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a J. J. Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Kneza Trpimira 2B, Osijek, 31000, 
Croatia
b Ghent University, Department of Telecommunications and Information Processing, TELIN-GAIM, St-Pietersnieuwstraat 41, Ghent, 9000, Belgium
c Ghent University, Department of Telecommunications and Information Processing, imec-TELIN-IPI, St-Pietersnieuwstraat 41, Ghent, 9000, Belgium

A R T I C L E I N F O A B S T R A C T

Keywords:

AI fairness

Dermatological image analysis

Deep neural networks

Skin lesion segmentation

Background: The field of dermatological image analysis using deep neural networks includes the semantic 
segmentation of skin lesions, pivotal for lesion analysis, pathology inference, and diagnoses. While biases in 
neural network-based dermatoscopic image classification against darker skin tones due to dataset imbalance and 
contrast disparities are acknowledged, a comprehensive exploration of skin color bias in lesion segmentation 
models is lacking. It is imperative to address and understand the biases in these models.

Methods: Our study comprehensively evaluates skin tone bias within prevalent neural networks for skin lesion 
segmentation. Since no information about skin color exists in widely used datasets, to quantify the bias we 
use three distinct skin color estimation methods: Fitzpatrick skin type estimation, Individual Typology Angle 
estimation as well as manual grouping of images by skin color. We assess bias across common models by training 
a variety of U-Net-based models on three widely-used datasets with 1758 different dermoscopic and clinical 
images. We also evaluate commonly suggested methods to mitigate bias.

Results: Our findings expose a significant and large correlation between segmentation performance and skin 
color, revealing consistent challenges in segmenting lesions for darker skin tones across diverse datasets. Using 
various methods of skin color quantification, we have found significant bias in skin lesion segmentation against 
darker-skinned individuals when evaluated both in and out-of-sample. We also find that commonly used methods 
for bias mitigation do not result in any significant reduction in bias.

Conclusions: Our findings suggest a pervasive bias in most published lesion segmentation methods, given our use 
of commonly employed neural network architectures and publicly available datasets. In light of our findings, we 
propose recommendations for unbiased dataset collection, labeling, and model development. This presents the 
first comprehensive evaluation of fairness in skin lesion segmentation.
1. Introduction

Dermatological image analysis using deep neural networks has 
emerged as an active research domain with a multitude of published 
papers. A subset of these studies focuses on semantic segmentation of 
lesion images, which plays a crucial role in facilitating lesion analysis, 
pathology inference, and the diagnosis of conditions like melanomas. 
Additionally, lesion segmentation is commonly employed as a prepro-

cessing step in the evaluation of dermatological neural networks [1–3]. 
In this paper, we aim to answer the question of whether commonly used 
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segmentation neural networks trained on publicly available datasets are 
biased against dark-skinned subjects.1

Numerous researchers have found evidence that deep neural net-

works for classifying dermatological images are biased against dark-

skinned individuals due to dataset imbalance as well as lower contrast 
in images of darker-skinned individuals [1,4,5]. Unlike classification 
models, segmentation models directly evaluate each pixel, so it is not 
clear whether the same biases found in classification models also extend 
to segmentation. In addition, due to the direct relationship between in-

puts and outputs of segmentation models, encountered segmentation 
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bias can serve as an indicator of underlying issues in the data itself, 
warranting a thorough examination of dataset collection and labeling 
practices.

However, despite the growing awareness of biases in classification 
models, there is no comprehensive investigation into skin color bias in 
lesion segmentation models. To this end, we present a thorough evalu-

ation of skin tone bias within commonly used deep neural networks for 
skin lesion segmentation. The main contributions of our work are:

• Since widely used publicly available lesion segmentation datasets 
do not include skin color information, we present different methods 
to estimate skin color from clinical dermatological images: (1) Fitz-

patrick skin type estimation using a neural network, (2) Individual 
Typology Angle estimation using image processing and (3) manual 
grouping of dark and light skinned images. By reaching the same 
conclusions using these different methods we ensure repeatability 
and reliability of the conclusions.

• We investigate bias by training commonly-used segmentation mod-

els with combinations of three different popular publicly available 
datasets, namely PH2 [6], The Waterloo dataset [7], and The Der-

mofit dataset [8].

• We conduct an in-depth statistical evaluation of the segmentation 
performance for different estimated skin colors, drawing inspira-

tion from the field of artificial intelligence fairness.

• To the best of our knowledge, this study represents the first com-

prehensive evaluation of bias in skin lesion segmentation models.

As will be evident in the rest of the paper, our findings reveal a 
significant and large correlation between segmentation performance 
and skin color, indicating that common neural networks consistently 
struggle with segmenting lesions in individuals with darker skin. This 
bias is evident both within and outside the training dataset, as well 
as across multiple publicly available datasets. In addition, the bias is 
evident both with estimated and manually determined skin tone quan-

tification methods. To better understand the impact of this bias, we 
present a qualitative evaluation of biased predictions. We assess sev-

eral commonly used preprocessing techniques aimed at reducing bias 
but find that they fail to significantly alleviate skin color bias. In light 
of these discoveries, several suggestions for future dataset collection, 
labeling, and model development are proposed, aiming to foster more 
equitable skin lesion segmentation models.

