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A B S T R A C T   

This study proposes a machine-learning (ML) model combining ab initio calculations and an experimental dataset 
of 201 alloys (in addition to pure Ti) to predict the activated plasticity mechanisms in β-Ti alloys. This meth
odology is shown to be more efficient than the so-called Bo − Md approach, achieving 82% prediction accuracy 
while the Bo-Md approach leads to 52% correct predictions on the same dataset. In addition, four new alloy 
compositions were produced to verify the model validity. Specific cases where the present model disagreed with 
the Bo-Md predictions were chosen to increase the benefits of the produced results. The plasticity mechanisms of 
the four alloys experimentally confirmed the validity of the ML model. This approach particularly helps the 
design of specific Ti alloys exhibiting a high work hardening rate owing to the simultaneous activations of the 
Transformation-Induced Plasticity (TRIP) and mechanical twinning (TWIP) effects. Indeed, the class corre
sponding to the combination of TRIP and TWIP effects reach a prediction accuracy of 88%.   

1. Introduction 

The design of new metallic materials remains an arduous task that 
relies on several sources of information or inspiration such as an 
experimental trial-and-error approach, phenomenological relationships 
or the results of calculations and simulations. It can be both time- 
consuming and expensive, particularly for breakthrough applications 
requiring new types of properties. 

When designing new alloys, the first step is to consider the stability 
of the phase (or phases) resulting from the mixing of two or more ele
ments. In order to guide this definition of stability conditions, numerous 
parameters have been proposed. The most used ones are the average 
number of valence electrons per atom (e/a), the ratio of atomic radii, the 
difference of electronegativity and the number of electronic vacancies 
[1], also still considered in the case of the very recent new paradigm of 
high entropy alloys [2]. Some of these guidelines are known as the 
Hume-Rothery rules [3] and are still very popular. These rules, which 
were initially based on empirical observations, state necessary condi
tions for (binary) solubilities and formation of intermetallic compounds. 
However, these rules give no clue about the properties, particularly the 

mechanical properties of the resulting solid solutions. 
The next step in alloy design is to relate some characteristics of the 

alloys (global composition, crystal structure, evolution of solubilities, 
…) to activated mechanisms controlling the properties of interest such 
as strength, ductility, … in the case of structural properties. More or less 
empirical models are also generally used to guide the full procedure of 
property optimization. 

For a few decades now, the “d-electron design strategy” introduced 
by Morinaga et al. [4] has been very popular, particularly in the case of 
designing new titanium alloys. Initially dedicated to the prediction of 
phase stability of multi-elements systems, this design approach was 
extended to predict the general trends in the modification of the Ti-β 
phase elastic properties [5–7], and more recently to design β Ti alloys 
exhibiting a large improvement of the work hardening capacity 
compared to classical Ti alloys [8–10]. This is achieved by combining, 
on the one hand, the calculation of two “electronic” parameters, i.e., the 
average bond order Bo and the average d level; and on the other hand, an 
empirical classification of plasticity mechanisms occurring in existing 
titanium alloys. As shown on Fig. 1, this two-parameter design tool is 
very convenient, represented as a map of phase stability and activated 
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plasticity mechanisms on which “alloy vectors” are drawn. Despite of
fering satisfactory results in many cases, this method also leads to wrong 
predictions as shown in Table 1. 

The martensitic start temperature Ms has also often been used as a 
criterion to predict thermally induced or strain-induced martensitic 
transformation in Ti alloys [17,18]. The evolution of Ms was first 
empirically derived as a linear evolution of the alloying elements con
centrations [19], then improved by a physically-based model by Bignon 
et al. [18], who associated thermal and strain-induced martensite 
transformations to different ranges of Ms values. However, they under
lined that the activated deformation mode could not be solely predicted 
based on the Ms value and added an empirical criterion [Fe]eq, defined as 
a linear variation of the concentration of the alloying elements, to pre
dict the activated deformation modes. While their model constitutes a 
significant improvement of the “d-electron design strategy” for the 
prediction of strain-induced martensitic transformation, it is still semi- 
empirical and does not predict twinning-induced plasticity (TWIP). 

Regarding the prediction of the TWIP effect, no physically based 

model has been derived to the best authors’ knowledge; and the Bo-Md 
map is still mostly used to design TWIP Ti alloys [20]. Recently, Zhao et 
al. [21] derived a new energetic parameter to predict the plastic 
deformation mode of Ti alloys, based on a physical model very similar to 
the one derived by Bignon et al. [18]. This new parameter is defined as 
the difference between the driving force (chemical and mechanical) and 
the resistive force (elastic strain energy and frictional energy) to the 
martensitic transformation. However, their tool is not fully predictive as 
the mechanical properties have to be measured experimentally, or 
coupled with a model of the predicted mechanical properties of the 
alloy. Moreover, the model for the activation of the TWIP effect is also 
based on the physics of martensitic transformation. While a tendency 
between the predicted deformation mode and their energy parameter is 
highlighted, their prediction accuracy is only about 67 % [21]. As a 
summary, while physically based models contribute to a better under
standing of the physics behind the deformation mechanisms of Ti alloys, 
no existing model fully grasps and estimates all the involved parameters 
in both TRIP and TWIP effects, and the predictive capacity of these 
models is still too low. 

Another strategy is to improve the empirical criterion derived in the 
“d-electron design strategy”. Recently, Wang et al. [14] proposed the use 
of two other parameters in addition to Bo and Md to predict the acti
vation of twinning, martensitic transformation or dislocation glide 
during mechanical loading. These parameters are the average valence 
electron-to-atom ratio (e/a) and the atomic radius difference (Δr). The 
authors claimed that this alternative approach is able to predict accu
rately the behaviour of alloys incorrectly predicted by the Bo − Md 
method. However, their conclusions are drawn with a unique example. 

