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Abstract: Ultra-wideband (UWB) has gained increasing interest for providing real-time positioning
to robots in GPS-denied environments. For a robot to act on this information, it also requires its
heading. This is, however, not provided by UWB. To overcome this, either multiple tags are used
to create a local reference frame connected to the robot or a single tag is combined with ego-motion
estimation from odometry or Inertial Measurement Unit (IMU) measurements. Both odometry
and the IMU suffer from drift, and it is common to use a magnetometer to correct the drift on the
heading; however, magnetometers tend to become unreliable in typical GPS-denied environments. To
overcome this, a lightweight particle filter was designed to run in real time. The particle filter corrects
the ego-motion heading and location drift using the UWB measurements over a moving horizon
time frame. The algorithm was evaluated offline using data sets collected from a ground robot that
contains line-of-sight (LOS) and non-line-of-sight conditions. An RMSE of 13 cm and 0.12 (rad) was
achieved with four anchors in the LOS condition. It is also shown that it can be used to provide the
robot with real-time position and heading information for the robot to act on it in LOS conditions,
and it is shown to be robust in both experimental conditions.

Keywords: sensor fusion; UWB; IMU; UWB pose estimation; robot pose control

1. Introduction

Indoor positioning is an important step towards autonomous robots and can be ap-
proached in multiple ways [1]. One approach is to navigate without external infrastructure,
as performed with a neural network-based approach in [2]. However, the task can be made
easier by the knowledge of the position using external devices. Ultra-wideband (UWB) has
gained significant interest over the past few years in the context of indoor positioning as can
be seen from the increase in papers published on the topic [3], as well as the recent inclusion
of UWB in the new iPhones. One of the major advantages of UWB is its use in GPS-denied
environments while being lightweight, robust, and resilient against multipath fading and
low in power consumption [4]. Much research is focused solely on accurately localizing a
tag [5], e.g., in [6], where machine learning was used on Channel Impulse Response.

Recently, UWB has gained attention in the context of localizing and controlling a
robotic platform in real time. However, to use UWB to control a robotic platform, the pose
(the combination of location and orientation) has to be available in real time. UWB itself has
a dm-level localization error and does not provide orientation, which is generally mitigated
by using it with other modalities or by using multiple tags.

A first strategy exists for trying to estimate the location [7–10] and, sometimes, the
orientation [11–15] using UWB in combination with a (low-cost) IMU [7–9,11–14] or
odometry [10,15]. A second strategy exists for solving a Simultaneous Localization and
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Mapping (SLAM) problem combining UWB with visual inputs (e.g., camera [16–18] or
LiDAR [19,20]), sometimes in combination with an IMU [17,18] or odometry.

This paper focuses on the first group of algorithms, where the pose (position and
orientation) is estimated using UWB in fusion with ego-motion estimators. Ego-motion
estimators are any kind of sensor that is part of the robot and can track the motion of
the robot, e.g., an IMU, wheel encoders, etc. In Table 1, these algorithms are compared.
Multiple challenges arise in this case.

Table 1. Comparison of algorithms and methods used for real-time pose control of a robot combining
ego-motion modalities with UWB. Our method uses a single tag, does not use a magnetometer, which
is unreliable indoors, and does not require additional calibration after the initial UWB anchor install
and calibration phase.

Reference (Year) Method Single Tag Orientation without
Magnetometer

No Additional
Calibration

[7] (2020) Extended Kalman filter ✓ ✓
[8] (2020) Long Short-Term Memory neural network ✓ ✓
[9] (2021) Gradient Descent Optimizer ✓ ✓
[10] (2021) Gradient Descent Optimizer ✓ ✓
[11] (2019) Particle filter ✓ ✓
[12] (2018) Multi-tag reference frame ✓ ✓
[13] (2021) Extended Kalman filter ✓ ✓
[14] (2021) Antenna shape with pre-trained Gaussian pro-

cess model
✓ ✓

[15] (2018) Multi-tag reference frame ✓ ✓
ours Moving horizon particle filter ✓ ✓ ✓

The first challenge comes from the intrinsic lack of orientation information coming
from UWB measurements. This challenge was overcome in [12,15] by using multiple
tags that create a local reference frame connected to the platform while operating in
a multi-anchor environment. Ref. [14] made use of the shape of the UWB antenna to
estimate the orientation of the tag in a multi-anchor setup. This orientation estimation
was used to correct the orientation information received from a gyroscope. A drawback
of this approach is that knowledge about the radiation pattern of the antenna is required.
The authors overcame this by training a Gaussian process model. All other algorithms
using a single UWB tag combine a gyroscope with magnetometer measurements to obtain
the orientation [7–11,13]. Measuring the magnetic field in complex indoor environments is
challenging due to magnetic distortion [14] and, thus, is not an ideal solution.

Another challenge arises from the coarse error in the UWB measurements. Refs. [9,10]
overcame this by using a moving horizon estimator, which averages the measurements
during a certain time to decrease the uncertainty. It was used with a small local time
horizon to mimic the actual value as a filter. Ref. [7] also used an averaging window
to obtain the real velocity while working with a constant velocity assumption. Most
research, however, did not particularly try to mitigate the coarse error from the UWB
measurements [8,11,13,15]. The error of the UWB is, in most cases, considered as Gaussian,
but as pointed out by [10,21], the error model is more likely to be heavy-tailed skewed due
to multipath and Non-Line-Of-Sight (NLOS) conditions. Some algorithms made use of
outlier rejection to increase the UWB accuracy [10].