1.1. Related research

Skin color bias in neural network classifiers has been a subject of sig-

nificant investigation [9,10]. Studies have explored disparities in model 
predictions based on skin color, using metrics such as Fitzpatrick skin 
type [11] (FP) and Individual Typology Angle [12] (ITA). In the context 
of dermatological images, Kinyanjui et al. [2] evaluated the distribution 
of ITA on two widely used dermoscopic image datasets but found lim-

ited correlations between accuracy and ITA. However, we show that the 
datasets they use for evaluation have inadequate representation of dark-

skinned subjects to detect bias. Groh et al. [13] evaluated commonly 
used classifiers on a hand-labeled dataset, reporting lower accuracy for 
less-represented skin colors. However, no statistical analysis of the re-

sults is provided beyond reporting mean values for different skin types. 
Daneshjou et al. [4] curated a diverse dermatological image dataset 
with subjects of various skin colors and found worse model performance 
on dark-skinned subjects from models trained on widely used datasets, 
even after fine-tuning. Moreover, they observed inferior dermatologist 
diagnostic performance in dark-skinned subjects.

In attempts to address dermatological classifier bias, Bevan and 
Atapour-Abarghouei [1] employed common bias unlearning methods, 
such as Learning Not To Learn [14] and Turning a Blind Eye [15]. The 
2

impact of these methods on bias is not evaluated — their analysis only 
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reported mean results across all subjects, neglecting the examination of 
differences between different skin colors.

There is a very small number of studies that focus on reducing skin 
lesion segmentation bias. Galdran et al. [5] proposed a technique for 
augmenting skin color in images to enhance dataset diversity, leading 
to improved segmentation and classification performance. Nonetheless, 
similar to [1], they solely presented mean results without a comprehen-

sive statistical analysis of bias. Consequently, discerning whether the 
models became less biased or if the results generally improved while 
remaining biased towards light-skinned subjects is challenging.

Yuan et al. [16] propose EdgeMixup, a method for enhancing fair-

ness in the segmentation and classification of clinical skin images for 
Lyme disease analysis. Inspired by the mixup augmentation technique, 
which linearly combines existing data samples to increase data diver-

sity, EdgeMixup merges input images with random lesion boundary 
labels. A classifier network then selects the optimal boundary candi-

date, which is then refined iteratively by a segmentation network until 
metrics converge. This approach enables the classifier to focus more 
on lesion boundaries, reducing bias due to skin color variations. Their 
results show improved fairness in identifying Lyme disease in clinical 
images. Empirically, their results improve fairness for both segmenta-

tion and classification.

Recent research in medical image segmentation has highlighted the 
issue of fairness, albeit with limited studies. Puyol-Antón et al. [17]

conducted an extensive analysis of fairness in cardiac MR segmenta-

tion, examining the influence of confounders and the effectiveness of 
dataset rebalancing. Their findings indicated a significant bias in im-

balanced datasets. This bias is particularly apparent when considering 
intersectional unrepresented groups such as black women [18]. Fur-

ther investigations into the impact of model selection on fairness in 
cardiac MR segmentation were explored by Lee et al. [19]. Ioannou 
et al. [20] reported that models trained on imbalanced datasets for 
brain MRI segmentation exhibited poorer performance for underrepre-

sented subject groups. Meanwhile, Tian et al. [21] introduced the first 
extensive dataset for fair segmentation in medical imaging, specifically 
for optic disc and cup segmentation in ophthalmoscopy fundus images. 
Their research not only identified biases in existing approaches but also 
evaluated a novel loss function designed to mitigate segmentation bias.

Addressing the gap in medical image segmentation fairness research, 
our work provides a thorough evaluation of skin color bias in skin lesion 
segmentation neural networks across multiple widely used datasets. To 
the best of our knowledge, this represents the first thorough statistical 
analysis of fairness in commonly used skin lesion segmentation models.

1.1.1. Skin color estimation from images

Researchers have proposed various methods to estimate skin tones 
from dermatoscopic or clinical images. Kinyanjui et al. [22] utilized a 
neural network to segment and remove lesion regions from the image. 
The remaining pixels were then transformed to the CIELAB colorspace, 
and the ITA was estimated from the mean pixel value after removing 
outliers. In contrast, Bevan and Atapour-Abarghouei [1] estimated skin 
color by sampling mean colors from different patches of the image, 
selecting the lightest patch under the assumption that healthy skin is 
generally lighter than lesion regions. Note that this assumption does 
not hold with some lesion areas such as depigmentation, which could 
lead to higher errors in dark-skinned patients. Galdran et al. [5] used 
Shades of Gray color constancy to estimate the illuminant of an image. 
These approaches may encounter challenges related to varying lighting 
conditions as they rely heavily on the pixel values themselves.

A potentially more robust approach involves using a neural net-

work to classify skin color into Fitzpatrick skin types. Groh et al. [13]

employed this strategy by creating a dataset of clinical skin disease im-

ages labeled with the Fitzpatrick skin type. They then trained a neural 
network-based classifier on this dataset to estimate the Fitzpatrick skin 

type given an image. Both the human labelers and the neural network 
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Fig. 1. A visual diagram of our methodology. First, the skin color of each image in the collected datasets is estimated using three different methods: (1) ITA estimation 
using image processing, (2) Fitzpatrick type estimation using a neural network, and (3) manually grouping images into dark vs. non-dark skin tones. Then, we train 
commonly used segmentation neural networks and obtain segmentation labels for in-sample and out-of-sample data. Finally, we perform a statistical analysis to 
investigate the relationship between the estimated skin color and segmentation quality.
achieved relatively low accuracy. Nonetheless, this approach still offers 
valuable insights when dealing with a sufficiently large sample size.