From a computational materials science viewpoint, the increase of 
computation facilities as well as the maturation of theories modelling 
condensed matter facilitate the accurate calculation of a variety of 
important quantities in design approaches like electronic band struc
tures, phase stability, defects energies, etc. [22]. However, it is still 
difficult, not to say impossible, to deal with large systems without the 
use of several approximations. 

Recently, machine learning (ML) has attracted considerable atten
tion in materials science due to its ability to efficiently predict alloys 
properties with the assistance of physical-chemistry rules [23–25]. Su
pervised Machine Learning aims at establishing a model that represents 
a relationship between a collection of input data (as characterized by a 
set of descriptors) and the corresponding target (i.e., output property). 
The target can either be discrete (e.g., crystal structure) or continuous 
(e.g., melting temperature), which correspond respectively to a classi
fication or regression task. Intrinsically, the size and quality of the input 
database strongly influence the prediction capability of a model, which 
could be an issue in the specific case of materials science. Indeed, as 
stated above, the generation of experimental results (alloys, properties, 
…) is time and energy consuming so that the size of the databases in 
materials science is mostly limited compared to other applications of ML 
(image analysis, natural language processing, information classification, 
etc.). As a consequence, predictions based only on the input database 
may lead to inaccurate or aberrant results. For this reason, ML is 
generally combined with relevant parameters related to the predicted 
properties. For example, Wen et al. [26] combined a ML algorithm with 
experimental design for processing high entropy alloys (HEAs) with high 
values of micro-hardness. Shen et al. [27] used physical metallurgy- 
guided ML algorithms with descriptors such as the equilibrium volume 
fraction and the driving force for precipitation, resulting in the suc
cessful design of advanced ultrahigh-strength stainless steels using only 
a small database extracted from the literature. Reddy et al. [28] estab
lished an inference model from compositions and heat treatment con
ditions to mechanical properties of low alloy steels by combining a 
neural network (NN) and genetic algorithm (GA). Their model suc
cessfully learns the influence of compositions and heat treatment con
ditions on the performance of the steel. Ozerdem et al. [29] built a multi- 

Fig. 1. Extended Bo-Md diagram for the design of TRIP/TWIP Ti alloys as 
presented in [8]. Each zone of the diagram corresponds to a particular plas
ticity mechanism. 

Table 1 
Limits of the Bo-Md approach: example cases of wrongly predicted plasticity 
mechanisms by the Bo-Md strategy.  

Alloy composition 
(wt %)  

Bo 
value 

Md 
value 

As quenched state and plasticity 
mechanism 
Bo-Md 
prediction 

Experimental 

Ti-15Mo [11] 
(Ti-7.79Mo at %)  

2.81127  2.40913 β-stable 
(dislocation 
glide) 

β-TWIP 

Ti-5553 [12,13] 
(Ti-8.81Al-4.66 
V-2.74Cr-2.38Mo 
at %)  

2.76483  2.36030 Martensitic (α’) TRIP 

Ti-7.7Mo-4.7Co  
[14] 
(Ti-4.01Co- 
3.88Mo at %)  

2.79011  2.36233 β-TWIP Dislocation 
glide only (β) 

Ti-10Mo-4Nb-2 V- 
3Al [15] 
(Ti-5.6Al- 
5.04Mo-2.17Nb- 
1.98 V at %)  

2.79037  2.39682 Martensitic 
(α’’) 

β-TWIP + TRIP 

Ti-35Nb-9.96Ta- 
4.53Zr [16] 
(Ti-24.52Nb- 
3.58Ta-3.23 Zr at 
%)  

2.88800  2.46011 TRIP Dislocation 
glide only (β)  
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layer BP NN model to predict the yield strength, ultimate tensile strength 
and elongation of the Cu–Sn–Pb–Zn–Ni alloy. Regarding titanium alloys, 
Wu et al. [30,31], created a NN to look for biocompatible chemical 
compositions that could lead to a Young’s modulus below 50 GPa. To 
enhance the prediction of their model, they used the fact that lower 
moduli are usually reached when the β phase is retained. Therefore, they 
added a criterion on the Ms temperature and keep the output only for 
alloys presenting a Ms temperature below room temperature (meaning 
that β phase could be retained upon quenching). These NN models with 
inputs of compositions and processing conditions can provide an esti
mate of the properties of alloys. Such feedforward models from 
composition to property are helpful to screen for potential good 
candidates. 

In this work, an original alloy design approach is proposed and 
applied to the prediction of the activation of plasticity mechanisms for 
specific compositions of Ti alloys, particularly to the design of TRIP- 
TWIP β-metastable Ti alloys. A large number of ab-initio- and 

composition-derived descriptors are associated with experimental re
sults to develop a machine learning model thus combining continuous 
properties and discrete categories. It is worth noting that these mecha
nisms can be viewed as either a discrete or a continuous property 
depending on whether only the main activated mechanism is considered 
or the weight of each mechanism in the global plasticity response is 
considered. Here, we decided to regard each mechanism as a probability 
of occurrence. 

2. Alloy design methodology 

The general scheme of the proposed alloy design methodology is 
given in Fig. 2. It is based on a machine learning algorithm combining ab 
initio calculations of several parameters (that are detailed in Section 
2.2), composition-based descriptors from matminer [32] and experi
mental results related to the phase stability and activated plasticity 
mechanisms. In the present particular case of designing Ti alloys 

Fig. 2. Methodology for plasticity mechanism prediction. The design procedure consists of constructing a mixed database of calculated and experimental descriptors. 
MODNet model [30] is then applied to explore the compositional space of Ti alloys. The model returns the probability of activation for each plasticity mechanism 
as output. 

Fig. 3. Element distribution in the dataset. Violin plots representing the mass distribution over the different compounds, per element. Horizontal lines inside the 
distribution correspond to individual samples. All alloys are a mixture of Ti with other chemical elements present above. The range of mass fraction is a good 
indication on the expected generalization space of the machine learning model. 
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exhibiting improved work hardening properties, the aim is to predict 
specific alloy compositions presenting TRIP and / or TWIP effects, i.e., 
exhibiting β-metastable behavior, under quasi-static loading conditions. 
This study focuses on plasticity mechanisms only (irreversible), meaning 
that the TRIP effect is only considered as the formation of martensite 
upon loading without reversion to β upon unloading. 