As pointed out by [22], ego-motion measurements suffer from drift due to the integra-
tion of the measurements during the dead-reckoning phase. Moreover, IMUs suffer from a
slowly changing bias that affects the accelerometer and gyroscope in the long run [21]. It is
common to neglect these small changing biases provided that, with a calibrated IMU and a
limited operation time, the bias stays limited. However, Ref. [13] explicitly estimated this
bias in the proposed algorithm. Ref. [9] did not explicitly calculate the bias, but added a
term to the cost function in his algorithm, which was proportional to the velocity, thereby
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keeping the drift in check. Ref. [11] explicitly modeled the slowly changing bias using a
Wiener process for the accelerometers.

The last challenge lies in fusing the ego-motion measurements with UWB. The goal
is to arrive at an algorithm that works at run-time while reducing the error on the pose
as much as possible. Most kept the location and orientation as separate issues where
a Kalman filter (KF) was used to fuse the gyroscope with the magnetometer [7–11,13].
A separate algorithm was used to fuse the odometry data with the UWB measurements
to estimate the position. In most cases, an extended Kalman filter (EKF) was used to
fuse the odometry with UWB [7,13]. Ref. [15] used Multiplicative EKF. Ref. [8] used a
Long Short-Term Memory neural network to fuse the data and compared it to EKF and
Unscented Kalman filter. Although they achieved better results, the computational load
was considerably higher. Another strategy is to use a gradient descent algorithm on a cost
function, as was performed in [9,10], achieving good results in a few iterations. Ref. [11]
proposed a particle filter (PF) to estimate the bias on the accelerometer and the position.
Herein, the IMU served as a model to predict the position of the platform, which was
corrected by the UWB measurements, yet the PF required 100.000 particles to operate and
had a considerable influence on the computational load. Ref. [14], on the other hand, only
estimated the orientation and not the position using an invariant EKF, where the gyroscope
was corrected by their Gaussian process model for orientation.

The novelty presented in this paper is a UWB-ego-motion particle filter for indoor
pose estimation of a ground robot using a moving horizon hypothesis, which includes the
following contributions:

• Estimating the heading and position of a ground robot fusing ego-motion with UWB
for a single-tag multi-anchor setup.

• Reductions to separate the influence of the bias from the model equations to reduce
the number of operations and reduce the computational load.

• The algorithm runs in real time and has been used to control a robot in the lab.

A video of the algorithm and it is performance can be found at https://youtu.be/
3DBzxUPCwmE.

In Section 2.2, the particle filter algorithm is derived. In Section 3, the experiments will
be discussed. Using the algorithm to control the trajectory of the robot in real life is detailed
in Section 3.3. Finally, the conclusion is drawn in Section 5. In the following section, the
nomenclature and setup will be addressed first.

2. Materials and Methods
2.1. Nomenclature

In Table 2, the variables that will be used in this paper are listed.

Table 2. Table of variables.

Notation Description

xr
m, ẋr

m, ẍr
m Position, velocity, and acceleration of the robot expressed in reference frame

r for modality m.

wr
m Angular velocity of the robot.

Rr1,r2 Rotation matrix from reference frame r1 to r2.

θr1,r2 Angle around z-axis from the reference frame r1 to r2 in the planar case.

Br
m Bias vector in case the gyroscope and/or accelerometer are used.

er
m Noise vector expressed in reference frame r for modality m. Assumed to be

zero mean Gaussian.

σ2
v,m Variance of a zero mean Gaussian of a measured or derived variable v of

modality m.

https://youtu.be/3DBzxUPCwmE
https://youtu.be/3DBzxUPCwmE
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Table 2. Cont.

Notation Description

Av Transformation matrix for variable v.

Or Origin of a reference frame.

t, tres, ∆tMH The current time, the reset time, and the moving horizon duration, respectively.

Moving average of the variable v over a period
v̄ equal to the moving horizon duration ∆tMH starting from the reset time

tres =
1

∆tMH

∫ tres+∆tMH
tres

v dt.

A superscript r will indicate in which reference frame a variable is expressed. Three
reference frames are used, as can be seen in Figure 1. The navigation frame n is the frame
in which the movement of the robot needs to be expressed and is fixed to the environment.
The body frame b is attached to the robot. The integration frame i is fixed during a moving
horizon period ∆tMH ; it is the body frame at the moment the moving horizon period starts
and is updated every moving horizon period.

Figure 1. Geometrical axis (top figure) and time axis (bottom figure) with reference frames and
events in the algorithm. The pose at the start of the moving horizon period (dark grey), the current
calculated pose (orange), the calculated end pose at the end of the moving horizon period (blue),
and the corrected pose (white) are shown. After one moving horizon period, the corrected pose
(white) becomes the new start pose (dark grey).

A subscript m will indicate the modality by which a variable has been measured or de-
rived. The different modalities are acc, gyr, odom and uwb for, respectively, accelerometer,
gyroscope, odometry, and UWB. The pf subscript is given to the variables of the weighted
particle from the particle filter (PF) at the reset time tres.