Kalb et al. [23] compare various methods of estimating skin tones 
from images and reach similar conclusions to us, namely that ISIC 
datasets [24] contain few dark-skinned images and are not a useful 
dataset for the evaluation of skin lesion analysis bias. Corbin and Mar-

ques [3] use explainable artificial intelligence methods to assess bias in 
skin lesion classification.

1.1.2. Skin lesion segmentation

Skin lesion segmentation is a widely studied problem with various 
proposed deep learning-based methods. Jha et al. [25] propose Double-

U-Net, a network consisting of two connected U-Net-like networks with 
feature propagation between the two networks. In our previous work, 
we proposed using the polar transform [26] or image crops [27] as 
preprocessing steps with a neural network to predict the optimal pre-

processing parameters.

There is also a class of methods focusing on the lesion bound-

ary. Wang et al. [28] uses a transformer-based architecture with a 
boundary-wise attention gate to improve the capturing of local details. 
Lee et al. [29] predict boundary key points, which are used as resid-

ual attention to preserve boundary information in the network. They 
also use adversarial training, where an evaluator network is trained to 
predict whether the resulting segmentation maps are consistent with 
the boundary key points. Newer deep learning-based methods employ 
transformer-based architectures for this task [30,31].

2. Methods

The goal of our work is to evaluate the relationship between skin 
color and segmentation quality of commonly used neural networks, and 
our general methodology is explained visually in Fig. 1.

We select three different commonly used publicly available datasets 
of clinical and dermatoscopic skin lesion images with segmentation la-

bels. These datasets do not include information about the patient skin 
color or ethnicity. Therefore, we employ three different methods to 
quantify or classify skin color in each image, as will be explained later 
in this section.

We then train commonly used image segmentation neural network 
architectures on the datasets. After calculating various segmentation 
3

metrics, both within and across datasets, we evaluate the relationships 
between the segmentation metrics and skin color estimates using statis-

tical analysis. Finally, we also try to mitigate the effects of skin color 
bias by using preprocessing methods reported in skin lesion segmen-

tation literature. The results of these methods are compared to the 
baseline model to evaluate whether the reported methods help miti-

gate the bias.

2.1. Skin tone extraction methods

The two most commonly used ways to quantify or classify skin color 
are the Fitzpatrick skin type or Individual Typology Angle [9,13,22]. 
The Fitzpatrick scale categorizes skin types into six groups based on UV 
response, ranging from type I (palest, never tans, always burns) to type 
VI (darkest, never burns). While subjectively evaluating skin types from 
images poses challenges [13], it can be effective with large sample sizes 
to evaluate bias [9].

ITA, being a more objective measure based on colorimetry, quanti-

fies the skin’s constitutive pigmentation [12]. Higher ITA values corre-

spond to lighter skin. ITA can also be estimated from images using the 
CIELAB colorspace:

ITA(𝐿 ∗, 𝑏 ∗) = arctan(𝐿 ∗ − 50
𝑏 ∗

) ⋅ 180
𝜋

, (1)

where 𝐿 ∗ and 𝑏 ∗ are the lightness and blue-yellow opponents of the 
CIELAB colorspace, respectively. However, this estimate is highly de-

pendent on lighting conditions and image contents. Estimated ITA from 
images can only be used as an indication of relative skin darkness within 
the dataset and not as an objective measure.

Since the publicly available datasets do not include skin color infor-

mation, we use three distinct methods to estimate skin color: (1) ITA 
estimation using image processing, (2) Fitzpatrick skin type estimation 
using a neural network, and (3) manually labeling dark vs. non-dark 
skinned images.

In addition to using the Fitzpatrick type classifier directly to classify 
the subjects, we also use a proxy value for skin darkness 𝑝(FP=V-VI). 
This is the probability, as predicted by the Fitzpatrick type classifier 
neural network, that the image belongs to Fitzpatrick types V or VI. 
We use this for calculating correlations and visualizing results, as it is a 
numerical instead of a categorical measure.

As can be seen in Fig. 2, while there is an overlap between the 

ITA and FP estimations, they have different strengths and weaknesses. 
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Fig. 2. A scatterplot of estimated ITA angle and the predicted probability of 
class “V-VI” by the FP estimation neural network classifier (𝑝(FP = V-VI)). A 
higher probability corresponds to darker skin, while a higher ITA corresponds 
to lighter skin.

Namely, the ITA estimation is prone to errors but is a white box method 
for which the limitations and biases can be understood ahead of time. 
The FP estimation, being a neural network-based method, potentially 
offers better accuracy but is a black box method and therefore could in-

clude unknown biases. Finally, manual labeling offers the most reliable 
estimation but is coarse as we only use binary dark or non-dark labels 
to increase the reliability of the labels. We hope that by reaching the 
same conclusion using these distinct methods we can make more robust 
claims about the relationship between segmentation quality and skin 
color.