The dataset, descriptors and machine learning models are detailed 
below. 

2.1. Dataset 

The dataset contains 201 Ti alloys gathered from the literature, in 
addition to pure Ti as shown in Supplementary material (Table S3). 
There are 70 binary, 64 ternary, 39 quaternary, 20 quinary, 5 senary and 
3 septenary compounds, respectively. Each sample is characterised by a 
chemical composition, plasticity mechanisms and an accompanying 
confidence weight, assigned according to the confidence that can be 
placed in the determination of the plasticity mechanisms (based on the 
conducted characterizations). The class “Slip α” refers to alloys exhib
iting either hexagonal (h.c.p.) α’ or orthorhombic α’’ phases upon 
quenching from β domain. In these alloys, plasticity is only governed by 
dislocation glide. The classes “TWIP” and “TRIP” refer to β alloys at 
room temperature exhibiting respectively mechanical twinning or 
stress-induced martensitic transformation during loading. It is worth 
noting that the different twinning systems potentially activated in Ti 
alloys are not distinguished, because they are more rarely reported, and 
thus consequently would have reduced the size of the dataset. Finally, 
the “Slip β” class refers to β-stable alloys exhibiting dislocation slip only. 
They are the four labels of the classification task. It is also worth noting 
that some of them can occur simultaneously and that the concomitant 
activation of both TRIP and TWIP effects can bring improvements of the 
plasticity properties. Therefore, it will be modeled independently using 
a multi-label approach with four output probabilities. Depending on 
each probability level, the final prediction might be assessed as a com
bination of several mechanisms. This multi-label approach mimics the 
physics and results in a better model as will be shown. 

Fig. 3 represents the fractional mass distribution of the different 
alloying elements present in the dataset. A palette of 13 elements is 
covered next to Ti: Al, Si, V, Cr, Mn, Fe, Co, Zr, Nb, Mo, Sn, Ta and W. 
Most elements span a narrow range below 30 wt %, with very few 
samples containing Si, Mn, Co, or W. Violin plots are used to visualise 
the training space. Prediction outside this chemical space (i.e. extrapo
lation) should be handled with caution, as they can lead to erroneous 
predictions. 

2.2. Descriptors 

The effectiveness of the machine-learning algorithm definitely relies 
on the appropriate choice of descriptors on which the training procedure 
is conducted. 

A straightforward feature set can be formed by generating de
scriptors derived from elemental properties. Examples include statistics 
on the electronegativity, radii or mass of the constituent elements. To 
this end, matminer, a python package that gathers a wide variety of such 
descriptors was used [32]. It has been shown to be a good baseline for a 
variety of tasks [33]. Furthermore, as stated in the Introduction, we 
extended the feature space by also including ab initio descriptors. 

Obtaining the actual ab initio descriptors for multi-component alloys 
would require the use of very large supercells. Moreover, for each new 
alloy or new prediction of an alloy, additional calculations would be 
needed. To circumvent this problem, in a way mimicking the approach 
proposed by Morinaga et al. with the Bo − Md approach [4], the de
scriptors considered in the present study are approximated as linear 
combinations of the values calculated for binary Ti-X systems with a 
single concentration of several ‘X’. More precisely, for a given host 

material and set of alloying elements, one cell of the pure host material 
and one cell where one host atom is replaced by one atom of the alloying 
element are constructed (see Fig. 2). The cells typically contain around 
sixteen atoms. For these cells of alloy element i, the descriptors di,j were 
calculated, where j labels the descriptor. For a given alloy containing a 
specific mole fraction ni of the alloying element i, the average de
scriptors are given by dj = nidi,j, assuming the summation convention. 
Note that while this linear approximation does not accurately represent 
the true value of that property, the obtained ab-initio-based descriptors 
constitute very interesting descriptors that help improving the machine- 
learning model, as we shall see. 

All ab initio calculations were performed within density functional 
theory using a plane-wave basis-set. The exchange–correlation energy 
was modeled using the generalised gradient approximation functional 
proposed by Perdew, Burke and Ernzerhof [34]. Total energy calcula
tions were carried using the VASP software within the projector 
augmented-wave methodology [35–37] with a plane-wave cutoff energy 
of 300 eV. The atomic positions and cell parameters were relaxed until 
all the forces were smaller than 0.01 eV/Å. Each alloying element X was 
considered as a substitutional defect in a 16-atom supercell of Ti. The 
corresponding formation energy is thus given by: 

Ef (X) = E(X) − E(bulk) − μX + μTi, (1)  

where E(X) and E(bulk) represent the total energy of the supercell with 
and without the defect, while μX and μTi are the element chemical po
tentials of the alloying element and of Ti, respectively. These values 
were extracted from the total energy of each element in its stable phase. 
For these calculations, the Brillouin zones are sampled with k-point grid 
with a density of at least 7000 points per reciprocal atom. 

The same 16-atom supercell was used to calculate the position of the 
d-levels associated to the added alloying elements, Md, as proposed by 
Morinaga to describe the elastic properties [6,38]. In the present case, 
this value corresponds to the first peak above the Fermi level of the 
projected density of states on the d states of the considered alloying 
element. 