2.2. Algorithm Overview

A PF will be used to correct the integrated pose from the ego-motion estimation with
the measurements from UWB. In Figure 1, the theoretical setup is shown. An environment
is equipped with A1, A2, . . . , AM UWB anchors, and the location of the anchors is known
in the navigation frame n. A robot equipped with an ego-motion modality (wheel encoders,
IMU, . . . ) and an UWB tag moves around in a horizontal plane. The start pose (position
and orientation) of the robot is shown with the dark grey circle and marks the reference
frame with origin Oi. The start pose is given by the pose of the robot at the start of a moving
horizon period at time tres. The current calculated robot pose is shown with the orange
circle and marks the local reference frame attached to the body of the robot with origin Ob.
This pose is calculated from the integration of the ego-motion sensors in the integration
frame i. Using the weighted particle, calculated at the start of this moving horizon period,
the ego-motion integration is transformed from the integration frame i to the navigation
frame n. The robot continues its movement until the moving horizon period ∆tMH has
passed. The calculated pose at the end of this time frame is shown in blue. During this,
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time drift occurred. The particle filter will correct the pose using the UWB measurements
obtained during the same moving horizon time period. The corrected pose is shown in
white and will mark the new integration frame i from which a new integration period
can start.

The complete scheme describing the algorithm is shown in Figure 2. A more detailed
explanation per step is given in the next subsections.

Figure 2. Scheme of the proposed algorithm. The boxes represent functions that are discussed in
the sections below. The dotted boxes represent the variables involved in each function, while the
diamonds represent important decisions.

2.3. The Particle Filter

The states x(t) ∈ R10 are given by:

x(t) =
[
xn

acc(t) ẋn
acc(t) θn,b(t) Bb

acc(t)
]t, (1)

where xn
acc(t), ẋn

acc(t), and θn,b(t) are the position, velocity, and orientation of the robot at
the start of the integration frame i, respectively. Bb

acc(t) is the bias on the acceleration of
the accelerometer. The filter is initialized, as detailed in Section 2.3.2 (B), after the first
integration. The input u(t) ∈ R4 is given by:

u =
[
ẍn

acc(t) ωb
gyr(t)

]t
, (2)

where ẍn
acc(t) is the measured acceleration vector and ωb

gyr(t) is the measured rotation
around the z-axis of the robot by the IMU. This input is integrated as explained in
Section 2.3.1 (A) during the integration window. In this step, the transformation ma-
trices Aẍ, Aẋ, and Ax are calculated as explained in that section. The input covariance
Q(t) ∈ R4×4 is given by:

Q(t) = diagonal(σ2
acc, σ2

acc, σ2
acc, σ2

wb ,gyr), (3)

where σ2
acc and σwb ,gyr are the measurement noise on the acceleration and rotational speed of

the IMU. These are used in the diffusion step as explained in Section 2.3.3 (C) to represent
the distribution of the particles. The measurement, z(t) ∈ R3, is given by:

z(t) = xn
uwb(t), (4)
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where xuwb(t) is the UWB-measured position. The covariance R ∈ R3×3 is given by:

R(t) = diagonal(σ2
xn ,uwb, σ2

xn ,uwb, σ2
xn ,uwb), (5)

where σxn ,uwb is the standard deviation on the measured position in one axis. The mea-
surements do not directly trigger a correction; this is only performed after the integra-
tion window is finished. In this case, the the transformation matrices as calculated in
Section 2.3.1 (A) are applied to all particles as explained in Section 2.3.4 (D), after which
all measurements within the integration time are used, as explained in Section 2.3.5 (E).
Finally, sampling is applied as detailed in Section 2.3.6 (F).

2.3.1. (A) Prediction

The prediction will be given by the integration of the ego-motion sensor. The pose
of the new integration frame i in the navigation frame n is given by the position of the
weighted particle xn

p f . We start from the equations derived in [21] for the accelerometer and
gyroscope:

ẍn
acc + gn = Rb,n(ẍb

acc − Bb
acc) + eb

acc (6)

wn
gyr = wb

gyr − Bb
gyr + eb

gyr, (7)

where gn is the gravitation vector as expressed in the navigation frame n. Since the robot is
moving in a horizontal plane, the gravitation vector will be ignored. Leaving out the noise
term and using the rotation matrix operations, Equation (6) becomes:

ẍn
acc = Rn,iRi,bẍb

acc − Rn,iRi,bBb
acc. (8)

Rearranging the terms of Equation (8) in a matrix yields:

ẍn
acc = Rn,i[Ri,bẍb

acc Ri,b][ 1
−Bb

acc

]
= Rn,iAẍB̂b

acc, (9)

where Rn,i and B̂b
acc =

[
1 −Bb

acc
]τ are considered constant during a moving horizon time

period ∆tMH . Allow integration for t ∈ ]tres, tres + ∆tMH ]:

ẋn
acc =ẋn

p f + Rn,iAẋB̂b
acc (10)

xn
acc =xn

p f + (t − tres)ẋn
p f + Rn,iAxB̂b

acc (11)

with Aẋ =
∫ t

tres
Aẍdt and Ax =

∫ t

tres
Aẋdt,

where xp f and ẋp f are the position and speed of the weighted particle and represent the start-
ing conditions of the integration. Taking the moving average for Equations (10) and (11)
between t ∈ ]tres, tres + ∆tMH ] gives:

¯̇xn
acc =ẋn

p f + Rn,iĀẋB̂b
acc (12)

x̄n
acc =xn

p f +
∆tMH

2
ẋn

p f + Rn,iĀxB̂b
acc. (13)

Getting rid of the gyroscope bias is more difficult. Hence, it will be assumed that the
gyroscope is calibrated and the effect of the slowly changing bias stays within the error of
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the gyroscope. Generally, Ri,b at time tn can be calculated using the discretized measured
angular velocity with:

Ri,b(tn) = Ri,b(tres)
j=n

∏
j=0

edtwb
gyr(tj). (14)

Since the integration is reset after each moving horizon period, Ri,b(tres) = I. In the case of
a robot moving in a horizontal plane, Equation (14) becomes:

wb
gyr =

[
0 0 wb

gyr

]t

θi,b(t) =
∫ t

tres
wb

gyr(t)dt. (15)

Ri,b can be calculated form θi,b(t) and θn,b = θn,i
p f + θi,b, where θn,i

p f will be kept by the

particles and from which Rn,i can be calculated in Equation (9).
Similar deduction can be made when not ẍb

acc, but ẋb
odom is provided. During the

integration step only, Aẋ, Ax, and A∫
x will be calculated gradually until a period ∆tHM has

passed. The pose of the robot will be estimated continuously using Equations (11) and (15),
where the weighted particle is used. The weighted particle represents the weighted sum
of all particles in the PF where the weight is given by the particle likelihood and as such
represents the best estimate of the filter. As can be seen in Equation (11), xp f and ẋp f
represent the most likely position and speed at the starting conditions of the integration
interval. The last term of the equation represents the contribution due to acceleration in the
position estimation within the integration interval.

2.3.2. (B) Initialization

Once the integration over a period ∆tMH has been completed, 2 options exist: either a
list of particles exists and the diffusion step can start or no list is available and a list has to
be initialized. In the latter case, an initial estimate has to be made for the properties of the
particles xn

p f , ẋn
p f , θn,e

p f , and Bb
acc.

For xn
p f and ẋn

p f , UWB will be used with an uncertainty bound equal to the uncertainty
on these values.

For the orientation, θn,e
p f a uniform distribution will be taken from the interval ]−π, π].

At last, for the bias on the accelerometer, a uniform distribution will be taken from the
interval [ ¯̈xb

acc − amax, ¯̈xb
acc + amax]. ¯̈xb

acc is the moving average of the measured acceleration
in the body frame b, and aτ

max = amax
[
1 1 1

]
and amax are the theoretical maximum

acceleration of the robot.

2.3.3. (C) Diffusion

During the integration step, the uncertainties were omitted to reduce the number
of operations. However, these uncertainties have to be taken into account in the particle
filter. To avoid difficult integration, the strategy would be to generate particles around the
calculated particles that represent the uncertainty after an integration period of ∆tMH . For
this purpose, each particle will obtain n children for which the values of xn

p f , ẋn
p f , and θn,e

p f
will be drawn from a distribution around the original value from the parent particle. For
xn

p f , starting from Equations (14) and (15) and knowing the gyroscope has been calibrated,
the variance on the orientation becomes:

σ2
θe,b ,gyr = (

∆tMH
fs

)σ2
wb ,gyr, (16)

where σ2
wb ,gyr is given by the gyroscope and fs is the sampling frequency of the gyroscope.

In order to find the uncertainty bounds of the acceleration in the navigation frame n from
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the acceleration in the body frame b, it will be assumed that the error on the accelerometer
is unrelated to the error on the gyroscope. In this case, the variance of the acceleration of
the robot moving in a horizontal plane becomes:

σ2
ẍn

acc
= (ÿn

acc)
2σ2

θe,b ,gyr + σ2
acc (17)

σ2
ÿn

acc
= (ẍn

acc)
2σ2

θe,b ,gyr + σ2
acc, (18)

where σ2
acc is the variance in the acceleration given by the accelerometer. Since ÿn

acc and ẍn
acc

are a function of time and need to be calculated, they will be replaced with the theoretical
maximum acceleration of the robot amax. This will overestimate the error, which is not an
issue as long as convergence is reached. Finally, one can derive the following uncertainties
for the velocity and position:

σ2
ẋn

acc
= (amax)

2(
∆tMH

fs
)2σ2

wb ,gyr + (
∆tMH

fs
)σ2

acc (19)

σ2
xn

acc
= (amax)

2(
∆tMH

fs
)3σ2

wb ,gyr + (
∆tMH

fs
)2σ2

acc. (20)

Lastly, the slowly changing bias Bb
acc still has to be estimated. For this, a Wiener process

with slow rate T will be used as proposed by [11].

2.3.4. (D) Transformation

In this step, all previously generated particles will undergo the transformations as
described in Equations (10)–(13). The values of the particle filter are updated as well in this
step:

ẋn
p f =

˙xn
p f

∗
+ Rn,eAẋB̂b

acc (21)

xn
p f =xn

p f
∗ + (∆tMH) ˙xn

p f
∗
+ Rn,eAxB̂b

acc. (22)

The * indicates that it is the previous particle value.

