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ABSTRACT
Distributed Ledger Technology (DLTs) or blockchains have been
steadily emerging and providing innovation in the past decade for
several use cases, ranging from financial networks, to notarization,
or trustworthy execution via smart contracts. DLTs are enticing
due to their properties of decentralization, non-repudiation, and
auditability (transparency). These properties are of high potential
to access control systems that can be implemented on-chain, and
are executed without infringement and full transparency.

While it remains uncertain which use cases will truly turn out
to be viable, many use cases such as financial transactions can
benefit from integrating certain restrictions via access control on the
blockchain. In addition, smart contracts may in the future present
security risks that are currently yet unknown. As a solution, access
control policies can provide flexibility in the execution flow when
adopted by smart contracts.

In this paper, we present our DEDACS architecture which pro-
vides decentralized and dynamic access control for smart contracts
in a policy-based manner. Our access control is expressive as it
features policies, and dynamic as the environment or users can be
changed, or alternative policies can be assigned to smart contracts.
DEDACS ensures that our access control preserves the desired
properties of decentralization and transparency, while aiming to
keep the costs involved as minimal as possible. We have evaluated
DEDACS in the context of a Uniswap token-exchange platform, in
which we evaluated the costs related to (i) the introduced overhead
at deployment time and (ii) the operational overhead cost. DEDACS
introduces a relative overhead of on average 52% at deployment
time, and an operational overhead between 52% and 80% depending
on the chosen policy and its complexity.
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1 INTRODUCTION
Distributed Ledger Technology (DLTs) or blockchains have been
strongly emerging in the last decade, and proven as potentially
groundbreaking alternatives towards replacing centralized trust
mechanisms. Potential use cases range from simple financial trans-
actions using Bitcoin [11] or Ethereum [19]. The latter also allows
for applications that make use of the decentralized network as a
reliable trustworthy execution unit with the use of smart contracts.
In all DLTs, data and the history of transactions that have been
executed onto the blockchain are appended and remain immutable,
and therefore provide a source of non-reputable information. DLTs
can omit the requirement for trust in a centralized party, as the
trust can be placed in the decentralized network and its consensus
on the current state of the data ledger. In addition, the functions
of smart contracts can be executed and trust can be placed in its
next state and outcome as it is determined via consensus by the net-
work. Many diverse use cases have emerged that can benefit from
these properties, such as asset notarization (e.g. using NFTs), vot-
ing, financial systems, identity management, supply chain systems,
auditable data sharing, or governance [13, 14, 16].

Similarly for classical software, security is of a major concern
to software on the blockchain [18]. Developers wish to prevent
the misuse of their code, and the development of smart contracts
may hide risks for future security exploits. Due to the immutable
nature of the blockchain, smart contracts once vulnerable may yet
still remain on the blockchain. Such aspects complicates matter
and hinders practical adoption in certain domains. In this paper,
we therefore focus on solving such dillemma’s by advancing the
research into access control for smart contracts. Such access control
could control which smart contracts are employed, or which rules
are enforced, and consequentially which logic is applied for which
actions. In the future, if a certain risk emerges, the access control
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system on the blockchain could determine, after consensus, to exe-
cute newly deployed logic with the patched vulnerability. Access
control on the blockchain is no easy feat, and if a central entity has
sway over the access control it could in fact compromise on the
inherent desirable properties of DLTs, namely decentralization and
removing the need to place trust in a centralized entity. Consequen-
tially only after consensus on the network may the execution flow
by policies change to preserve the properties of decentralization,
while still enabling dynamic access control which is desired for
both reasons of security and development flexibility.

The current state of practice in research has recognized the po-
tential of DLTs for access control [4, 5, 7–9], as it brings benefits
in terms of decentralization, auditability, transparency but also in
its capabilities of executing logic via smart contracts, or simply
bookkeeping policies on-chain in a tamper-proof manner. Current
solutions in the domain of access control on the blockchain are
shortcoming in terms of decentralized management, or their dy-
namicity and configurability. This paper researches how dynamic
access control can be applied and enforced in smart contracts on
the blockchain, featuring decentralized management thereof.

This paper introduces a decentralized dynamic attribute-based
access control for smart contracts (DEDACS) in a policy-based man-
ner. DEDACS starts from a similar approach and architecture as the
solution proposed in [2], andmakes several additional contributions
over the state of the art:

• DEDACS provides highly extensible policies for smart con-
tracts. The policies feature the same range of functionality
that is possible for the actions that they control, as these poli-
cies are also implemented as smart contracts. The policy can
examine much more than simply the roles of users, and take
into account environmental attributes, or attributes passed
to the calling function, and apply appropriate actions.

