences are observed for

the Multi-Stage IDS application, while discrepancies are more

noticeable for the TS and OB applications. Large fluctuations

exist between the evaluated schedulers and sorting plugins.

Also, the stable edge-cloud continuum topology created with

TC offers slightly higher performance than the cluster topol-

ogy, especially for the TS application. Although delays are

smaller in the cluster topology, these tend to fluctuate, resulting

in greater instability and unpredictability in the response time

of the TS application. Regarding the OB application, Diktyo

cycle achieves slightly higher performance compared to the

other schedulers (Fig. 7). On average, Diktyo cycle can reduce

the expected response time by at least 15% compared to

KS for the Initial and ScaleDown scenarios, achieving higher

reductions for a greater number of users.
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(a) Cluster - Multi-Stage IDS.
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(b) Cluster - TeaStore (TS).

1 10 20 30 40 50 60 70 80 90 100
Number of Users (Locust)

0

100

200

300

400

500

600

700

800

Av
g.

 R
es

po
ns

e 
Ti

m
e 

(in
 m

s)

diktyo_alternate-kahn
diktyo_alternate-tarjan
diktyo_cycle
diktyo_kahn
diktyo_priority

diktyo_reverse-kahn
diktyo_reverse-tarjan
diktyo_tarjan
ks_priority

(c) Cluster - Online Boutique (OB).
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(d) Edge-Cloud - Multi-Stage IDS.
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(e) Edge-Cloud - TeaStore (TS).
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Fig. 6: The average response time (in ms) obtained during the evaluation. The higher the number of K8s deployments, higher

influence of sorting on application performance.
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(a) OB for 50 users.
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Fig. 7: The application response time (in ms) for the edge-

cloud continuum based on a certain number of users.

Throughput (i.e., number of requests per second) is signif-

icantly affected by queue sorting (Fig. 8). Substantial varia-

tions in attained throughput are observed across all evaluated

applications, particularly when the number of emulated users

exceeds 30. For the Multi-Stage IDS application, Diktyo cycle

performed slightly worse than the other schedulers in the

cluster topology. However, for the TS application, Diktyo cycle

achieved the highest throughput, with an average increase

of 30% compared to KS, similar to Diktyo Alt. Kahn. In

addition, the Diktyo cycle slightly outperformed the other

sorting algorithms for the OB application, particularly for a

high number of users, resulting in a throughput increase of

at least 5% for both evaluated topologies. In contrast, the

default KS was the worst scheduler for the OB application,

with Diktyo capable of increasing throughput by up to 16%

depending on the selected sorting.

Resource Consumption is consistent across all applications

for CPU and memory usage, regardless of the applied sched-

uler (Fig. 9). However, Diktyo Cycle achieved slightly lower

resource consumption than other algorithms, specifically for

the OB application, on average a reduction of approximately

10% to 20% in CPU usage, even while achieving higher per-

formance. Thus, deploying dependent pods close to each other

seems to contribute to resource efficiency while improving

overall application performance.

A. Summary

This study highlights the importance of selecting appropri-

ate queue sorting approaches for container-based application

scheduling, providing valuable insights into the performance

implications associated with different sorting algorithms. The

evaluation included three distinct applications, showing that

the impact of an accurate sorting algorithm becomes more

pronounced as the complexity of the container-based applica-

tions increases, such as the number of workloads. Significant

variations in response time and throughput can be observed

for the TS and OB applications when employing different

sorting algorithms. These differences highlight the crucial

role that sorting plays in application performance. Although

the differences may be less pronounced for the Multi-Stage
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(a) Cluster - Multi-Stage IDS.
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(b) Cluster - TeaStore (TS).
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(c) Cluster - Online Boutique (OB).
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(d) Edge-Cloud - Multi-Stage IDS.
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(e) Edge-Cloud - TeaStore (TS).
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(f) Edge-Cloud - Online Boutique (OB).

Fig. 8: The average throughput (requests/s) obtained during the evaluation. Large differences have been obtained for the TS

application while relatively small ones for the Multi-Stage IDS and OB applications.
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(a) TS - CPU usage.
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(b) TS - Memory usage.
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(c) OB - CPU usage.
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(d) OB - Memory usage.

Fig. 9: The resource consumption during the cluster evaluation.

IDS application, specific scenarios such as high numbers

of emulated users can still unveil disparities in application

performance. By understanding the performance implications

of queue sorting, researchers and cloud practitioners can make

informed decisions when selecting scheduling algorithms for

their application deployments.

VI. CONCLUSIONS

This paper investigates the impact of queue sorting on

container-based application scheduling. The evaluation con-

siders several sorting algorithms available in the widely used

K8s platform, including a novel algorithm named Topological-

Sort introduced in our previous work. Experiments evaluated

various performance criteria, including application response

time, resource consumption, and throughput. Results show the

significant role played by queue sorting on the application

performance. The selection of a sorting algorithm substantially

impacts the performance of container-based applications. The

influence of queue sorting becomes more pronounced when

the number of microservices within an application increases.

Diktyo Cycle slightly outperformed the other sorting algo-

rithms by improving response time and throughput on average

by at least 15% and 20%, respectively. Our work contributes

to the field by providing a benchmark for future research

on container-based application scheduling that can guide the

development of more efficient queue sorting algorithms.
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José Santos is funded by the Research Foundation Flanders

(FWO), grant number 1299323N. This work is supported by

the Belgian Chancellery of the Prime Minister (Grant: AIDE-

BOSA).



REFERENCES

[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” Present and ulterior software engineering, pp. 195–216, 2017.

[2] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert, “Mi-
croservices,” IEEE Software, vol. 35, no. 3, pp. 96–100, 2018.

[3] Amazon, “Amazon elastic container service (amazon ecs),” accessed on
22 September 2021. [Online]. Available: https://aws.amazon.com/ecs/

[4] B. Burns, J. Beda, and K. Hightower, Kubernetes: up and running: dive

into the future of infrastructure. O’Reilly Media, 2019.

[5] Red Hat, “Red hat openshift container platform,” accessed on
22 September 2021. [Online]. Available: https://www.redhat.com/en/
technologies/cloud-computing/openshift

[6] T. Schneider and A. Wolfsmantel, “Achieving cloud scalability with
microservices and devops in the connected car domain.” in Software

Engineering (Workshops), 2016, pp. 138–141.

[7] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and
I. Stoica, “The power of choice in data-aware cluster scheduling,” in 11th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI) 14), 2014, pp. 301–316.

[8] D. Zhao, M. Mohamed, and H. Ludwig, “Locality-aware scheduling for
containers in cloud computing,” IEEE Transactions on cloud computing,
vol. 8, no. 2, pp. 635–646, 2018.
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