2.3.5. (E) Correction

In the correction step, UWB will be used to correct Equations (11)–(13) for each particle.
First, the 3D position xn

uwb is calculated from the UWB ranges using the linear least squares
method as described in [23]. From that, the moving average position x̄n

uwb and the moving
average velocity ¯̇xn

uwb are calculated during the moving horizon duration ∆tMH :

x̄n
uwb =

1
∆tMH

∫ t

t−∆tMH

xn
uwbdt (23)

¯̇xn
uwb =

1
∆tMH

(xn
uwb(t)− xn

uwb(t − ∆tMH)). (24)

It will be assumed that the error on xn
uwb is zero mean Gaussian with a variance σ2

xn ,uwb,
given by the setup. From this, the variance on x̄n

uwb and ¯̇xn
uwb can be calculated:

σ2
x̄n ,uwb =

1
∆tMH fuwb

σ2
xn ,uwb (25)

σ2
¯̇xn ,uwb =

2
(∆tMH)2 σ2

xn ,uwb, (26)

with fuwb the update rate of the UWB setup.
Using x̄n

uwb and ¯̇xn
uwb on top of xn

uwb will greatly restrict the number of likely particles
and, thus, allow using fewer particles.
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2.3.6. (F) Sampling and Integration Reset

Since more particles have been generated during diffusion, in this step, the number
of particles will be reduced again. To limit the number of calculations and keep every
possibility as long as possible, it was chosen to use multinomial sampling to bring back
the particle population to the initial number of samples. During this process, a weighted
particle will be calculated. The properties xn

p f , ẋn
p f , θn,e

p f , and Bb
acc of this weighted particle

will be used in the integration step.
After the resampling has taken place, all transformation matrices Aẋ, Ax, and A∫

x are
reset and the integration can start a new moving horizon period ∆tMH .

2.4. Additional Points
2.4.1. Particle Depletion

By leaving the propagation of the error until after the integration and limiting the
number of particles or due to physical effects that are not captured by the uncertainties
like slip, shock, or NLOS, particle depletion can kick in. For this reason, the weight of the
filtered particles is monitored, and when particle depletion is detected, the current particle
list is removed and a new one is initialized.

2.4.2. Operation Reduction

Traditionally a PF would have to apply the prediction integration to each particle. This
would mean an enormous amount of operations proportional to the number of particles.
Using the proposed method, the number of operations is drastically reduced. It can be
estimated that, when the sampling frequency of the ego-motion modality is 50 Hz, ∆tMH is
1 s and the number of particles is 1000, while the number of operations is reduced from
900 k to 80 k operations. On top of this, the algorithm used in the experiments only uses
100 to 1000 particles to track the robot, as opposed to the 100.000 from [11].

2.5. Limitations
2.5.1. Moving Horizon Duration Trade-Off

One can see from Equations (25) and (26) that the higher the moving horizon duration
∆tMH is, the more accurate UWB becomes; however, from Equations (16), (19) and (20), one
can understand that the higher ∆tMH becomes, the more particles are needed to represent
the uncertainty. For each ∆tMH , the transformations are calculated for all particles, resulting
in much computational effort, so it is best not to take it too small.

2.5.2. Gyroscope Calibration

When the bias on the gyroscope increases too much, the gyroscope will need to be
calibrated. This requires the robot to stand still for a certain amount of time. This is only
a small inconvenience compared to the full calibration of an IMU. It might be possible to
generalize the idea and separate the bias of the gyroscope, as has been performed for the
accelerometer, but this is not part of this paper.

2.5.3. Unobservability of Orientation

When standing still for a long time, the uncertainty of the orientation will grow since
it cannot be directly measured from UWB.

2.5.4. UWB Position vs. Ranges

For now, the algorithm only works with UWB positions and not ranges. This has
the drawback of only Gaussian error models being able to be used for UWB. It might be
possible to update the algorithm to work with ranges, but this is not part of this paper.

3. Results

The algorithm was first tested offline and later used in a real-time experiment to
control the pose of a moving robot.
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3.1. Experimental Setup

The experiments were conducted in a large room equipped with Motion Capture (mo-
cap) technology from Qualysis, Göteborg, Sweded and UWB. The UWB system consists
of fixed Wi-Pos [24] anchor nodes in a cubic constellation. This Wi-Pos platform expands
the possibilities of the DW1000 transceiver from Qorvo, Greensboro, NC, USA, with a
wireless long-range backbone. The distance between the tag and anchor is determined with
double-sided two-way ranging to eliminate the influence of clock drift. The location of the
anchors used is given in Table 3.

Table 3. Table of UWB anchor locations in the navigation frame. The last three anchors, denoted by
A#∗, are used in the seven-anchor setup.

Anchor ID xn [m] yn [m] zn [m]

A1 3.86 −5.31 0.44
A2 3.98 5.42 2.86
A3 −3.99 −5.29 2.65
A4 3.86 −5.31 2.66
A5* −4.05 5.45 0.41
A6* −3.99 −5.29 0.44
A7* −4.05 5.45 2.62

A Turtlebot3 from ROBOTIS Co., Ltd., Seoul, Republic of Korea, was upgraded to
include mo-cap markers and a UWB tag, as can be seen in Figure 3, and software was
written to control the trajectory of the robot using mo-cap as feedback. Mo-cap will also
provide mm-level accuracy on the ground truth. Table 4 shows the models of the sensors
used for the evaluation of the proposed method. One continuous trajectory in the shape
of a U was defined. The trajectory consists of sharp corners, which induce a particularly
hard condition on the ego-motion sensors. The trajectory can be seen in Figure 4. Each
experiment consisted of five laps. It took about 500 s to complete all five laps. Three
experiments were conducted:

1. Modalities: In the first experiment, the different modalities were tested, and Table 5
lists the modalities used. The experiment was conducted in the LOS with the first
four anchors. The next two experiments were performed with the better performing
modality.