• The resources that are protected by DEDACS (i.e. smart con-
tracts) have to implement a specific interface. This interface
allows for standardization and re-use of the same policies
for a multitude of resources. This avoids the potential cost
involved with re-deploying policy contracts.

• Our solution is also portable accross multiple blockchain
technologies, as the access control architecture are imple-
mented as smart contracts in Solidity.

• Finally, DEDACS introduces a Governance Manager imple-
mentation, which decouples the management of DEDACS
and its associated policy execution flow. This Governance
Manager in essence decentralizes the management, which is
important to avoid re-centralization and to therefore main-
tain the desired properties of DLTs.

2 MOTIVATING USE CASES FOR ACCESS
CONTROL ON THE BLOCKCHAIN

The use cases of DLTs or blockchain technology range from cryp-
tocurrencies, decentralized finance (DeFi) applications, to asset
notarization, or any sort of use case that can outsource logic to a
smart contract and eliminate centralized trust such as attestation
of operations. Most cryptocurrencies, also referred to as tokens, do
not enforce any or only a limited form of access control. Most users
can send or receive tokens as they please, as long as a certain limit
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Figure 1: Overview of a Uniswap liquidity pool.

on the number of tokens the sender owns is not exceeded. At times
however it is desired that a certain form of access control is applied
on a token. For example, a game application which features a game
token. It is possible that certain users in a higher level can use the
token in different manners than otherwise possible. The blockchain
can also be used to organize the sale of tickets for events. In order
to prevent tickets from being sold at excessively high prices the or-
ganizer could enforce access control on these ticket artifacts. Such
access control can limit the ways in which a token can be used.

2.1 Primary use case: decentralized exchanges
An interesting use case of blockchain is that in the context of de-
centralized exchanges, which allow users to trade cryptocurrencies
and other ERC-20 tokens. These platforms are of key interest to
add additional access control on, as to control how and when users
can perform certain actions (e.g. swap tokens), and we aim to in-
vestigate the techniques to do so while not compromising on the
decentralized nature of these platforms. Decentralized exchanges,
such as Uniswap [1], Curve, Balancer [10] are typically comprised
of different sets of liquidity pools. Each liquidity pool contains an
equal value of two different tokens, and allows users to exchange
one kind of token to the other token in the pool. An exception to
this is Bancor [6], which uses a system in which tokens are linked
to each other in a network.

In general, decentralized exchanges use liquidity pools, which
can be used by users in two manners: (i) either to trade one token
for another, or (ii) to provide liquidity. This process is shown in
Figure 1. In the first scenario, they pay a certain fee to trade one
token (e.g. ETH) for another (e.g. USDC) against a certain market
value which the decentralized exchange dynamically determines. In
the second manner, the user provides his/her tokens as liquidity to
a specific pool for a certain amount of time. This liquidity can then
be used by other people to exchange tokens. In return for providing
liquidity the user will receive a small percentage of each exchange
which occurs via the pool for which they provide liquidity.

Governance. Most decentralized exchanges provide a system
for governance, which is typically co-granted via a special gover-
nance token. The owners which posses such governance tokens
can submit and vote for proposals for changes to the decentralized
exchanges, such as regarding system parameters. The manner in
which the tokens are distributed will determine the degree of decen-
tralization of such systems. Uniswap [1] is the primary use case for
our access control technique discussed in this paper. It has its own
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governance token UNI, and is comprised of a factory controlled by
UNI token owners, where new liquidity pools can be created.

The case of decentralized exchanges present many interesting
perspectives on how to integrate access control on the actions
of users of (i) when being able to trade tokens, or (ii) capable of
providing liquidity and the potential rewards. In the next subsec-
tion we further discuss the particularities of access control on the
blockchain, and the importance of preserving properties such as
decentralization.

2.2 Use case and access control requirements
Dynamic access control (R1). A first requirement given our use

case is that of dynamic access control. At a certain point in time, for
example, when certain security concerns come to light of existing
smart contracts, it should be possible to deny access via the policies,
or new policies. As a more practical example, it should also be
possible to add more rules or new users to the policy-based system
in the future as the development of the application progresses.

