
Applied Intelligence
https://doi.org/10.1007/s10489-024-05489-9

Privacy-preserving visual analysis: training video obfuscation models
without sensitive labels

Sander De Coninck1 ·Wei-Cheng Wang1 · Sam Leroux1 · Pieter Simoens1

Accepted: 24 April 2024
© The Author(s) 2024

Abstract
Visual analysis tasks, including crowd management, often require resource-intensive machine learning models, posing chal-
lenges for deployment on edge hardware. Consequently, cloud computing emerges as a prevalent solution. To address privacy
concerns associated with offloading video data to remote cloud platforms, we present a novel approach using adversarial
training to develop a lightweight obfuscator neural network. Our method focuses on pedestrian detection as an example of
visual analysis, allowing the transformation of video frames on the camera itself to retain only essential information for
pedestrian detection while preserving privacy. Importantly, the obfuscated data remains compatible with publicly available
object detectors, requiring no modifications or significant loss in accuracy. Additionally, our technique overcomes the com-
mon limitation of relying on labeled sensitive attributes for privacy preservation. By demonstrating the inability of pedestrian
attribute recognitionmodels to detect attributes in obfuscated videos, we validate the efficacy of our privacy protectionmethod.
Our results suggest that this scalable approach holds promise for enabling camera usage in video analytics while upholding
personal privacy.

Keywords Privacy-preserving edge computing · Cloud-edge collaboration · Visual analysis · Pedestrian detection ·
Pedestrian attribute recognition

1 Introduction

Privacy has become a critical concern in the era of smart cities
and ubiquitous video surveillance systems. As cities become
more connected and data-driven, individuals’ privacy rights
must be safeguarded, especially regarding their movements
and activities in public and semi-public spaces. Many appli-
cations, such as crowd management or people counting, rely
on video data for processing. However, this video data con-
tains sensitive privacy aspects that could be exploited for
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malicious purposes beyond the original task, such as person
identification or racial profiling [1, 2]. The growing usage
of AI for smart city applications, coupled with the preva-
lence of cloud computing, further exacerbates these privacy
concerns [3].

There are two potential solutions to address privacy and
security concerns in camera analytics. One approach is to
conduct all computations on the camera device and only
transmit the results, which can prevent data leakage. How-
ever, this approach has limitations as edge devices have
fewer computational resources and are more prone to wear
and tear. Providing all cameras with embedded processors
capable of running analytics is, therefore, a costly solution.
Moreover, to safeguard the data from being compromised
during computation, it is necessary to work within a Trusted
Execution Environment (TEE), which has severe memory
limitations [4].

An alternative solution is to integrate a privacy-preserving
technique on the edge device, which is less computationally
intensive and more suitable for TEEs while offloading the
majority of the computation to a cloud model. This approach
leverages the advantages of cloud computing, such as lower

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05489-9&domain=pdf
http://orcid.org/0000-0003-3070-9814
https://orcid.org/0000-0002-0912-8532
https://orcid.org/0000-0003-3792-5026
https://orcid.org/0000-0002-9569-9373


S. De Coninck et al.

computational costs, better maintainability, and scalability,
while requiring an additional component to provide privacy
protection. The framework proposed in this paper belongs
to this category of solutions, which we apply to the visual
analysis task of pedestrian detection.

In this category, researchers have used anonymization,
encryption, and aggregation techniques on surveillance
footage to protect individuals’ privacy while extracting valu-
able insights from the data [5–8]. However, the models
used in this category of works are often explicitly trained
to prohibit inferring specific sensitive attributes, which has
several drawbacks. Firstly, this necessitates defining all sensi-
tive attributes beforehand, making it vulnerable to oversight.
Secondly, these techniques need machine learning models
to infer these private attributes, and, subsequently, labelled
datasets of all private attributes which requires compliance
with data protection legislation. Finally, existing strategies
frequently require modifications to the machine learning
model of the allowed task, making them incompatible with
existing architectures for these tasks and more costly to
develop.

This paper proposes a novel approach for privacy-preserving
edge-cloud visual analysis based on Generative Adversar-
ial Privacy (GAP) [9]. We apply our technique to pedestrian
detection, as this is an indicative task for smart city appli-
cations involving human data. Note that the framework can
be applied to any task. Our method is designed to maintain
high detection accuracy while minimizing the amount of per-
sonal data collected and processed, making it suitable for use
in smart cities and other urban applications. Critically, our
privacy-preserving scheme does not require access to sen-
sitive task labels and focuses solely on allowing the task
(e.g. pedestrian detection) in an opt-in manner by preventing
adversaries from recreating the original data from the pri-
vatized form. Furthermore, our technique does not require
modification of the downstream model, making it compat-
ible with existing utility models and allowing the usage of
third-party software.