2. Influence of NLOS: In the second experiment, the influence of NLOS was tested.
For this, the first experiment was repeated, but two walls were placed, which occluded
the LOS for different anchors on the trajectory.

3. Influence of the number of anchors: In the last experiment, the influence of the number
of anchors was tested, by redoing the first experiment, but with seven anchors instead
of four.

For all three experiments, a cumulative distribution function (CDF) was used for both
the error on the position and the orientation. The y-axis of a CDF shows the probability of
the error to be less than or equal to the value on the x-axis.

Table 4. Table of sensor models.

Sensor Model

Accelerometer InvenSense MPU-9250 from TDK InvenSense, San Jose, CA, USA
Gyroscope InvenSense MPU9250 from TDK InvenSense, San Jose, CA, USA
Magnetometer InvenSense MPU9250 from TDK InvenSense, San Jose, CA, USA
Wheel
encoders DYNAMIXEL XL430-W250, from ROBOTIS Co., Ltd., Seoul, Republic of Korea

UWB Wi-Pos [24] (DW1000 from Qorvo, Greensboro, NC, USA)



Sensors 2024, 24, 2164 11 of 18

Figure 3. A Turtlebot3 equipped with mo-cap markers, an UWB tag, and ego-motion modalities is
used to validate the particle filter to estimate the pose of the robot in different operating conditions.

Figure 4. The experimental setup: with the trajectory and the non-line-of-sight object. The robot
follows five U-shaped trajectories controlled by the mo-cap system.

Table 5. Table of modalities (mods.).

Ego-Motion Modality Used in the Particle Filter

Odom–UWB (in red) Only odometry is used for the ego-motion prediction. Correction
is performed with UWB.

Odom–Gyro–UWB (in blue) Odometry is used for the translation in the body frame, while the
gyroscope provides the rotational motion during the prediction.
Correction is performed with UWB.

IMU–UWB (in green) Accelerometers are used for the translation in the body frame,
while the gyroscope provides the rotational motion during the
prediction. Correction is performed with UWB. (For the IMU,
1000 particles were used instead of 100.)
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Table 5. Cont.

Reference Modality to Compare with

UWB (in black) The UWB pose is directly calculated from the ranges. It does not
provide orientation.

Gyro–Mag (in black) Gyroscope corrected with a magnetometer for orientation. Widely
used in most applications today.

Vanilla PF (in purple) A vanilla particle filter implementation using the odometry and
gyroscope as sources similar to the Odom–Gyro–UWB modality.
However, this particle filter does not use the moving horizon, as
is proposed in this paper.

3.2. Offline Tracking

The algorithm was first validated offline and compared to the reference modalities.
Table 6 shows the values of the different algorithmic parameters that were used during
these experiments.

Table 6. Tables of algorithm parameters.

Time Parameters (SF = Sampling Frequencies)

∆tMH 1 s
UWB SF 5 Hz
IMU SF 50 Hz
Odom SF 25 Hz

UWB Uncertainty Parameters (#A = # Anchors)

σxn
uwb

7 Anchors LOS 0.25 m
σxn

uwb
4 Anchors LOS 0.40 m

σxn
uwb

4 Anchors NLOS 0.45 m

Ego-Motion Uncertainty Parameters

σẋb
odom

0.2 m
s

σẍb
acc

1. m2

s
σwb

odom
0.5 rad

s

σwb
gyro

0.2 rad
s

In Figure 5, the CDF is shown of the error on the position and orientation with respect
to the ground truth as measured by mo-cap for the different modalities using four anchors
in the LOS. In this experiment, the Odom–Gyro–UWB modality (blue) performed the best
and outperformed all other modalities. Therefore, this modality was used for the analysis
of the NLOS and the number of anchors. Moreover, the sensors of this modality were used
for the vanilla particle filter implementation shown in purple.

Figures 6 and 7 show the influence of the NLOS and the number of anchors on the
CDF, respectively. Tables 7 and 8 summarize the results of the experiments for the P50 (the
chance of the error being smaller than this value is 50%), P90, RMSE, and maximum error
values of the different algorithms and environments under test. In the tables, some results
are highlighted. The algorithm took around 75 s to calculate almost 500 s of data in the
offline experiment.
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Figure 5. Cumulative distribution function of the error on the position (left) and orientation (right)
for 4 anchors in the line-of-sight condition. In red is the Odom–UWB modality, in blue the Odom–
Gyro–UWB modality, and in green the IMU–UWB modality. In black, the direct position from the
UWB is shown, as well as the orientation from the Gyro–Mag modality. In purple, the vanilla PF is
shown. The Odom–Gyro–UWB modality performs the best for the position and will be used in the
next experiments to investigate the influence of the NLOS and the number of anchors. The vanilla PF
and the Odom–Gyro–UWB modalities perform almost equally on the estimation of the orientation.
To understand the effects of the proposed method in the NLOS, the vanilla PF will be used in
the NLOS experiment as well. The IMU–UWB modality performs the worst, yet the error on the
orientation stays within π

2 .