2.1.1. Fitzpatrick type estimation

To derive a Fitzpatrick type for each image, we trained a VGG16-

based network to classify skin color into three Fitzpatrick type classes: 
I-II, III-IV, and V-VI. We aggregate the six Fitzpatrick types into three 
classes to account for off-by-one errors which are prevalent in the auto-

matic estimation of skin color [32,4] as well as to reduce the effect of 
class imbalance in types V and VI.

The network was initialized using weights trained on the ImageNet 
dataset [33]. We then pre-train the network using the Fitzpatrick-17k 
dataset [13,32], which contains clinical skin disease images. Since the 
dataset is comprised of various skin condition images we further fine-

tune the model on only skin lesion image datasets including the Diverse 
Dermatology Images [4] and PAD-UFES-20 [34]. Augmentation tech-

niques were applied to increase out-of-sample robustness, including 
random scaling, translation, rotation, as well as horizontal and verti-

cal flipping. Altogether, the network is pre-trained on 16,577 images 
and fine-tuned on 2,954 images from 1,943 subjects.

To address class imbalance, we used cross entropy loss with in-

creased error weight for less-represented classes (𝑤𝑐 = 1∕|𝐶| where |𝐶|

is the number of samples of class 𝐶 in the training dataset). 5-fold cross-

validation was employed for model evaluation during training. During 
inference on segmentation datasets, an ensemble of the five folds was 
used for skin type prediction through majority voting.

The network achieves a balanced accuracy of 57% when evaluated 
using 5-fold cross-validation on the PAD-UFES-20 and Diverse datasets. 
Note that this performance is in line with human performance on the 
task of Fitzpatrick skin type estimation [13]. We also explored deeper 
backbone architectures like ResNet18 and ResNet34 [35], but valida-

tion results showed no improvement in accuracy. Therefore, we opted 
4

for the smaller VGG16 backbone.
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2.1.2. Individual typology angle estimation

To perform the ITA estimation, we first extract skin pixels on the 
image without the lesion, hair, and other artifacts. We do this by pre-

processing the image using contrast-limited adaptive histogram equal-

ization of the 𝐿 ∗ channel in the CIELAB colorspace and artifact removal 
using Dullrazor [36]. The HSV colorspace is then employed to obtain a 
mask of skin pixels by using Otsu thresholding of the value channel. The 
resulting mask is morphologically expanded and used to mask the im-

age, leaving behind healthy skin areas with background, hairs, lesions, 
and pigmentations removed.

After extracting the skin region, we convert the image back to the 
CIELAB colorspace and perform 𝑘-means clustering on all skin pixel 
value vectors (𝐿𝑖, 𝑎 ∗𝑖, 𝑏 ∗𝑖). The optimal value of 𝑘 is automatically 
determined for each image following [37], and we identify the most 
populated cluster as the estimated skin color of the subject.

A sample of the predicted dominant skin colors and ITA angles can 
be seen in Fig. 3. Visually, there is a high agreement between predicted 
and actual skin colors.

It is important to emphasize that while ITA and Fitzpatrick types 
may show correlation, they are not interchangeable. The ITA calcula-

tion serves as an estimate and is only intended to represent relative skin 
color lightness among images in the dataset. Its absolute value may not 
directly correspond to the actual ITA of the individual subjects.

2.1.3. Manual grouping of light- and dark-skinned subjects

Finally, human raters also manually labeled each image in the eval-

uation datasets as either belonging to dark-skinned (FP V or VI) or 
non-dark-skinned classes. These labels were assigned by two computer 
scientists, and disagreements were solved by preferring the non-dark-

skinned class. This ensures conservative classification and minimizes 
the risk of false-positive dark-skinned images, thus avoiding overesti-

mating bias. We note that the raters are not medical experts, however, 
the methodology of binary classification was chosen to ensure that the 
labeling is both easily manageable by individuals without specialized 
training and minimizes the potential for false-positive identifications.

2.2. Training the segmentation models

To evaluate bias in neural networks we train various U-Net-based 
models using a ResNet-18 encoder, a widely used architecture in le-

sion segmentation [24–26]. To ensure representative results, we initial-

ize each model using weights obtained by training on the ISIC 2018 
challenge Task 1 data [24,38] consisting of 3594 multi-source dermato-

scopic images. Then, we train the models using 5-fold cross-validation 
on a combination of the PH2 [6], Dermofit [8] and Waterloo datasets 
[7]. Additionally, we assess out-of-sample performance by employing 
a leave-one-dataset-out approach, training models on two datasets and 
evaluating them on the left-out dataset.

2.3. Datasets used for bias evaluation

We evaluate bias on three publicly available datasets:

1. PH2 [6], a set of 200 dermatoscopic images.

2. The Waterloo dataset [7], consisting of 191 photographs of skin 
lesions from two different databases.

3. The Dermofit dataset [8] consisting of 1300 dermatoscopic images 
with internal color standards.

In Fig. 4, we present the distribution of the predicted Individual Ty-

pology Angle (ITA) and the probability of belonging to the dark-skinned 
class. Notably, the ISIC dataset demonstrates the least diversity among 
the four datasets. Therefore, we only use the ISIC dataset for model ini-
tialization and not for bias evaluation.
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Fig. 3. Examples of ITA estimation. Each image shows, from left to right, the original image, the image-processing derived skin region used for ITA estimation, and 
the estimated dominant skin color. Above each image, the estimated ITA angle is shown together with the Fitzpatrick type prediction for that image, labeled FP.
Fig. 4. A kernel density estimate plot of the skin color estimation results. The 
estimated ITA is shown on top. Lower ITA values correspond with darker skin. 
Below, the predicted probability of the dark-skinned class 𝑝(FP=V-VI) comes 
from the predictions of the Fitzpatrick type neural network classifier. Lower 
probability values correspond with darker skin. Note that Waterloo and Der-

mofit datasets contain more dark-skinned images according to the estimated 
ITA, while ISIC contains few dark-skinned images according to both estimates.