We validate privacy preservation by training Pedestrian
Attribute Recognition (PAR) models on obfuscated data
using labels from the original data, positing that they will
be unable to learn on filtered data since most attributes are
related to identification but are not necessary for detection of
the presence of a pedestrian. PAR accuracy was chosen as an
indication of privacy as the attributes recognized can be con-
sidered sensitive, such as gender, age, etc. Moreover, PAR is
regarded as a foundational computer vision block in intru-
sive tasks such as person re-identification and tracking [10].
Figure 1 showcases the intended use of our work.

We compare our technique against both classic obfusca-
tionmethods like blurring, noising, quantizing and pixelating

Fig. 1 Intended deployment of our obfuscation technique. The camera
footage is obfuscated to a privatized form, which allows a certain down-
stream utility (e.g. pedestrian detection) but disallows other, possibly
malicious, tasks to be performed (e.g. inferring pedestrian attributes)

aswell as deep-learning-based techniques focusing on pedes-
trian anonymization. Subsequently, we verify additional
wanted properties of our technique when used in an edge-
cloud setup, such as efficiency in comparison to pedestrian
detection models and generalizability across multiple object
detection models and cameras. Lastly, we investigate the
effect of model complexity on the privacy-utility tradeoff.

The main contributions of our work are as follows:

• Our adversarial obfuscation allows pedestrian detection
with minimal accuracy degradation while significantly
decreasing the information on pedestrian attributes in the
video transmitted to the cloud-based model.

• Our method provides significantly better privacy pro-
tection than classic obfuscation techniques, given the
same utility. The adversarial obfuscator outperforms the
deep-learning basedmethods while requiring less time to
execute and memory to store.

• Our method can generalize over multiple cameras from
the same dataset. It is, however, not compatible with dif-
ferent person detection models other than the one it was
trained for.

• The complexity of the obfuscator model can be used to
tune the privacy-accuracy tradeoff slightly.

The outline of this paper is as follows: Section 2 describes
the relatedworks in privacy-preservingmachine learning and
pedestrian detection. Subsequently, we describe the archi-
tecture of our privacy-preserving scheme and evaluation
technique in Sections 3 and 3.2. The experiments and their
results are described in Section 4. Finally, we conclude our
paper and look to future works in Section 5.
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2 Related works

2.1 Privacy-preservingmachine learning

Apart frompedestrian detection, privacy-preservingmachine
learning techniques are available for several applications.
Themain techniques involve differential privacy [11], homo-
morphic encryption [12], secure multi-party computation
[13], or reliance on information-theoretic properties [14].

As our work falls in the latter group, we will highlight
some works in this section. In the context of video data, a
common approach is to use a two-step process, where sensi-
tive regions (e.g. faces) are first detected and then modified
using inpainting techniques [15–17] or more basic methods
such as blurring or pixelization. The former approach’s use
of two deep neural networks (DNNs) makes it challenging
for real-time processing, while the latter approach is vulner-
able to deep learning attacks [18]. An alternative one-step
solution is generative adversarial privacy [9]. GAP involves
training a privatizing network to degrade the data and an
adversary network that attempts to infer the sensitive data
from the degraded version. However, its usage is limited by
the need to define and label all sensitive aspects. Recently
some works have managed to circumvent these issues when
workingwith audio data [19], or for image classification [20].
Though, this solution has yet to be applied to the domain of
object detection on video data.

2.2 Privacy-preserving pedestrian detection

Privacy-preserving pedestrian detection has become an in-
creasing concern in developing surveillance technology.
Several researchers have explored innovative techniques to
balance the need for accurate detection while protecting indi-
vidual privacy. Yuan et al. [5] utilized differential privacy to
address privacy concerns in pedestrian detection by adding
Gaussian noise to the entire frame. Other works utilize a
two-step approach where people are first detected and sub-
sequently replaced with an anonymized version [7, 8]. Chan
et al. [21] proposed a privacy-preserving approach to crowd
monitoring that did not require person detection but required
special-purpose cameras that output low-level features. Kieu
et al. [22] suggested using thermal cameras to protect privacy,
but did not substantiate their claim that person identification
is difficult or impossible. Bentafat et al. [6] provide a solu-
tion for real-time privacy-preserving video surveillance by
encrypting the regions of faces, though they do not address
any other attributes that can be used for recognition. Lastly,
Yang et al. [23] utilize homomorphic encryption, to encrypt
images while allowing the extraction of Histogram of Ori-
ented Gradients features, which can then be used by an SVM
model to detect pedestrians.