Additionally, stacking faults (SF) along the (110) plane were simu
lated with a supercell containing two shifted slabs and, due to periodic 
boundary conditions, two equivalent SFs. The (110) plane was chosen 
as it is one of the highest-packed planes in BCC crystals, hence often 
involved in twinning mechanisms [39]. Moreover, this plane limits the 
computation time compared to other highly packed planes such as 
(112). The generalised stacking fault energy (GSFE) can be defined as a 
function of the shift u 

γSF(u) = (ESF(u) − E(u = 0))/2A, (2)  

where the energies ESF(u) and E(u = 0) represent the total energy of the 
supercell with and without the SF defect, A is the area of the surface and 
the factor 2 accounts for the presence of the two equivalent SFs in the 
supercell. By replacing one of the atoms at the location of the SF with 
one alloying element X and using a 2 × 2 supercell in the SF plane, the 
effect of X on the SF is considered as 

γSF(u,X) = (ESF(u,X) − E(u = 0,X))/A − γSF(u). (3)  

It was verified that 8-layer slabs (16 layers in total) are enough to 
converge the energies. For this supercell, a 14 × 14 × 3 k-point grid was 
used to sample the Brillouin zone. In this case, the atoms were allowed to 
relax only along the z axis. It was verified that different positions of X 
with respect to the SF do not provide additional independent de
scriptors. 

The elastic tensor of the 16-atom supercell was also obtained for each 
alloy from density functional perturbation theory (DFPT) as imple
mented in the ABINIT software [40–43]. Optimised norm-conserving 
pseudopotentials [44] were used for all the elements treating semi- 
core states as valence electrons for transition metals (PseudoDojo 
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pseudopotentials table version 0.3 [45]). The cutoff was chosen inde
pendently for each material according to the values suggested in the 
Pseudo-dojo table. The Brillouin zone integration was performed using a 
8 × 8 × 8 k-point grid. All atoms were relaxed until all the forces on the 
atoms were below 5 × 10− 6 Ha/Bohr and the stresses below 5 × 10− 4 

Ha/Bohr3. The calculation of the relaxed-ion elastic tensor also requires 
the values of the phonon frequencies at Γ, that were obtained with DFPT 
calculations as well and whose values were also considered as possible 
descriptors. 

All the calculations were automatised and analyzed using several 
python frameworks [46–50]. 

To summarise, the descriptors based on ab initio calculations are:  

• Bulk modulus KV, KR: given the elastic tensor in the Voigt notation Cij 

and the compliance tensor sij = C− 1
ij , 

9KV = C11 +C22 +C33 + 2(C12 + C23 + C31) (4)  

1/KR = s11 + s22 + s33 + 2(s12 + s23 + s31). (5)    

• Shear modulus GV, GR: 

15GV = C11 + C22 + C33 − (C12 + C23 + C31)

+3(C44 + C55 + C66)
(6)  

15/GR = 4(s11 + s22 + s33) − 4(s12 + s23 + s31)

+3(s44 + s55 + s66).
(7)    

• Poisson ratio ν: (3KVRH − 2GVRH)/(6KVRH + 2GVRH) where KVRH =

(KV +KR)/2 and GVRH = (GV + GR)/2  
• Average phonon frequency ωΓ: Average of the phonon frequencies at 

the Γ point in meV.  
• Formation energy Ef : defect formation energy of the alloying element 

in the 16-atom supercell in eV.  
• d-level dmax: distance of the first d-level peak associated with the 

alloying element from the Fermi level in eV.  
• Averaged GSFE γSF: given 5 inequivalent shifts u in Eq. (3), we define 

γSF(X) =
∑5

i=1
γSF(ui,X)

/
5. (8)  

Other theoretical features gathered from the literature have also been 
added. From Wang et al. [14] we included,  

• Average electron-to-atom ratio e/a  

• Average atomic radius difference Δr 

and from the work of Morinaga et al. [4] we used the following 
electronic descriptors:  

• Mean bond order Bo  
• Mean d-orbital energy level Md 

All the descriptors calculated by DFT (bulk modulus, shear modulus, 
Poisson ration, average phonon frequency, defect formation energy, d- 
level and average stacking fault energy) were obtained at 0 K and 
without considering the presence of oxygen. This may introduce a slight 
bias as Ti alloys of the dataset were tested at room temperature and may 
contain between 0.1 and 0.2 wt % of oxygen. However, as the estimation 
procedure of these descriptors remains the same for all the alloys, trends 
are preserved, and these descriptors can still be an aid to neural network 
predictions. 

2.3. Machine learning model 

The Material Optimal Descriptor Network (MODNet) [32] was used 
as the final classifier model. The model relies on a feedforward neural 
network and the selection of physically meaningful features. This re
duces the optimization space without relying on a massive amount of 
data. MODNet has been shown to be very effective in predicting various 
properties of solids with small datasets [32,33]. 

An in-depth model selection procedure has been followed, where 
MODNet has been compared with different other strategies (as shown in 
the Results Section). The receiver operating characteristic curve enables 
to plot the true positive rate as a function of the false positive rate. A 
perfect model should detect all true positives before giving some false 
positives, leading to an area under the curve of 1. However, as it is not 
possible to reach perfect predictions, models usually start getting some 
false positives before having all the true positives, which decreases the 
area around the curve. This area under the receiver operating charac
teristic curve (ROC AUC) has been used as the evaluation metric (higher 
is better) on a repeated 5-fold.1 MODNet yields the highest ROC AUC on 
this dataset, with the Random Forest being a close alternative (see 
Table 2). 

Element-based statistics [32] combined with ab initio features sys
tematically result in the highest ROC AUC. More information on the 
model selection can be found in the Supplementary material. 

MODNet has been trained using a genetic hyperparameter optimi
zation strategy, and ensembling is used [33]. Moreover, a multi-label 
approach has been adopted to better mimic the physics. In this 
scheme, the classes are independent (represented by a sigmoid output 
activation function), and a superposition of mechanisms is possible. The 
slip mechanism is therefore always present and the TWIP-TRIP mecha
nism can be combined, without introducing a fifth class. Finally, we also 
modified the loss function to include the confidence of each class, in 
order to obtain a weighted cross-entropy function: 

L =
∑

i∈C
Fi(p

i

log(p̂i)+ (1 − pi)log(1 − p̂i)) (9)  

where C represents the set of classes, F the corresponding fidelity (trust 
weight given in Table S3), p the true class probability and p̂ the pre
dicted class probability. In essence, less importance is given to obser
vations that were difficult to verify. 