2.4. Statistical evaluation of bias

We use several segmentation metrics including the Dice similarity 
coefficient (DSC), Housdorff distance (HD), and average symmetric sur-

face distance (ASSD). DSC is a measure of both sensitivity and precision 
and thus provides a comprehensive evaluation of the similarity between 
predicted and ground truth segmentation masks. On the other hand, HD 
and ASSD focus on boundary quality, with HD measuring the maximum 
distance between the predicted and ground truth boundary, while ASSD 
represents the average boundary distance. Therefore, these three met-

rics capture different problems in lesion boundary segmentation.

We use several measures to quantify skin darkness. Firstly, we use 
the estimated Fitzpatrick type as a categorical variable, comparing the 
distributions of segmentation metrics between the light (I-II), medium 
(III-IV), and dark (V-VI) skin color categories. Secondly, we use the Fitz-

patrick type classifier’s predicted probability of the dark-skinned class 
(𝑝(FP=V-VI)) as a continuous proxy for skin darkness, examining cor-

relations between segmentation metrics and 𝑝(FP=V-VI). Similarly, we 
employ the estimated ITA as a continuous variable to evaluate cor-

relations with segmentation metrics. Finally, we also use the manual 
grouping as a categorical variable to verify if there are significant dif-
5

ferences in segmentation metrics between dark and non-dark subjects.
Table 1

In-sample results for baseline lesion segmentation on different skin types 
(I-II – light skin, III-IV – medium skin, V-VI – dark skin) as classified by 
the Fitzpatrick type classifier. One-way ANOVA statistics and p-values are 
shown for each metric.

Skin Type N DSC HD ASSD

I-II 1587 0.904 ± 0.092 22.179 ± 17.285 6.190 ± 6.453

III-IV 166 0.878 ± 0.111 20.854 ± 18.684 6.494 ± 7.826

V-VI 5 0.744 ± 0.321 37.342 ± 39.039 10.814 ± 9.758

ANOVA -
F = 18.842

𝑝 < 0.0001

F = 3.127

𝑝 = 0.044

F = 1.703

𝑝 = 0.182

To ensure normality for the ANOVA, Tukey’s honestly significant 
difference (HSD) and t-tests, we use 𝑙𝑜𝑔(1 − 𝐷𝑆𝐶), 𝑙𝑜𝑔(𝐻𝐷), and 
𝑙𝑜𝑔(𝐴𝑆𝑆𝐷) for DSC, HD, and ASSD, respectively.

3. Results

3.1. In-sample bias quantification results

The in-sample evaluation was performed by training a model on all 
three datasets and evaluating using a held-out test set sampled from 
all three datasets. When using the Fitzpatrick type classifier to eval-

uate in-sample bias, we observe a large difference in both the mean 
and standard deviation of DSC, HD, and ASSD for light (FP I or II), 
medium (FP III or IV) and dark (FP V or VI) individuals. This dif-

ference is presented in Table 1. A one-way ANOVA confirms a sta-

tistically significant difference between the mean DSC of the groups 
(𝐹 (2, 1755) = 18.842, 𝑝 < 0.0001). Subsequent Tukey’s HSD test indi-

cates that the mean DSC of dark-skinned individuals was significantly 
lower than that of light-skinned (𝑝 < 0.0001, 95% CI= [0.192, 0.479]) as 
well as medium-skinned (𝑝 < 0.0001, 95% CI = [0.158, 0.449]) individ-

uals. In other words, in terms of DSC, the in-sample segmentation is 
worse for dark individuals than for other groups.

Further evidence of bias arises when using the Fitzpatrick classifier 
probability of belonging to the dark-skinned class (𝑝(FP=V-VI)) and the 
estimated ITA as two continuous proxies for skin color darkness. Using 
Spearman’s rank correlation, we find a significant negative correlation 
between DSC and 𝑝(FP=V-VI) (𝑟(1756) = −0.320, 𝑝 < 0.0001) as well 
as a positive correlation between DSC and ITA (𝑟(1756) = 0.283, 𝑝 <
0.0001). This is presented visually in Fig. 5. Higher ITA corresponds to 
lighter skin, so both of these results strongly indicate that segmentation 
is worse for individuals of darker skin colors.

In addition, we evaluate the impact of ISIC pre-training on the re-

sults. When omitting the pre-training process, we see almost no change 
in bias evaluation results. The resulting Spearman’s rank correlation be-

tween DSC and 𝑝(FP=V-VI) decreases from -0.320 to -0.319 while the 
correlation between DSC and ITA increases from 0.283 to 0.288, when 
omitting ISIC pre-training.