Decentralized governance (R2). The dynamic character of such an
access control system also introduces a potential problem, namely
the management of the access control. It is not desireable that rules
or user rights can instantly change, or if users can assign addi-
tional rights for themselves. This brings out the requirement of
decentralized governance. In a classical approach, such centralized
management of the access rules would impede on the desired de-
centralized property of the blockchain. Therefore, the governance
of adding and changing environment parameters, or user attributes
and rules should be done via a consensus-based approach. This can
be implemented for example via a collective of trusted developers,
or via a community-based voting system, which decide to approve
or reject proposals for change.

Policies for expressiveness of access control (R3). The access con-
trol rules should be expressive enough, and function on as much
data as possible. This data can range from the current block, the
enacting user, the attributes or roles, and or parameters passed by
the calling function of the originating smart contract.

Non-functional requirements (auditability, cost) (R4). The ma-
jor advantage of implementing an access control system on the
blockchain is that it provides potential for auditability of on-going
policy enforcement decisions. Any action taken and executed on-
chain is logged in a non-reputable fashion, and can be audited
by any public party that has access to the distributed data ledger.
Another requirement is that related to cost, with the benefits of
DLTs in decentralization and transparency, also comes a potential
downside in financial or performance associated costs. Given the
use case and intended solution, these parameters should be within
bounds compared to a static access control setup, in which dynamic
change is not possible. In order to keep these costs to a minimum,
policies should be re-useable across multiple smart contracts. Fi-
nally, ideally the solution is re-useable or its architecture portable
across different DLT technologies.

3 RELATEDWORK
The properties of auditability and transparency have yielded much
research in the area of access control on distributed data ledgers.

We summarize key publications in this area, and we contrast the
state-of-the-art to our solution DEDACS in terms of trade-offs or
architectural differences.

Maesa et al. [4] present a blockchain-based access control sys-
tem, with the policy-enforcement-point still off-chain. The policy
administration point merely consults data stored on the blockchain
to guide the Policy Enforcement Point (PEP). In a follow-up paper
in 2018, the same authors moved the logic into smart contracts,
referred to as a “smart policy”, and involves attribute managers and
attribute provider contracts [9]. The policies originate from parsing
XACML into a smart contract, and are attributed-based (ABAC).
According to our requirements, the expressiveness is met, but such
policies may be potentially costly, and do not take into account the
dynamicity of policies and governance. TRABAC [7] is an access
control framework which uses NFTs to represent attributes, there-
fore it can provide fine-grained access control by limiting access
to accounts that own a certain NFT attribute. However, this frame-
work lacks dynamicity and policies are less expressive than our
target. In 2019, Rouhani et al. present a publication on the state-of-
the-art on blockchain-based access control systems [15]. All these
previously discussed access control systems are systems (partially)
implemented on the blockchain, to control access to a service out-
side the blockchain. DEDACS provides a solution to enforce access
control on smart contracts, and this is an end-to-end process which
takes place completely on-chain.

In 2019, Maesa et al. [5] present an on-chain attribute-based
access control framework for protecting smart contracts. This is
an extention of [9], an access control framework to protect other
resources outside the blockchain. It inherits the same problems,
namely that a central resource owner is used as Policy Administra-
tion Point (PAP), and that the resource must directly call the policy
contract making the framework much less dynamic.

SMACS [8] is an access control system for smart contracts. How-
ever, the policies are not evaluated on-chain, but instead an external
Token Service will evaluate a policy and returns a token to the client.
The client can then use this token to call smart contracts on-chain.
While this has benefits in terms of costs, as very little work has to
be done on-chain, the trust moves to an off-chain entity (the Token
Service), which defies the decentralization that a blockchain offers.

In [3], the authors propose a dynamic RBAC framework. They
introduce a PermissionManager to decouple the policies from the
business logic. We will adapt this notion of a PermissionManager
in our solution. But we extend this with more expressive access
control using ABAC and decentralized governance.

In [17], the authors present a formal model for RBAC and a
code generator to generate Solidity smart contracts from the access
control policies in the formal model. In this manner, developers
can use formal verification tools to ensure that the smart contract
correctly implements the envisioned policies. It tightly couples the
policy with the smart contract that is to be protected by it. This
makes the framework less dynamic, as it is impossible to change
the policy at a later date.

OpenZeppelin [12] is a library for secure smart contract devel-
opment for Solidity. It provides a contract for simple Role-Based
Access Control. It lacks external and dynamic policies, decentral-
ized governance and more extensive access control models such as
ABAC.
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Figure 2: DEDACS: Architectural component overview.