2.4. Processing and characterization of alloys 

Some Ti grades were processed either for completing some unex
plored zones of the Bo − Md map, or for assessing the proposed alloy 
design procedure (see below). Raw materials of high purity (> 99.95%) 
were melted in an Arc 200 (Arcast Inc.) arc melting furnace under pure 

Table 2 
ROC AUC scores for the different candidate models.  

Model Feature space Slip β Slip 
α 

TWIP TRIP TWIP +
TRIP 

EHV ab initio  0.88  0.98  0.77  0.67 0.79 
ESV ab initio  0.97  1.0  0.87  0.89 0.90 
RF ab initio  1.0  1.0  0.92  0.93 – 

matminer  1.0  1.0  0.91  0.92 – 
ab initio +
matminer  

1.0  1.0  0.92  0.94 – 

MODNet ab initio  1.0  1.0  0.95  0.96 – 
matminer  1.0  1.0  0.94  0.95 – 
ab initio +
matminer  

1.0  1.0  0.95  0.96 –  

1 In a 5-fold validation scheme, each fifth of the database is used successively 
as a test set, with the remaining 4/5 used as a training base. 
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Ar atmosphere. Each alloy was remelted several times to ensure chem
ical homogeneity and then cast in a copper mold. As-cast ingots 
(diameter of 12.7 mm) were annealed at 950 ◦C under Ar atmosphere for 
30 min followed by water quenching. They were then cold-rolled down 
to 1 mm thick sheets. Uniaxial tensile specimens with a calibrated gauge 
length of 26 mm and a width of 6 mm were then obtained by Electrical 
Discharge Machining (EDM). Prior to tensile testing, the samples were 
recrystallised at 900 ◦C for 15 min under Ar atmosphere and water 
quenched to retain the full β microstructure. 

Microstructures were characterised by X-ray diffraction before and 
after mechanical testing. Acquisitions were performed with a D8 
Advance diffractometer (Brucker AXS GmbH), from 30 to 90◦ 2θ using 
Cu K α radiation, with current and voltage of 30 mA and 30 kV 
respectively, and a time step of 0.02◦. Tensile tests were carried out at a 
displacement rate of 1 mm.min− 1 up to failure of the samples using a 
Zwick 50 kN tensile machine. In addition, one sample per alloy was also 
stopped after 5 % of strain to identify the occurrence of TRIP and / or 
TWIP effects by EBSD. To do so, strained samples were mounted in 
conductive resin and polished using SiC paper down to P4000, directly 
followed by 20 min of final polishing using a mixture of OP-S solution 
with 20 vol% hydrogen peroxide. The EBSD acquisitions were then 
performed in a FEG-SEM Ultra55 (Zeiss) using a Symmetry S3 EBSD 
detector (Oxford Instruments). 

3. Results 

3.1. Model selection 

Different models were compared using a nested 5-fold validation 
scheme. Hyperparameters for each model are first individually opti
mised on an inner 5-fold. The best hyper parameters are then tested on 
the outer 5-fold. The following models were considered:  

- Ensemble Hard Voting classifier (EHV): Ensemble of a Decision Tree, 
Random Forest, Support Vector Machine, K-Nearest Neighbours and 
a Multi-Layer Perceptron with a standard scaler. Hard voting, i.e., 
majority voting is applied. A multi-class approach is used, with twin- 
martensite being a separate class.  

- Ensemble Soft Voting classifier (ESV): Ensemble of a Decision Tree, 
Random Forest, Support Vector Machine, K-Nearest Neighbours and 
a Multi-Layer Perceptron with a standard scaler. Soft voting, i.e., 
score averaging is applied. A multi-class approach is used, with twin- 
martensite being a separate class.  

- Random Forest with multi-label approach.  
- MODNet, with ensembling, multi-label and multi-fidelity approach. 

Furthermore, while the feature space for the first two models only 
consists of ab initio- based parameters, as presented previously, the last 
two models also consider the features from matminer (composition 
based, magpie preset) and their combination with ab initio-based pa
rameters. This makes a total of eight different algorithms that were 

Fig. 4. Receiver Operating Characteristic (ROC) and Precision-Recall curves for the final model, i.e., MODNet with ab initio features, on the four classes (Slip β, 
Slip α, TWIP, and TRIP) (a), and on the combined TWIP – TRIP class (b). This class is formed by multiplying the separate TWIP and TRIP probabilities together. 
Corresponding thresholds are given by color. All the curves are computed over a 5-repeated 5-fold. The Area Under the Curve (AUC) is also given, with higher values 
corresponding to better performance. 
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tested on the whole database. 
Table 2 shows the ROC AUC scores of the nested cross validation for 

each class (Slip β, Slip α, TWIP, TRIP). The ROC curves can be found in 
Supplementary material, Fig. S1. 

It is seen how ESV is superior to EHV. Moreover, the continuous 
output gives more interpretability (probability score). Next, all multi- 
label approaches outperform the multi-class approach, confirming that 
the multi-label approach better corresponds to the physics of the 
deformation modes selection in Ti alloys. Considering the Random 
Forest, it is seen that the ab initio and matminer features result in the 
highest scores, although different feature spaces being quite close to 
each other. Similarly, MODNet results in the highest score when using 
combined ab initio and matminer features (although the ROC AUC is 
similar, it has a slightly higher precision-recall AUC). It is the overall 
best performing model and is therefore used in the remainder of this 
work. This can be explained by the feature selection procedure, non- 
linearity of the neural network and customised loss function. 

In summary, MODNet with the complete feature space (ab initio +
matminer) is chosen as it results in the highest ROC AUC score. How
ever, the RF with ab initio features is close in performance, while being 
computationally easier, and might thus be considered as an alternative. 