However, it is important to note that we do not find a significant 

in-sample difference between manually classified dark and non-dark 
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Fig. 5. A scatter plot of estimated ITA and the DSC scores of each test image 
result. The background colors exemplify a skin color from the ITA range of that 
region.

Table 2

Out-of-sample results for baseline lesion segmentation on different skin 
types (I-II – light skin, III-IV – medium skin, V-VI – dark skin) as classified 
by the Fitzpatrick type classifier. One-way ANOVA statistics and p-values 
are shown for each metric.

Skin Type N DSC HD ASSD

I-II 1587 0.843 ± 0.150 30.141 ± 23.379 9.685 ± 10.122

III-IV 166 0.770 ± 0.197 33.772 ± 27.507 12.399 ± 13.450

V-VI 5 0.532 ± 0.293 65.052 ± 39.922 30.098 ± 19.174

ANOVA -
𝐹 = 25.810
𝑝 < 0.0001

𝐹 = 3.477
𝑝 = 0.031

𝐹 = 8.014
𝑝 < 0.0001

groups. We deliberately included only high-certainty images in the dark 
class to reduce false positives, which might result in an underestima-

tion of bias when using manual classification. As described later in this 
section, this test yields a statistically significant difference in the out-of-

sample evaluation.

3.2. Out-of-sample bias quantification results

Given that segmentation models are often deployed in diverse set-

tings and tasked with segmenting images outside their initial training 
domain, assessing out-of-sample performance becomes crucial in eval-

uating the fairness and safety of a model. To address this, we adopt a 
leave-one-dataset-out training procedure to comprehensively evaluate 
the model’s performance beyond its training data.

Out-of-sample, the models are worse both in terms of segmentation 
metrics as well as bias, as is evident in Table 2. The ANOVA analysis of 
the metrics reveals significant differences between the DSCs of the three 
groups (𝐹 (2, 1755) = 25.810, 𝑝 < 0.0001) as well as ASSD (𝐹 (2, 1755) =
8.014, 𝑝 < 0.0001) that are notably larger than the in-sample differences. 
Subsequent testing using Tukey HSD confirms significant differences 
between the DSCs of all groups as well as the ASSD between the light 
and dark groups. The results of the Tukey HSD test are presented in 
Table 3. This increase in out-of-sample bias also persists in the baseline 
models when evaluated using estimated ITA as well as 𝑝(FP=V-VI), as 
shown in Table 4.

Finally, a one-tailed independent samples Welch’s t-test indicates the 
DSC scores of manually labeled dark-skinned subjects (𝑀 = 0.75, 𝑆𝐷 =
0.22) and non-dark-skinned (𝑀 = 0.84, 𝑆𝐷 = 0.16) are statistically dif-

ferent (𝑡(1756) = 2.14, 𝑝 = 0.020).

3.3. Evaluation of methods for skin color bias correction

Various methods, such as stratified sampling or utilizing the CIELAB 
6

colorspace, are commonly employed to reduce bias in lesion segmenta-
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Table 3

Results of the Tukey HSD test on out-of-sample evalu-

ation using the predicted Fitzpatrick types (I-II – light 
skin, III-IV – medium skin, V-VI – dark skin). Only 
significant differences (𝑝 < 0.01) are shown.

Skin Types p 95% CI

DSC

I-II vs V-VI < 0.0001 [0.342, 0.916]

I-II vs III-IV < 0.0001 [0.062, 0.166]

III-IV vs V-VI < 0.0001 [0.224, 0.806]

ASSD

I-II vs V-VI 0.003 [-2.365, -0.408]

Table 4

Spearman rank correlations between segmentation metrics and predicted 
skin color probabilities for the darkest class (𝑝(FP=V-VI)) and estimated 
ITA for different experiments. All values are statistically significant with 
𝑝 < 0.0001.

In-sample results Out-of-sample results

Attribute DSC HD ASSD DSC HD ASSD

Baseline

p(FP = V-VI) -0.320 0.268 0.292 -0.357 0.330 0.358

Pred. ITA 0.283 -0.209 -0.272 0.271 -0.258 -0.275

Stratified sampling

p(FP = V-VI) -0.311 0.272 0.289 -0.347 0.320 0.352

Pred. ITA 0.280 -0.211 -0.273 0.230 -0.238 -0.234

CIELAB & strat. sampling

p(FP = V-VI) -0.309 0.283 0.290 -0.346 0.321 0.348

Pred. ITA 0.269 -0.207 -0.261 0.203 -0.205 -0.197

tion models. While these methods are intuitively expected to mitigate 
bias, their quantitative impact remains largely unexplored. To address 
this gap, we conduct a comparative study involving three different pre-

processing procedures: (1) RGB images with minimal pre-processing 
(Baseline), (2) stratified sampling of RGB images, and (3) stratified sam-

pling and conversion to the CIELAB colorspace. To better understand if 
these steps mitigate bias, we evaluate the effects of the preprocessing 
steps in out-of-sample data.

The stratified sampling was implemented using the Fitzpatrick type 
classification results. Given an image 𝐼 of class 𝐶 ∈ {I-II, III-IV, V-VI}, 
the probability of selecting the image during batch sampling is propor-

tional to 1∕|𝐶|, where |𝐶| is the number of samples belonging to class 
𝐶 . The samples are drawn with replacement.