4 ARCHITECTURE
Section 4.1 will first describe the architecture of DEDACS and an
overview of all its components. Subsequently, Section 4.2 shows the
workflow to enforce access control rules, and finally in Section 4.3
we detail the access control policies and their expressiveness.

4.1 Architectural overview and components
DEDACS can enforce attribute based access control on smart con-
tracts, and is itself implemented via smart contracts using the So-
lidity programming language. In this manner DEDACS runs fully
on-chain, which provides benefits in terms of (i) not requiring
trust in a centralized or external entity, and (ii) provides trans-
parency and auditability of access control operations. An overview
of the solution architecture of DEDACS is presented in Figure 2.
Our implementation is publicly available online1. We introduce
five smart contracts that store relevant information, or play key
roles in the access control decision process, namely: User Manager,
Environment Manager, Policy Manager, Permission Manager
and a Governance Manager.

The User Manager and the Environment Manager are the Policy
Information Point (PIP), and provide essential information that can
be used by policies to make decisions. The Policy Manager is the
Policy Administration Point (PAP), and enables administrators to
register which policies are active for which resources. The Policy
Enforcement Point (PEP) should be implemented in the resource,
which itself is also a smart contract. In essence, DEDACS provides
policies and access control that can be implemented into smart
contracts. The PEP then forwards its calls to the Policy Decision
Point (PDP), which are the Policy smart contracts that are assigned
to the resource, as configured in the Policy Manager. We explain
each managing smart contract in more detail.

User Manager. The User Manager is a smart contract that stores
users and their attributes. Each user is uniquely identified by their
public address on the blockchain. This user is not necessarily a
person, but can also be a smart contract.

Environment Manager. The Environment Manager manages at-
tributes such as time. Furthermore, it allows administrators to define
custom attributes for their application.

1https://github.com/wouterlenaerts/DEDACS

Permission Manager. The Permission Manager forms the bridge
between the applications using DEDACS and the DEDACS system
itself. An operation of a resource that must be protected, should
first call the Permision Manager to evaluate the policies, and only
after a succesful evaluation, the operation itself should be executed.
The Permission Manager itself will use the Policy Manager to
direct the request to the correct policy contract.

Resources. Resources are the smart contracts that should be pro-
tected by DEDACS. They implement the business logic of the appli-
cation. Every method that should be protected by DEDACS, should
first call the Permission Manager to evaluate the policies. For this
reason, they have to know the address of the Permission Manager.
Note that they do not need the location of the other contracts of
DEDACS or the policies itself. The Permission Manager will use
the Policy Manager to evaluate the correct policy, and this policy
can be changed dynamically without modifying the resource.

Policy Manager. The Policy Manager is responsible to map
resources and operations to the correct policy contract. Admin-
istrators can register new policies based on the resource address
and method name. The PEP can use the Policy Manager to verify
whether an operation is allowed. It calls the Policy Manager with
the resource address, the method name, the user address and the
parameters of the operation. The Policy Manager then looks up
the correct policy contract and calls it with the resource, the user
address and the parameters. If no policy is registered for the given
resource and operation, the Policy Manager will block the access.

Governance Manager. The Governance Manager is responsible
for the governance of the system, and it controls all the other smart
contracts contracts (i.e. managers) of DEDACS that feature states.
It can change attributes of the user or the environment, and it can
also change the policies. This contract is implemented as a multi-
signature contract, which means that actions of the contract can
only be executed after a majority has signed, and thus agreed, for a
change. Such a multi-signature contract receives a list of adminis-
trators at creation time. The administrators can then all propose
changes to the contract, and can vote on proposals from other ad-
ministrators. However, the proposal will only be executed after
a preconfigured majority has voted. The benefit of using such a
multi-signature contract, is that it allows for a decentralized gover-
nance of the system, and thereby preserving the desired properties
of DLTs in terms of decentralization. The Governance Manager is

https://github.com/wouterlenaerts/DEDACS
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the owner of the User Manager, the Environment Manager and
the Policy Manager. All methods that change the status of the
access control system in these contracts can only be called by the
owner. The Permission Manager does not have an owner, as it
contains no state that has to be changed.