3.2. Machine learning predictions 

MODNet automatically identified the important descriptors by ac
counting for relevance and redundancy. This enables one to better 
interpret the model. Based on the normalised mutual information, it is 
found that the elastic properties (GV, GR, ν), the electron to atom ratio 
(e/a) and the stacking fault energy (γSF) are the most relevant ab initio 
descriptors with respect to the target. It makes sense as both the electron 
to atom ratio and the elastic properties are directly involved in the 
physics of phase transformations [18,21,51–54] and the stacking fault 
energy is the most important parameter involved in twinning induced 
plasticity [55]. Intriguingly, Bo and Md have the lowest importance of 
all features. While Bo and Md were originally used to predict the phase 
stability of Ti alloys, the extension of their use to the prediction of its 
deformation modes is only empirical. This lack of physical significance 
or underlying theory may explain the low importance of these param
eters in the MODNet model. Among the composition-based matminer 
descriptors, it is found that the column number and d-valence electrons 
play an important role in the predictions. These provide indications on 
the kind of the bonds occurring in the compounds. 

Moreover, (BR, BV) and (GR, ν) were found to be highly related, while 
all other descriptors have a low similarity. In particular, GV and Δr are 
found to be important complementary features to the model. It is 
therefore interesting to note how both the ab initio and matminer fea
tures play an important role for the predictions. 

Fig. 4 (a) represents the ROC and precision-recall (PR) curves of the 
ML model for the Slip β, Slip α, TWIP, and TRIP classes, respectively. 
Precision is the ratio of correctly predicted positive instances to the total 
predicted positive instances. It measures the accuracy of positive pre
dictions. Recall is the ratio of correctly predicted positive instances to 
the total actual positive instances. It measures the ability to capture all 
positive instances. 

In practice, when aiming to minimize false positives (instances 
detected as TRIP-TWIP while they are not), one should prioritize 
achieving a high precision. Conversely, when aiming to avoid missing 
any potential TRIP-TWIP candidates, a higher recall becomes crucial. 
These two metrics typically trade off against each other. 

Excellent performance is found on the Slip β and Slip α classes (with a 
1.00 AUC). The ROC AUC for TWIP and TRIP are 0.95 and 0.96, 
respectively, which is lower than the previous classes, but significantly 
above random (0.5). The PR-curve confirms this but depicts a more 
realistic view by including the precision. Due to the one – versus - all 
approach, imbalance is present, and lower precision values can be ex
pected. Note that one can expect even better performance with 
increasing dataset size. 

However, plasticity of some alloys can simultaneously involve TRIP 
and TWIP effects. Fig. 4 (b) represents the ROC and PR curves corre
sponding to a heuristic multiplying the predicted twin and martensite 
scores, with an AUC of 0.93. This can be seen as the probability of the 
combined occurrence of both phenomena. Thresholds are depicted by 
coloring the corresponding false and true positive rates. The maximum 
accuracy (0.88) is found for a threshold of 0.34, which lead to a preci
sion and recall of 0.72 and 0.83, respectively. This forms a good 
compromise between the different metrics. If one seeks precision, 
increasing the threshold to 0.7 increases the precision to 0.93 but re
duces the recall to 0.49. On the other hand, decreasing the threshold to 
0.1 will increase the recall to 0.94 while decreasing the precision to 
0.50. 

Finally, in practice, it might be useful to individually investigate and 
assess the different probabilities for a global understanding. The model 
gives the probability of occurrence for each mechanism. It has the 
advantage of being interpretable compared to a hard classifier. A 
thresholding heuristic is applied to extract the final mechanism: if 
combined occurrence (i.e. product of probabilities) of both TWIP and 
TRIP is higher than 34 %, we predict it as such. Otherwise the class that 
exceeds a probability of 50 % is predicted. The dislocation glide can be 
present in addition to another mechanism if one of them exceeds the 
threshold, or alone if all the other probabilities remain below 0.5. 
Following this scheme leads to a prediction accuracy of 82 %. As a 
comparison, the accuracy of the Bo-Md approach on the same dataset is 
52 %. 

In some cases, alloy designers may only be interested in the potential 

Fig. 5. Receiver Operating Characteristic (ROC) and Precision-Recall curves for the binary prediction (β-metastable or not). Curves are computed over a 5-repeated 
5-fold. The Area Under the Curve (AUC) is also given, with higher values corresponding to better performance. 
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metastability of the alloy. Fig. 5 represents the ROC and PR curves of the 
ML model for the binary prediction: “is this alloy β-metastable (TRIP and 
/ or TWIP) or not?”. By reducing the number of classes to two (meta
stable or not), the accuracy of the model reaches 93 % (against 64 % for 
Bo − Md). In addition, the AUC scores for both the ROC and PR curves are 
increased to excellent performance of 0.98 and 0.99 respectively, as a 
result of the larger number of alloys per class. 

In summary, the model clearly distinguishes the observed effects, 
and although it is not perfect, it clearly outperforms the Bo − Md 
approach. It is remarkable to see that despite the limited amount of data, 
good performance is achieved and will continue to improve with the size 
of the dataset. 

4. Validation and discussion 

The assessment of the predictions of the ML algorithm fed with ab 
initio-calculated descriptors for Ti alloys and a rather limited set of 
experimental data points show that effective predictions can be reached. 
It is worth noting that the prediction success for binary alloys is 
particularly interesting, reaching an accuracy of 92.7 % with the ML 
prediction against 70.6 % for the Bo − Md approach. Moreover, some 
mispredictions are directly linked to a lack of data in some regions of the 
chemical space, as with Ti-21 W, which is incorrectly predicted because 
only two alloys contain tungsten in the database. 