For the out-of-sample segmentation masks, independent samples 
t-test revealed a significant difference (𝑡(1756) = 3.57, 𝑝 = 0.0004) be-

tween the baseline DSCs (𝑀 = 0.835, 𝑆𝐷 = 0.16) and those obtained 
from the stratified CIELAB model (𝑀 = 0.815, 0.17). Although both 
stratified sampling on its own as well as with CIELAB conversion 
slightly reduced the correlation between 𝑝(FP=V-VI) and DSC, the bias 
persisted without significant reduction, as can be seen in Fig. 6.

A one-way ANOVA of the out-of-sample results of the model using 
stratification and CIELAB still revealed significant differences for DSC 
(𝐹 (2, 1755) = 15.605, 𝑝 < 0.0001), HD (𝐹 (2, 1755) = 5.453, 𝑝 = 0.004) 
and ASSD (𝐹 (2, 1755) = 6.334, 𝑝 = 0.002) between the light, medium 
and dark skin color groups.

The results are slightly more promising when evaluating bias using 
predicted ITA. There is a slight reduction in Spearman’s rank correlation 
between ITA and out-of-sample DSC from 0.283 (𝑝 < 0.0001) to 0.269 
(𝑝 < 0.0001), as shown in Table 4. However, as indicated by other re-

sults, this small reduction in correlation does not translate into better 
segmentation results for less-represented subjects.

In addition, when examining subjects manually grouped into dark or 

non-dark groups, a one-tailed Welch’s independent samples t-test indi-
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Fig. 6. A box plot of out-of-sample DSC and ASSD scores for groups binned by the neural Fitzpatrick skin type classifier probability of belonging to the dark-skinned 
class (𝑝(𝐹𝑃 = 𝑉 − 𝑉 𝐼)) for two different preprocessing procedures.
Table 5

A comparison of segmentation results of subjects 
manually grouped into dark-skinned (𝑛𝑑 = 23) and 
the rest of the dataset (𝑛𝑟 = 1735). 𝑝 values of 
a one-sided Welch’s t-test with 10,000 permuta-

tions are reported. Significant results (𝑝 < 0.05) 
are marked with an asterisk.

Skin Type DSC

Baseline in-sample

Dark 0.84 ± 0.22 𝑡 = 1.31
Rest 0.90 ± 0.09 𝑝 = 0.0953

CIELAB & strat. sampling in-sample

Dark 0.85 ± 0.18 𝑡 = 1.31
Rest 0.90 ± 0.09 𝑝 = 0.0968

Baseline out-of-sample

Dark 0.75 ± 0.22* 𝑡 = 2.14
Rest 0.84 ± 0.16* 𝑝 = 0.0200

CIELAB & strat. sampling out-of-sample

Dark 0.73 ± 0.24* 𝑡 = 2.13
Rest 0.82 ± 0.17* 𝑝 = 0.0225

cated a significant difference between the groups for both the baseline 
and stratified CIELAB models, as presented in Table 5.

3.4. Qualitative assessment

Examples of out-of-sample predictions on manually labeled dark-

skinned subjects are presented in Fig. 7. Qualitatively, the predicted 
lesion border follows the ground truth border better on light-skinned 
subjects. On dark-skinned subjects, the border exhibits both false posi-

tives and false negatives.

A significant challenge for the model lies in accurately identifying 
depigmented regions, as evident in Fig. 7(B), (D), and (E). The predicted 
area in Fig. 7(D) contains a sizable area that appears depigmented but 
was not labeled as such by the dermatologist. Conversely, the ground 
truth border of Fig. 7(E) includes the depigmented area, however, the 
predicted border encompasses an even larger area of surrounding skin. 
Depigmented areas with gradual borders pose difficulties for both man-

ual labelers and fully automatic models in defining precise borders. 
Consequently, these examples might inadvertently influence the model 
to incorporate the surrounding skin of the lesion, even when no de-
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pigmentation occurs, as observed in Fig. 7(H). Although this issue is 
also present in light-skinned subjects, the underrepresentation of dark-

skinned subjects accentuates its prominence in these images.

4. Discussion

We have found a significant bias against dark-skinned subjects in 
commonly used lesion segmentation methods. Furthermore, qualitative 
assessment has revealed both under and over-segmentation of skin le-

sions for dark-skinned subjects, especially in areas of depigmentation or 
low-contrast lesion borders.

To address this issue, a potential approach is to adopt more descrip-

tive labels. Instead of solely labeling binary lesion/non-lesion areas, 
incorporating labels for differently colored areas such as white glob-

ules, yellow or orange areas, black lacunae, blue-gray areas, as well 
as structures like hypopigmented areas, structureless areas, and blue-

white veils would be valuable. By providing more detailed labels, the 
model can learn border contrasts, shapes, smoothness, and other rele-

vant features for each distinct structure. This, in turn, would enhance 
the accuracy of segmentation for areas such as depigmented skin.

In addition, considering the challenges posed by gradual lesion bor-

ders, it may be beneficial to incorporate methods that take varying 
degrees of lesion border contrast into account. The inherent difficulty 
in precisely defining gradual borders suggests that introducing fuzzy la-

bels could facilitate the development of new models that better capture 
the ambiguity associated with gradual borders and make more nuanced 
predictions.