4.2 Access control and policy workflow
This section will describe the steps DEDACS takes to enforce access
control using the components we previously discussed. An exam-
ple workflow is shown in Figure 3. The resources are protected
by policies. One policy can be used by many resources. When a
user calls a method on a resource, that resource will first call the
Permission Manager with the following arguments: the user its
address, the method name, and the list of arguments passed by that
method. The Permission Manager will verify if the user exists
by contacting the User Manager. If the user does not exist, the
Permission Manager will block the access. When the user exists,
the Permission Manager will call the Policy Manager with the
following arguments: the resource its address, the method name,
the user its address, and the list of arguments.

The Policy Manager will then look up the correct policy con-
tract based on the address of the resource and the name of the
method. If no policy is registered, the Policy Manager will block
the access. If a policy exists, the Policy Manager will call the
policy contract with the following arguments: the address of the
resource, the address of the user and the list of arguments. The pol-
icy can request the required attributes from the User Manager, the
Environment Manager and the resource itself. Subsequently the
policy makes a decision based on this extensive set of information
whether to allow or block the operation in the originating smart
contract (i.e. the resource which has to be protected).

The benefits of this access control occurring on the blockchain
are that it is logged in a non-reputable fashion, and can be observed
transparently. In addition, the access control is executed in a de-
centralized fashion without the possibility of a centralized entity
interfering in this process.

4.3 Policies
Policies are smart contracts that have to implement the following
interface, as shown in Listing 1. This method takes as input the
address of the user, the address of the resource and the list of
arguments. It outputs a boolean indicating wether the operaton

is allowed or not. If the policy requires external attributes from
the User Manager or the Environment Manager, it should receive
the contract address of the Governance Manager as a constructor
argument. The policy can request the location of the User Manager
or the Environment Manager from the Governance Manager.

interface Policy {

function isAllowed(

address user,

address resource,

bytes [] memory arguments

) view external returns (bool);

}

Listing 1: DEDACS Policy interface

Policy size and composition. Since policies are smart contracts
themselves, they can express any kind of access control policy. They
are also not limited in size, or as long as a single smart contract
is smaller than the block size. In theory, a policy can also be split
into multiple smart contracts, of which the individual components
could be re-used across other policies to save deployment costs.
The Policy Manager will then call the first contract, which will
call the second contract, which will call the third contract, etc.

Stateful policies. Smart contracts can store state internally, which
makes it possible to implement stateful policies. For example, a
policy can keep track of the number of operations that a user has
performed. This policy can use this counter to block the user after
a certain value.

Access delegation. Another example of a stateful policy is a policy
that allows to delegate access to other users. If a user wants to
perform an operation, the policy will verify whether the user has
the required rights. If not, the policy can check if another user
delegated his access to this user. If such a user exists, the policy
can be re-evaluated with that second user. In such a case, and
when the user does indeed have the required rights, the operation
can be performed by the first user. This simplifies aspects in a
certain regard as the Policy Manager does have to be updated
via consensus, but rather individual policy contracts can introduce
more flexible access delegation, which does however compromise
via re-centralization of responsibilities when desired or allowed.
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External information. Policies can call any other smart contract
at the blockchain. This makes it possible to implement policies that
use external data, for example by making calls to an oracle contract.

5 EVALUATION
This section will describe the evaluation of DEDACS. Section 5.1
starts with the research questions and objectives of the evaluation,
next Section 5.2 details our experiment setup. Finally, Section 5.3
depicts the results involved with the costs when deploying DEDACS
and different types of associated policies in terms of complexity.

5.1 Research questions and objectives
Deploying and executing smart contracts on the blockchain in-
volves a transaction cost. The main goal of this evaluation is to
determine if the associated cost makes DEDACS usable in practice
or not. More specifically, our evaluation methodology and setup
are designed to answer the following research questions:
RQ1 What is the overhead cost of DEDACS at deployment time, and

how does it compare to an approach with hard-coded access
control? More specifically, what is the deployment cost over-
head of respectively the DEDACS architecture (RQ1.A) and
different policies of varying complexity (RQ1.B)?

RQ2 What is operational overhead cost of DEDACS versus an ap-
proachwith hard-coded access control, specifically the opera-
tional cost involved with DEDACS (RQ2.A) or during policy
evaluation with policies of varying complexity (RQ2.B)?

5.2 Methodology
One of the more compelling use cases in distributed data ledger
technologies are currently financial transactions and decentralized
finance applications (DeFi). More specifically, we will in the context
of our evaluation methodology use a decentralized token exchange
platform, namely the previously discussed Uniswap [1] from Sec-
tion 2.1. This use case is an ideal fit to implement access control
on game tokens, and to therefore limit certain operations on a
decentralized token exchange.