Another important point to highlight is that 77 % of the wrong 
predictions are linked to the inaccuracy of the model in locating the 
exact position of the boundary between two mechanisms. In these spe
cific cases, the probabilities of occurrence given for each mechanism by 
the model can warn us of a possible low confidence of the model at that 
boundary. For example, Table 3 shows 3 mispredicted alloys for which 
the calculated probabilities are just above the threshold to toggle from 
one mechanism to another but the probability distribution still illus
trates the confidence level of the model on each mechanism. Indeed, the 
TWIP probability for Ti-11.5Cr is only slightly above the 0.5 threshold, 
meaning that the confidence in TWIP occurrence in this alloy is really 
low. Similarly, for both Ti-9.3Mo-4.6Sn and Ti-14Mo, the product of 
TRIP and TWIP probabilities slightly exceeds 0.34, leading to a classi
fication of these alloys as TWIP + TRIP. However, this value is reached 
with a strongly unbalanced probability distribution between TRIP and 
TWIP mechanisms, in favor of TRIP for Ti-9.3Mo-4.6Sn and TWIP for Ti- 
14Mo, which corresponds to what is experimentally observed. It should 
also be noted that 2/3 of the mispredictions due to domain boundaries 
concerns the distinction between the occurrence of only one or both 
phenomena (TWIP + TRIP) within the β-metastable domain. We there
fore strongly encourage the user to analyze and interpret the individual 
probabilities to form a global picture of the prediction instead of relying 
on hard boundaries. 

It is also interesting to highlight that some specific alloying elements 
are particularly strongly represented among the misclassified alloys. 
This is notably the case for Sn and Zr. Concerning Zr, it should be 
pointed out that it is considered as a neutral alloying element in tita
nium, in the sense that it does not affect the beta transus temperature. 
However, its effect in the case of β-metastable alloys is still not fully 
understood and depends on the quantity of other β-stabilizing elements, 
as shown by Abdel-Hady et al. [59]. Indeed, Zr was shown to increase the 
martensite start (Ms) temperature in Ti-Ni system [60], decrease Ms in 

Ti-Nb system [59,61,62], while not impacting the deformation mode in 
both Ti-Cr and Ti-V systems [63]. Moreover, the addition of 3 wt % of Zr 
in Ti12Mo changes the deformation mode from TRIP + TWIP to TRIP 
only, while a further increase of the Zr content up to 10 wt % leads to 
TWIP only [64]. These results highlight the need of further investigation 
of the influence of Zr on the deformation modes in β-metastable Ti al
loys, with a physical origin that is probably not included yet in the pa
rameters used for this ML model. Concerning Sn, 71 % of the 
mispredicted alloys containing Sn without the presence of Zr are 
included in the database with a confidence weight of less than or equal 
to 0.5. These low confidence weights are due to the lack of complete 
characterization of these alloys in the literature, decreasing the confi
dence in the presence or absence of certain plasticity mechanisms. The 
mispredicted alloys by the model are thus a way to highlight either 
where deeper assessment or characterisation is still required or where 
errors might have been reported in the literature. 

Finally, it is worth emphasizing that the predictions are largely 
improved with respect to the Bo − Md approach. However, to complete 
this assessment of the right prediction of the different modes of plasticity 
in Ti alloys, 4 new grades were processed and tested. These specific 
compositions were explicitly chosen to challenge the Bo − Md approach 
(see Supplementary Material Fig. S2 for their locations on the Bo − Md 
map): 

(i) 83.1 (Ti-6Al-4 V) – 16.9 Mo alloy, called Ti64-Mo in the following, 
was designed by modifying the Ti-6Al-4 V alloy to reach the theoretical 
TRIP/TWIP locus; 

(ii) Ti-9.7Cr-6.8Sn is an iso-elements modification of the Ti-8.5Cr- 
1.5Sn TRIP/TWIP alloy [10] still laying on the TRIP/TWIP locus; 

(iii) Ti-26Nb-6Mo lies in a zone of the Bo − Md map where fewer data 
points were reported; 

Table 3 
Some examples of misprediction using the repeated 5-fold validation scheme. Predictions are given as probability scores for each class: Slip β, Slip α, TWIP, and TRIP. 
Although the thresholding applied results in poor predictions, the calculated probabilities remain consistent with the experimental observations.  

Composition (wt %) Slip β Slip α TWIP TRIP Threshold heuristic Bo − Md Experiment 

Ti – 11.5Cr [56]  1.00  0.02  0.57  0.03 TWIP TWIP Slip β 
Ti – 9.3Mo – 4.6Sn [57]  1.00  0.00  0.39  0.95 TWIP + TRIP Slip α TRIP 
Ti – 14Mo [58]  1.00  0.00  0.97  0.39 TWIP + TRIP Slip β TWIP  

Fig. 6. Engineering stress - strain curves of the new investigated alloys.  

M. Coffigniez et al.                                                                                                                                                                                                                             



Materials & Design 239 (2024) 112801

9

(iv) Ti-15V-3Mo-2Al alloy was designed as a predicted TRIP/TWIP 
alloy located in the slip region of the Bo − Md map; 

The tensile curves of the 4 designed alloys are gathered in Fig. 6. Two 
different behaviours can be clearly identified. On the one hand, 2 alloys, 
Ti64-Mo and Ti-9.7Cr-6.8Sn, exhibit a very high yield strength together 
with no work-hardening capacity, which is classically the mechanical 

behaviour of β-stable Ti alloys with plasticity driven by dislocation 
glide, leading to a flow stress continuously decreasing after the yield 
point. On the other hand, the 2 other alloys (Ti-26Nb-6Mo and Ti-15V- 
3Mo-2Al) exhibit some work-hardening during tensile straining. This 
behaviour suggests the activation of TRIP and/or TWIP effects. 

Fig. 7 presents the X-ray diffraction patterns after fracture of the 
different tested alloys in addition to the diffractogram of the Ti-15V- 
3Mo-2Al alloy in its initial state. All grades exhibit a fully β micro
structure prior to straining. These diffractograms confirm that, except 
for the Ti-15V-3Mo-2Al alloy, no other phases were present after tensile 
testing. In the case of the Ti-15V-3Mo-2Al alloy, diffraction pattern 

Fig. 7. X-ray diffraction patterns of the alloy compositions tested in this study after straining up to failure, in addition with the initial state pattern of the only sample 
that present martensite after fracture. 

Fig. 8. Inverse pole figure of Ti-26Nb-6Mo alloy strained up to 5 % illustrating 
the presence of deformation bands. Associated pole figures highlight the {332} 
〈113〉 twinning relationship of the deformation band present in the 
black rectangle. 