These approaches could also be extended to post-processing tech-

niques. Instead of binarizing predictions into lesion and non-lesion 
areas, post-processing methods could be employed to treat smooth bor-

ders probabilistically. This would lead to more refined and reliable 
segmentation results, particularly for cases with ambiguous or gradual 
lesion borders.

Lastly, the existing datasets [24,7] have been compiled from various 
sources and annotated by different dermatologists without standardized 
guidelines. Consequently, there are instances where depigmented areas 
and surrounding lesion tissue are inconsistently incorporated into the 
lesion area. Additionally, there is variability even within one dataset 
in annotation methods, with some images manually labeled using poly-

gons while others employ semi-automatic pixel-level labels [24]. All of 
these issues lead to a large degree of intra- and inter-observer variability 
within the datasets [39].

Another key reason for this bias is the lack of diverse publicly 
available datasets. We have shown that dark skin is severely under-
represented in widely used datasets including ISIC 2018 [24], PH2 [6], 
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Fig. 7. Examples of model prediction of the out-of-sample baseline RGB model. The top two rows (A-H) show dark-skinned subjects as determined by manual 
labeling, while the bottom two rows (I-P) show non-dark-skinned subjects.
Dermofit [8] and Waterloo [7]. It is hard to claim that the segmen-

tation quality of any network trained on these datasets generalizes to 
dark-skinned populations. Furthermore, with the exception of [16], the 
absence of information regarding skin color, race, or ethnicity within 
these datasets poses challenges for tracking and evaluating fairness, in-

advertently incentivizing mean results as the primary focus.

Additionally, the bias observed may be attributed to characteristics 
inherent in the images and labels themselves. Most lesions are harder to 
segment in dark-skinned individuals due to a lower amount of contrast 
between surrounding tissue. This could lead to noisier segmentation la-

bels as well as more challenging automatic segmentation. To identify 
the source of bias in image segmentation, further studies are necessary. 
These studies can include the use of balanced datasets to assess the 
impact of dataset imbalances and the development of image complex-

ity metrics to evaluate how segmentation results are affected by image 
complexity and the lack of contrast in darker-skinned images.

Despite employing stratified sampling and the CIELAB colorspace, 
our attempts to mitigate bias did not yield significant improvements. 
In fact, the mean results worsened when evaluated out-of-sample. This 
highlights the importance of not solely relying on reporting the mean 
in-sample result for lesion segmentation, as it may not accurately re-

flect the model’s performance in real-world scenarios. More generally, 
it could be that these simple preprocessing procedures do not have suf-

ficient power to mitigate real-world domain shifts, as shown in [40].

We summarize our results in the following suggestions for future 
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dataset curation and lesion border segmentation research:
• The development of publicly available datasets, standards, and 
challenges is critical for lesion segmentation across varied patient 
demographics, incorporating detailed demographic data. Future 
datasets and challenges in this field must contain data about the 
patient’s skin color to enhance assessments of algorithmic fairness.

• These datasets should follow standardized guidelines and annota-

tion methods to ensure consistent and reliable lesion area inclu-

sion, especially for areas such as depigmented regions. The datasets 
should report on skin color bias present in the annotations them-

selves. Otherwise, biases present in the data could propagate to 
neural networks trained on those datasets.

• A shift from binary labels to labeling regions such as, among others, 
white globules, yellow or orange areas, hypopigmented areas, or 
blue-white veils, would allow models to learn and predict borders 
more accurately and fairly.

• Addressing the issue of ambiguous lesion margins requires the inte-

gration of probabilistic labels and uncertainty metrics within model 
predictions.

• Published skin lesion segmentation methods should employ robust 
validation procedures in terms of fairness and report outcomes be-

yond mean results averaged across all skin colors.

• Since light-skinned populations are overrepresented in existing 
datasets, benchmarks and challenges such as [24] should focus on 
a fair evaluation across subject populations as the primary metric, 

instead of mean segmentation results.



M. Benčević, M. Habijan, I. Galić et al.

5. Conclusion

We have used several methods of estimating skin color from 
dermatological images including a Fitzpatrick type classifier, image 
processing-based ITA estimation, and manual grouping. In all cases, we 
have found significant bias in skin lesion segmentation against darker-

skinned individuals when evaluated both in and out-of-sample. These 
findings indicate a pervasive bias in most published lesion segmenta-

tion methods, given our use of commonly employed neural network 
architectures and publicly available datasets.

It is important to acknowledge a limitation of our study, namely 
the utilization of algorithmic estimates of skin color from relatively 
small skin areas, which inherently introduces error. However, we have 
deliberately erred on the side of underestimating bias to ensure the ro-

bustness of our results, which consistently reveal the presence of bias 
according to different skin color estimation methods and even when 
accounting for errors in estimated skin colors.

In essence, we conclude that, while producing impressive mean re-

sults, existing lesion segmentation models are inadequate for practical 
deployment in real-world scenarios involving diverse patient popula-

tions. There is a pressing need for public datasets, benchmarks, and 
challenges for lesion segmentation on diverse patients. Such efforts, 
coupled with rigorous validation and inclusive performance metrics, 
are imperative for achieving equitable and accurate lesion segmenta-

tion across all patient demographics.
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