Experiment setup. In our Uniswap use case, one example policy
rule is that only gamers who reached a certain level can swap
an in-game token. To answer RQ1, and measure the overhead
cost of our architecture at deployment time, we implemented two
versions of this use case. The first setup for RQ1.A measures the
deployment costs of a setup in which DEDACS manages the access
control policy, and another setup in which the policies are hard-
coded in the token contract itself. In addition, for RQ1.B we also
measure the deployment cost of policies of varying complexity. We
will use hardhat-deploy to deploy each combination locally on the
EVM, and measure the gas cost for the deployment of all required
smart contracts, as well as the average cost of a swap operation on
Uniswap.

Policies. In order to answer the operational costs RQ2, we mea-
sure the operational cost of the DEDACS architecture (RQ2.A),
but also the operational impact of a policy’s complexity on the
involved cost (RQ2.B). Both scenarios will be evaluated versus the
hard-coded example without dynamic access control. To determine
the cost of policies of varying complexities, both at deployment

time (RQ1.B) and during operation (RQ2.B), we performed the
evaluation with 8 different policies:

P1 Empty policy: this policy has no constraints and will simply
return true. In the hard-coded version, this is equal to a
regular ERC-20 token without access control.

P2 User policy: this policy will only allow access if the user
has a specific attribute.

P3 Resource policy: this policy will use an attribute from the
resource to determine access, for example the creation date
of the smart contract.

P4 Environment policy: this policy will use an attribute from
the environment, for example the current time.

P5 Attribute policy: this policy will combine the different kind
of attributes from P2, P3 and P4.

P6 Argument policy: this policy will use the arguments pro-
vided to the method call for which the policy needs to deter-
mine access.

P7 Attribute and argument policy: this policy combines P5
and P6.

P8 Complex policy: this policy will try to combine as much
information as possible, it uses the arguments of the method,
the role of the user, the security clearance of the user, the
name of the user, the time, the address of the miner of the
block, the security level of the environment, the security
level of the resource, the owner of the resource and the date
of creation of the resource.

Deployment with DEDACS. The full deployment and setup of the
use case with DEDACS consists of 43 transactions on the blockchain.
This includes the deployment of the required contracts of DEDACS
(3 transactions), the deployment of the two game tokens (2 trans-
actions), the deployment and provisioning of a Uniswap pool to
swap these tokens (4 transactions), the creation of two users (3
transactions) and the configuration of the system (31 transactions).
These steps are done eight times for the different policies.

Deployment with hard-coded approach. The deployment and setup
of the hard-coded approach is much simpler, it consists only of 10
transactions. This includes the deployment of the two game-tokens
(2 transactions), the deployment and provisioning of a Uniswap
pool to swap these tokens (4 transactions), the creation of two users
(3 transactions) and the configuration of the system (1 transaction).
This deployment is also done eight times for the different policies.
Instead of separate policies, the access control rules will be included
hard-coded in the game tokens. The scenario with policy P1 is the
baseline, with no access control present.

5.3 Evaluation results
We divide this section into respectively costs related at (i) deploy-
ment time of individually DEDACS, and the varying policies, and (ii)
operational run-time cost of executing DEDACS, and individually
the policies.

5.3.1 Deployment cost (RQ1). The resulting gas costs of all sce-
narios are shown in Table 1. The first two rows show the cost for
deployment (RQ1). To answer RQ1.A, we compare this deploy-
ment with the cost to deploy a similar system without DEDACS
and its dynamicity. The cost is on average 52% higher when using
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Deployment costs (RQ1)
DEDACS 22,133,238 22,240,146 22,242,873 22,175,680 22,354,973 22,293,299 22,516,725 22,820,592
Hard-coded 14,640,498 14,695,566 14,690,355 14,745,642 14,766,189 14,727,158 14,815,792 14,897,580

Operational costs (RQ2)
DEDACS 180,964 189,502 186,742 186,212 200,992 186,958 206,978 237,050
Hard-coded 118,074 118,202 118,038 122,398 122,366 118,406 122,794 131,466

Administration (governance)
DEDACS 354,549 354,549 354,549 354,537 354,537 354,549 354,537 354,549
Hard-coded - - - - - - - -

Table 1: Transactional cost of using DEDACS for Uniswap expressed in units of gas.