Fig. 9. Band contrast (a), phase map (with BCC phase in red and α’’ in yellow) 
(b), and inverse pole figures of BCC (c) and α’’ martensite (d) of Ti-15V-3Mo- 
2Al alloy strained to 5 %. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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exhibits α’’ reflections, suggesting the occurrence of the TRIP effect. 
Scanning Electron Microscope (SEM) observations did not reveal any 

trace of strain-induced interfaces such as twin boundaries in Ti-9.7Cr- 
6.8Sn and Ti64-Mo samples, confirming the β-stable nature of these 
grades. Concerning Ti-26Nb-6Mo and Ti-15V-3Mo-2Al alloys, the nature 
of the observed strain-induced bands was investigated by EBSD. Fig. 8 
shows that mechanical twinning occurs during the deformation of the 
Ti-26Nb-6Mo grade. Indeed, deformation bands corresponding to 
{332} 〈113〉 mechanical twins, the common twinning system in 
metastable β-Ti alloys [8,10], are present. It also confirms the XRD re
sults where no additional α’’ peaks were observed after straining. 

On the other hand, the different maps of Fig. 9 show that both me
chanical twinning and strain-induced martensite occur in the Ti-15V- 
3Mo-2Al alloy, also in agreement with the XRD results. Indeed, defor
mation bands are indexed either as mechanical twins or strain-induced 
martensite. 

The probabilistic predictions of the proposed Machine Learning 
model are presented in Table 4, together with the ones of the Bo − Md 
approach and the experimental results obtained via tensile testing and 
subsequent microstructural characterization. It can be seen that the 
predictions of the present model are globally much better than the 
phenomenological approaches of Morinaga and Wang, despite the 
relatively small number of input data. The new approach accurately 
predicts the activated plasticity mechanism for all the different cases, 
while the Bo − Md approach is completely unable to correctly predict any 
of these challenging compositions. Moreover, one strength of the present 
approach compared to previous attempts is the potential of continuously 
improving the capacity of the predictor, which is intrinsic to the 
machine-learning concept. It is also worth noting that none of the other 
approaches summarized in the Introduction would be able to predict the 
activated plasticity mechanisms as globally and accurately as the pre
sent approach. 

5. Conclusions 

We presented in this work an original approach for the design of β 
titanium alloys exhibiting specific plasticity mechanisms. Based on an 
approach initiated by Morinaga et al. linking electronic parameters and 
observations of plasticity mechanisms, a hybrid machine learning model 
combining ab initio calculations and a set of experimental data was built 
and validated. Among the different algorithms tested in this study, a 
multilabel and multi-fidelity MODNet trained on ab initio and matminer 
features showed the best results. A probabilistic approach was chosen, as 
it showed better performance compared to a hard-voting algorithm (see 
Supplementary material). This enables task-specific thresholding (e.g., 
when high recall or precision is needed) and, furthermore, enables 
active learning strategies. The multilabel approach has the advantage to 
better represent the physics, by dealing with separate independent 
classes. As a result, better scores were obtained and the interpretation 
was easier. Moreover, it can be observed that the domain-specific ab 
initio features (although with strong simplifications, i.e., linearly 
extrapolated) provide a strong descriptive behaviour, and outperform 
standard features such as the ones available in matminer. 

Moreover, this new tool can constantly be improved by the addition 
of new experimental points in the dataset, improving the accuracy of the 

predictions. An interface to access the predictions of the developed 
model is also available online [65]; any kind of experimental data of 
correct or wrong predictions can be provided to the authors to be 
included in the training database. 

This new approach has been demonstrated to handle some limita
tions of the widely used Bo − Md design map, especially in its main 
current use, i.e., the design of new Ti alloys with an improved work 
hardening rate through the activation of the TRIP and TWIP effects. 

The present approach also started to guide deeper understanding of 
the fundamental mechanisms responsible for the activated plasticity 
mechanisms. Indeed, the statistical analysis of the strength of the cor
relations established between ab initio-calculated electronic parameters 
and observed plasticity mechanisms reveals which parameters have a 
predominant effect. It could also be extended to a larger panel of 
properties as long as valid experimental data points are available for the 
initial training of the machine learning algorithms. However, despite 
predicting accurately the activated plasticity mechanisms in β-Ti alloys, 
the model is currently unable to assess the intensity with which each 
phenomenon takes place. Since it can be anticipated that the work 
hardening capacity relies on the density of twins or laths created, if two 
alloys exhibit the same plasticity modes, the model cannot predict which 
one will have a higher strain-hardening capacity. Further improvements 
should deal with complementary criteria or better understanding of the 
underlying parameters dictating mechanical properties such as uniform 
elongation and/or ultimate tensile strength. In the case of TRIP/TWIP Ti 
alloys, next improvements will consist in adding output properties such 
as yield strength, uniform elongation or fracture toughness for example. 
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Table 4 
Predictions of plasticity mechanisms for challenging designed alloys. Predictions are given as probability scores for each class: Slip β, Slip α, TWIP, and TRIP. A 
thresholding heuristic is applied to find a final mechanism: either the class with the score above 0.5 (in addition to slip) or TWIP - TRIP if their product exceeds 0.25. 
Comparison is made with the Bo − Md approach and the experimental validation.  

Composition (wt %) Slip β Slip α TWIP TRIP Threshold heuristic Bo − Md Experiment 

(Ti-6Al-4 V)83.1 – 16.9Mo  1.00  0.02  0.00  0.00 Slip β TWIP + TRIP Slip β 
Ti-9.7Cr-6.8Sn  1.00  0.00  0.05  0.00 Slip β TWIP + TRIP Slip β 
Ti-26Nb-6Mo  1.00  0.00  0.52  0.02 TWIP Slip β TWIP 
Ti-15V-3Mo-2Al  1.00  0.00  1.00  0.90 TWIP + TRIP Slip β TWIP + TRIP  
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