Figure 6. Cumulative distribution function of the error on the position (left) and orientation (right)
for the Odom–Gyro–UWB modality in the Line of Sight (LOS) and the non-LOS (NLOS). In the NLOS,
the reference, UWB (in black), seems only slightly affected. The position estimation seems slightly
affected by the NLOS, but the orientation seems unaffected for the proposed method. The vanilla PF
(in purple) deteriorates heavily under the NLOS conditions for both the orientation and the position,
highlighting the strength of the proposed method.
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Figure 7. Cumulative distribution function of the error on the position (left) and orientation (right)
for the Odom–Gyro–UWB modality with a different number of anchors. The performance increases
the most when fewer anchors are used, but notable improvement can still be seen when using
more anchors.

Table 7. Table of the error on the orientation in rad. The proposed method, Odom–Gyro–UWB
modality, compares well with the vanilla PF and the Gyro–Mag modality, as can be seen in the top
portion of the table. However, it seems to suffer more from errors beyond the P90, which is evident
by the almost three-times higher maximum error. In the NLOS, the proposed solution is almost not
affected by the NLOS, while the vanilla PF suffers heavily from this, as shown in the middle portion
of the table. The orientation accuracy increases with the number of anchors as expected, as is evident
from the bottom portion of the table.

Error on the Orientation in Rad
Modalities Analysis
Modality # of Anchors NLOS P50 P90 RMSE Max Error

Odom–Gyro–UWB 4 0.06 0.16 0.12 1.0
Odom–UWB 4 0.11 0.38 0.42 2.9
IMU–UWB 4 0.43 0.75 0.49 0.95
Vanilla PF 4 0.06 0.17 0.09 0.37
Gyro–Mag NA NA 0.18 0.31 0.20 0.36
Only gyroscope NA NA 1.5 2.7 1.7 3.14
Only odometry NA NA 1.3 2.5 1.5 3.14

Error on the Orientation in Rad
LOS vs. NLOS
Modality # of Anchors NLOS P50 P90 RMSE Max Error

Odom–Gyro–UWB 4 0.06 0.16 0.12 1.0
Odom–Gyro–UWB 4 ✓ 0.06 0.14 0.11 0.88
Vanilla PF 4 0.17 0.09 0.37
Vanilla PF 4 ✓ 0.13 0.29 0.14 3.05
Gyro–Mag NA NA 0.18 0.31 0.20 0.36

Error on the Orientation in Rad
Number of Anchors
Modality # of Anchors NLOS P50 P90 RMSE Max Error

Odom–Gyro–UWB 4 0.06 0.16 0.12 1.0
Odom–Gyro–UWB 7 0.05 0.12 0.08 0.32
Gyro–Mag NA NA 0.18 0.31 0.20 0.36
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Table 8. Table of the error on the position in m. The proposed method, Odom–Gyro–UWB, outper-
forms all other methods, as can be seen in the top portion of the table. In the NLOS, the proposed
solution suffers slightly with one mm bigger RMSE, while the vanilla PF suffers heavily from this
with five mm bigger RMSE, as shown in the second portion of the table. The increased number of
anchors slightly improves the position accuracy; however, the effect is less strong with the increased
number of anchors, as shown in the bottom portion of the table.

Error on the Position in m
Modalities’ Analysis
Modality # of Anchors NLOS P50 P90 RMSE Max Error

Odom–Gyro–UWB 4 0.11 0.19 0.13 0.36
Odom–UWB 4 0.14 0.31 0.21 1.1
IMU–UWB 4 0.20 0.41 0.27 1.0
Vanilla PF 4 0.13 0.41 0.18 0.72
UWB 4 0.13 0.27 0.18 0.71
Gyro–Mag–IMU NA NA 22 × 103 45 × 103 27 × 103 NA
Gyro–Mag–Odometry NA NA 5.3 8.2 5.6 NA

Error on the Position in m
LOS vs. NLOS
Modality # of Anchors NLOS P50 P90 RMSE Max Error

Odom–Gyro–UWB 4 0.11 0.19 0.13 0.36
Odom–Gyro–UWB 4 ✓ 0.14 0.21 0.14 0.37
Vanilla PF 4 0.13 0.41 0.18 0.72
Vanilla PF 4 ✓ 0.18 0.52 0.23 0.79
UWB 4 0.13 0.27 0.18 0.71
UWB 4 ✓ 0.13 0.29 0.18 0.65

Error on the Position in m
Number of Anchors
Modality # of Anchors NLOS P50 P90 RMSE Max Error

Odom–Gyro–UWB 4 0.11 0.19 0.13 0.36
Odom–Gyro–UWB 7 0.07 0.15 0.09 0.28
UWB 4 0.13 0.27 0.18 0.71
UWB 7 0.09 0.17 0.11 0.39

3.3. Real-Time Control Experiment

The algorithm was also tested as the input to the pose control of the robot in real time.
In this experiment, the robot was set to perform the same trajectory as with the offline
experiment. The resulting trajectory is shown in Figure 8.