DEDACS. The deployment cost of the use case with DEDACS is
similar for all different policies (RQ1.B). The minor increase in cost
for more complex policies is only due to the increase in size of the
policy contract. The cost to deploy the DEDACS contracts stays the
same. Since the deployment cost of DEDACS and the Uniswap pool
is quite large, the effect of the policies is small (RQ1.B).

5.3.2 Operational cost (RQ2). Once the system is deployed, users
can swap tokens using the Uniswap pool, and we can measure the
operational cost involved with DEDACS (RQ2.A), and the respec-
tive policies and their complexity (RQ2.B). However, whether such
a swap is allowed for a user depends on the different policies. The
third and fourth rows of Table 1 show the cost for such a swap op-
eration, including evaluating the policy. With this experiment, we
are able to answer RQ2.A and RQ2.B. These transactions are much
cheaper than the deployment. The overhead of using DEDACS is
even greater, this ranges from 52% to 80% depending on the policy.
The complexity of the policy also greatly influences the total cost,
with P8 begin 31% more expensive then the empty policy P1.

A third kind of operation is changing the access control policy.
In DEDACS, this is possible via the Governance Manager. Admin-
istrators can propose changes, vote for them, and confirm them if
enough administrators agree. The cost to change one user attribute
is shown in the fifth row of Table 1. This is the sum of the three
transactions to submit, confirm and execute a change if their is only
one administrator. If there are multiple administrators, this cost
will increase with 74,652 gas per extra administrator that confirms
a proposal. There is no equivalent evaluation for the hard-coded
case, as the access control policy is hard-coded in this case, and
no chages can be done. Only alternative in this case would be to
redeploy all contracts again.

6 DISCUSSION
Section 6.1 discusses the architecture of DEDACS and possible
design considerations in terms of: decentralized governance, or
tailoring it to other applications (e.g. which do not require users, or

alternative attributes). Next, Section 6.2 discusses an analysis of the
realistic cost when deploying DEDACS on a variety of blockchain
platforms.

6.1 Architectural design decisions
This section discusses some properties and design decisions of
DEDACS, with its advantages and disadvantages.

6.1.1 Decentralized governancemechanisms. The Governance Manager
decouples the administration of DEDACS from the rest of the sys-
tem. If a developers wants a different form of governance, he can
adapt the Governance Manager to his needs, without changing the
rest of the system. It is for example possible to adapt a centralized
governance model, where a single administrator can change the
policies. Or it can be adapted to a decentralized governance model
used in so-called Decentralized Autonomous Organizations (DAOs),
where tokens holders can vote on proposals.

6.1.2 Extensions to system attributes. The User Manager and the
Environment Manager can be extended to keep track of extra
attributes. However, attributes have to be defined before the de-
ployment. Once deployed, no new attributes can be added anymore
since the contract is immutable. If new attributes are required, one
has to redeploy a new User Manager that contains these attributes
and update the Governance Manager to point to this new contract.
Future policy calls will then use the new User Manager and can
use the added attributes.

6.1.3 Non-user application. The current prototype assumes that all
users are known to the system in the User Manager. However, not
all applications require that a user is registered upfront. DEDACS
can be easily adapted to facilitate this by skipping the check in the
Permission Manager whether the user exists.

6.1.4 Solidity programming language drawbacks. Since policies are
smart contracts implemented in Solidity on the Ethereum Virtual
Machine (EVM), they inherit all drawbacks. One example is that
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Deployment (RQ1) Operation (RQ2)
DEDACS Baseline DEDACS Baseline

Ethereum $ 2770.3 $ 1814.9 $ 24.4 $ 14.6
BSC $ 50.9 $ 33.3 $ 0.45 $ 0.27
Avalanche $ 54.7 $ 35.9 $ 0.48 $ 0.29
Polygon $ 3.54 $ 2.32 $ 0.03 $ 0.02

Table 2: Transaction cost in dollar for different EVM compat-
ible blockchains. Gas price and token price are the averages
for the first three quarters of 2022.

Solidy will only give back the hashes of the most recent blocks.
Requesting attributes from older blocks is therefore not possible.