3 Architecture

3.1 Model architecture

The goal of our technique is to transform frames of a video
in a manner that enables the detection of pedestrians while
simultaneously removing any superfluous information. Criti-
cally,we aim to achieve thiswithoutmodifying the pedestrian
detection model, making it compatible with third-party mod-
els, and without relying on a dataset of sensitive attributes.
To this end, we have applied adversarial training to obtain
a filtered version of our input frames, which is achieved
through the use of an autoencoder, referred to as the “obfus-
cator”, denoted as O. This autoencoder transforms the frame
in a manner that permits pedestrian detection while simul-
taneously hindering the reconstruction of the original image
using a second autoencoder, referred to as the “deobfusca-
tor” and denoted as D. By training both autoencoders in
tandem, we posit that the obfuscator learns a transforma-
tion that solely retains the required features for pedestrian
detection. Figure 2 showcases the architecture of our pro-
posed approach, which we term the adversarial obfuscator.

The deobfuscator reconstructs the original image from its
obfuscated version, essentially acting as an adaptable mutual
information estimator between the two. We experimented
with different image similaritymetrics, including SSIM [24],
LPIPS [25], DISTS [26], VIF [27], and Mean Squared Error
(MSE), to train the deobfuscator. However, we observedmin-
imal differences in the results and thus chose the simplest
metric. Therefore, the deobfuscator is trained by minimizing
the pixel-wise MSE between the original image X and the
deobfuscated image. The loss function, denoted by Lrec, is
defined as follows:

Lrec = 1

n

n∑

i=1

(Xi − D(O(Xi )))
2.

The obfuscator is trained by minimizing the loss of the
object detection model Lobj and maximizing the reconstruc-
tion loss of the deobfuscator. The loss function is defined as
follows, with αobj and αrec as weight factors:

LO = αobj Lobj − αrecLrec.

Our training procedure thus requires access to the weights of
the object detection model for performing gradient descent,
and to the loss function on which this model was trained to
calculate LO . These requirements are an inherent restriction
of the GAP framework. The obfuscator and deobfuscator
are constructed based on the MobileNet [28] architecture,
which was designed for devices with limited computational
resources making the obfuscation process more suited for
edge devices and inference in a TEE.
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Fig. 2 The architecture of the adversarial obfuscator. The obfuscator
transforms the input image to allow pedestrian detection but disallow
an adversary (the deobfuscator) to reconstruct the original image using
its obfuscated image

3.2 Evaluation

The evaluation of our technique is twofold. We want to eval-
uate the intended task (utility), i.e. the accuracy of detecting
pedestrians on obfuscated images. Meanwhile, the evalu-
ation of the privacy protection has to be considered. As
both evaluations require labelled data, we created our own
dataset from publicly available CCTV-like videos and cre-
ated pseudo-labels for the target task and the sensitive labels
using pre-trained pedestrian detection and attribute recogni-
tion models.

3.2.1 Utility

The utility is defined by the performance of the intended
task, in this case, pedestrian detection. We trained the obfus-
cator to be compatible with a pre-trained object detection
model. Evaluation of the utility can thus be achieved using
the detection accuracy of this pre-trained neural network on

the obfuscated frames. We measured the performance of this
network by calculating the Average Precision (AP) for the
pedestrian class. We did this using the implementation of
Cartucho et al. [29], which uses the PASCALVOCcriterium.

3.2.2 Privacy

Obtaining a metric to evaluate the performance of privacy
protection is challenging due to the absence of publicly
available datasets containing ground truth labels of privacy-
sensitive attributes, as well as a lack of a precise definition
of what constitutes such attributes. To address this issue,
we assess the effectiveness of privacy protection by eval-
uating the ability of pedestrian attribute recognition (PAR)
models to learn from datasets with obfuscated images. PAR
models are designed to predict various attributes of individ-
uals; e.g. age, gender, clothing, etc.; and are often used as a
foundation for privacy-invading tasks, including person re-
identification [10].

The performance of the PAR models is measured using
two groups of metrics: instance-level and attribute-level.
Instance-level metrics are used to assess the model’s ability
to classify the attributes of individual persons in the dataset.
Attribute-level metrics evaluate the model’s effectiveness in
classifying the attributes themselves over the entire dataset.
The instance-level attributes include Accuracy (Acc), Preci-
sion (Prec), Recall (Rec) and F1. Attribute-level consists of
themeanAccuracy (mA),which can be calculated as follows,
with M being the number of attributes:

mA = 1

M

M∑

j=1

1

2
(

T P j

T P j + FN j
+ T N j

T N j + FP j
).