Figure 8. Robot controlled in real time with the UWB pose estimation algorithm. The expected
trajectory that the robot performed in the offline experiment with the mo-cap as feedback is shown in
black. The dotted color lines show each lap when the algorithm is used as feedback to the trajectory
control instead of the mo-cap. Each color represents one of the 5 laps performed with the algorithm
used as pose control.
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4. Discussion
4.1. Offline Tracking Performance
4.1.1. Modalities

The algorithm performs robustly with different types of ego-motion modalities in
estimating the robot’s pose, as can be seen in Figure 5. The IMU–UWB modality (green)
performed worse than the other two modalities. The main reason is probably the strong
noise on the inexpensive accelerometers of the Turtlebot3. The values of ±2.5 m

s2 were mea-
sured even though the maximum acceleration of the Turtlebot3 is around 0.2 m

s2 ; however,
the algorithm was still able to keep the error on the orientation lower than π

2 , which is the
minimum needed to at least track the orientation of the robot. The Odom–UWB modality
(red) performed slightly worse than the Odom–Gyro–UWB modality (blue). The reason
for this is that, during the fast short corners, the wheels of the robot slipped heavily, thus
giving a completely wrong estimation of the speed and angular velocity. The gyroscope,
however, was unaffected by this and, thus, could keep the uncertainty of the orientation
lower, which resulted in better performance on the position as well.

The vanilla PF (purple), which uses odometry and the gyroscope, similar to the Odom–
Gyro–UWB modality, shows comparable results for the orientation; however, it is less
accurate on the position.

The Odom–Gyro–UWB modality improved the RMSE of the position by 28% in the
LOS with four anchors, reducing it from 18 cm to 13 cm, while improving the RMSE of
the orientation by 40% compared to the reference of the Gyro–Mag modality (black),
reducing the RMSE from 0.2 (rad) to 0.12 (rad). As it performed the best, the influ-
ence of the number of anchors and NLOS was only shown by the Odom–Gyro–UWB
modality, though similar effects could be seen with the other modalities. A smooth
Variable Structure Filter (SVSF) is known for its adaptability and robustness in dynamic
environments [25] and could be an alternative approach to the proposed solution. How-
ever, this requires being combined with a PF to cover the initial unknown orientation of
the robot. The design and implementation of a PF of an SVSF for this particular problem
could be future work.

4.1.2. LOS Condition

The algorithm, for the Odom–Gyro–UWB modality (blue), seems to be unaffected by
the NLOS conditions and performs similarly to the LOS condition. In contrast, the vanilla
PF (purple) suffers heavily from the NLOS conditions, as can be seen in Figure 6.

Although difficult to compare to the others due to the different hardware, software,
and experiments, Ref. [14] achieved an RMSE of 9.74◦ or 0.17 (rad) on their best trajectory
with five anchors in LOS conditions. Achieving the 0.12 (rad) RMSE in this paper for the
Odom–Gyro–UWB modality with four anchors in the LOS shows a slight improvement in
the estimation of the orientation. A major advantage of the approach in this paper is that
no training is required, and the performance is proven to work in changing environments
(LOS vs. NLOS experiment). A disadvantage, of course, is that the particle filter requires
quite a few parameters to function. As far as the authors of this paper know, this is the
only reference that did not use the magnetometer, but UWB to correct for the drift of the
gyroscope in a single-tag multi-anchor setup. It is worth noting that the RMSE of the
Gyro–Mag modality in [14] is 27.61◦ or 0.48 (rad), which shows a stronger distortion for
their indoor environment than can be observed in this paper and which is comparable to
the RMSE of the worst behaving modality in this paper.

4.1.3. Number of Anchors

The number of anchors, as expected, improved the orientation and position estimation,
as is evident from Figure 7. However, the improvement is not as big as with the four-anchor
case. The position improved by 18% with seven anchors, reducing the RMSE from 11 cm
to 9 cm. This improvement is much less noticeable than the 28% improvement with four
anchors. The orientation improved only slightly compared to the four-anchor case.
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4.2. Online Pose Control

The algorithm is able to keep the robot on or close to the desired trajectory most of
the time, as shown in Figure 8. Of course, the 180◦ turn close to the point (0, 0) is very
difficult for ego-motion sensors, and this is to be expected, especially in the case where
only the Odom–UWB modality was used. It is, however, unclear why the algorithm seems
to systematically lose track of the robot in the top-left corner, (−2, 2), while keeping good
track of the robot in the three other corners. Possibly, UWB had some coverage issues
in this corner. One can also note that, even though the algorithm loses track of the
robot, it is capable of correcting for this and performs relatively stably and robustly
under disturbances.

5. Conclusions

This paper adopted a particle filter algorithm that reduces the number of operations
to fuse ego-motion modalities with UWB in such a way that the algorithm can run in real
time. The algorithm estimates both the position and orientation of a robot using UWB
to correct for the ego-motion drift, thereby reducing the need to use a magnetometer
in indoor environments. Although a moving horizon is used as one of the states of the
particle filter, the true orientation and position are calculated as well and used. The particle
filter was tested offline in different conditions and with different ego-motion modalities.
The best results were obtained when combining the odometry with the gyroscope for the
ego-motion. In this case, an RMSE of 13 cm on the position and 0.12 (rad) on the orientation
was achieved with four anchors in LOS conditions.

The algorithm was also tested and showcased using direct feedback to the trajectory
control, where it performed stably on the largest part of the trajectory. Furthermore, even
when it loses track, the algorithm is capable of getting the robot back on track, hence
proving its robustness.
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