6.2 Realistic cost of DEDACS and policies across
blockchain technologies.

The previous section showed the results of the evaluation in gas.
However, gas is an abstract metric and not directly important for
the end-user. Table 2 shows the true cost in dollars when executing
these operations on the most popular EVM compatible blockchains.
These dollar prices are derived from the gas cost in Table 1, multi-
plied by the gas price and the token price. Since prices of blockchain
tokens are quite volatile, we used the average price in the first three
quarters of 2022. For the gas price we used also the average in that
same period. The results for DEDACS use the average cost of all
policies (P1 - P8). The baseline are the costs for the hard-coded
approach with policy P1, this is the empty policy, meaning that this
presents the case where there is no access control logic present.
This is equal to the cost users pay today when using Uniswap with
a regular ERC-20 token.

DEDACS makes deployment much more expensive in absolute
terms, and relatively involves an increase of 52.6%. In absolute
terms this may vary quite significantly depending on the chosen
blockchain technology. For example, in the case of Polygon this
increases the cost from $2.32 to $3.54. On Ethereum for example,
it adds an extra $950 to the transaction cost over the already quite
significant baseline cost of $1814. However, in return, applications
get a dynamic access control system, where policies and attributes
can be changed afterwards. This dynamicity can even save costs, as
updating the system is much cheaper. For the hard-coded approach,
making such an update would require to deploy the contracts again.

The operational costs of DEDACS is also more expensive. For
example, in the case of Avalanche the operational cost increases
from $0.29 to $0.48. When the Ethereum blockchain is used, this
operational overhead adds $10 to each transaction. The chosen
blockchain technology and resulting cost will determine whether
DEDACS can bring additional value or not. Depending on the ap-
plication, and how many transactions users do on average, this
overhead will be significant or not compared to the overall value
the user puts into the system. Layer-2 solutions on top of Ethereum,
which reduce the transaction costs, will make DEDACS more fea-
sible. On other chains, DEDACS only adds a few cents, making it
usable for many applications.

7 CONCLUSIONS
Distributed Ledger Technologies (DLTs) have been steadily emerg-
ing in the recent decade, and present beneficial properties in terms
of decentralization (i.e. removing the need for trust in centralized
entities), as well as transparency and auditable as everything is
shared and determined by consensus on the network. These fea-
tures and benefits have led to a wide number of use cases, such
as financial transactions (e.g. cryptocurrencies), asset notarization
(e.g. NFTs), supply chain tracking, and decentralized finance (DeFI)
applications to name a few. While is not yet sure which use cases
will remain viable in the future, such systems can highly benefit of
access control on their operations, as future security vulnerabilities
may arise it can be convenient to provide a form of dynamic access
control to restrict or alter operations. Such access control mech-
anisms should be implemented on-chain, and their governance
should also be decentralized to preserve the desired properties of
DLTs.

In this paper we present our DEDACS architecture for decen-
tralized and dynamic access control for smart contracts in a policy-
based manner. The policies are highly expressive as these are also
implemented as smart contracts, and function on attributes, user
roles, and method parameters passed by the protected smart con-
tract (i.e. the resource). The dynamicity of the system comes from
the potential to control access based on such parameters and in-
formation, but also the possibility to govern DEDACS and change
environment attributes, user roles, or assign new policies to new
or existing smart contracts. The DEDACS architecture is impor-
tantly governed not via a centralized entity, as this would comprise
the beneficial properties of DLTs in terms of decentralization. In-
stead, a multi-signature contract ensures that a certain number of
administrators have to reach consensus, which means in practice
a majority vote on proposals for change. We have proposed an
end-to-end on-chain solution to enable access control for smart
contracts in a dynamic manner. DEDACS is implemented in Solidity,
and therefore portable across various blockchain technologies that
are compatible with the Ethereum VM (EVM).

Our solution has been evaluated in the compelling use case
of decentralized token exchanges, more specifically we integrated
DEDACS into the Uniswap token exchange case. Such decentralized
finance (DeFi) applications may benefit greatly from implement-
ing a degree of restrictions or access control on transactions. Our
evaluation investigated both the overhead in terms of (i) cost at
deployment time, as well as (ii) operational costs. The overhead of
at deployment is on average 52% higher when using DEDACS. In
terms of operational costs, the overhead in transactions ranges from
52% to 80% depending on the policy its complexity. Eventually, the
end-user will have to decide whether the downsides in increased
cost is acceptable at the benefits of dynamic and expressive policy-
based access control. It is also possible to re-use certain policies for
multiple smart contracts. In future work, it would be interesting to
analyze how this cost can be reduced further, and which alterna-
tive systems are possible for the decentralized governance of the
DEDACS architecture.
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