It is crucial to consider the ideal values corresponding to
the metrics used to evaluate the filtering technique, as they
may not be immediately intuitive. Although lower values
may appear to indicate better filtering, it is important to note
that the labels for most sensitive attributes in PAR are heavily
unbalanced. Hence, an adversarywith prior knowledge could
achieve better-than-random accuracy by consistently guess-
ing the majority class. Precision and recall metrics measure
the fraction of correct positive predictions and the num-
ber of positive instances retrieved, respectively. However, in
datasets with a large proportion of negative samples, these
metricsmay not have enough samples to calculate accurately.
The mean accuracy metric is a better measure in this case, as
it takes the average between the positive and negative recall,
requiring both positive and negative samples to be well clas-
sified. Therefore, we focus on the mA metric in this paper,
where a value of 0.5 is considered optimal for filtered data.
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4 Experiments

We utilized three datasets for experimentation: the Avenues
dataset [30], ShanghaiTech Campus [31] dataset andWILD-
TRACK [32] dataset. These datasets compriseCCTVcamera
footage featuring a high volume of pedestrian activity, where
pedestrians are close enough to the camera for their attributes
to be recognized. For the Avenues dataset, which contains 16
training videos and 21 testing videos, we used 8 videos of
the test set as a validation set. As for the ShanghaiTech and
WILDTRACK datasets, we divided the data of every cam-
era into train/validation/test sets with a ratio of 80/10/10,
ensuring videoswere not split over different sets. TheWILD-
TRACKdataset contains data of 7 cameras, eachwith over 30
minutes each of footage. Whereas the ShanghaiTech Cam-
pus dataset consists of footage of 11 cameras, of which we
selected the 5 cameras that have the most footage available
(i.e. more than 20 videos), as others had too little to train and
evaluate our technique. Given that these datasets were not
originally intended for pedestrian detection, they do not pos-
sess any ground-truth labels1. As a solution, we employed
a pre-trained Faster R-CNN [33] model to obtain pseudo-
labels. We retained only those labels with a confidence score
of at least 90% tomitigate the presence of overly noisy labels.
We resized the videos to 200 × 320 pixels to decrease the
computational load and extracted frames at 5 fps.

As for the training details: we alternated between train-
ing our obfuscator and deobfuscator for a total of 30 epochs,
starting with a learning rate of 1 × 10−3 and decreasing it
by a factor of 10 at the halfway point. The AdamW [34]
optimizer was used with a weight decay of 1 × 10−6 and
PyTorch’s automatic mixed precision training. We used 1 as
value for both αrec and αobj . PyTorch’s pre-trained Faster R-
CNN model was used as our object detection model to train
the obfuscator. After training, the deobfuscator is discarded,
and the obfuscator is used to filter private information in the
camera frames. Some example images of obfuscated frames
from the three datasets can be seen in Fig. 3. Variations in
the visual appearance of obfuscations may occur due to the
stochastic initialization of both the obfuscator and deobfus-
cator models.

4.1 Pedestrian detection ability

Weuse theAPmetric, to assess the opt-in effectiveness of our
framework. The results are shown inTable 1. It is important to
note that, since our ground-truth labelswere acquired through
an object detection model, the reported accuracies should be

1 The WILDTRACK dataset does contain ground-truth values, how-
ever, due to the limited amount available and the fact that only a
particular section of pedestrians was annotated, we chose not to use
these.

interpreted with caution. Any persons not detected in the
original data may be detected in the obfuscated data, but
will still be considered inaccurate predictions. TheAP values
for person detections range mostly around 90%, indicating
that most pedestrians are detected the same as if the images
were not obfuscated. TheWILDTRACK cameras exhibit the
highest degree of variability in accuracy across cameras. This
can be attributed to the fact that this is the dataset with the
highest density of pedestrians visible.

4.2 Assessing privacy through pedestrian attribute
recognition

To test PAR performance on obfuscated data, we employ two
baseline models, the model of Jia et al. [35], and the Visual
Textual Baseline (VTB) [36]. We trained these models on
the UPAR [37] dataset and used them on cropped-out per-
sons from our pedestrian detection datasets to obtain ground
truth (pseudo-)labels. These models are trained to detect 40
binary attributes, such as various age indicators, accessories,
clothing etc. We then created a new dataset by replacing the
person crops with obfuscated versions, simulating an attack
by an adversary that has access to the obfuscation model.
Our hypothesis is that if a PAR model is unable to train on
the obfuscated dataset, it no longer contains the data neces-
sary for this task, suggesting that the obfuscation successfully
removes sensitive data, such as those necessary for attribute
recognition.We removed the most unbalanced attributes (i.e.
when more than 99% of the samples are entirely in one cate-
gory), and crops smaller than 20×20 pixels, as these prove to
be too small to detect any attributes. The results of pedestrian
attribute recognition on the original, obfuscated and recon-
structed frame for both PAR models are shown in Table 2.

The results show that there is a significant performance
degradation in attribute recognition on obfuscated frames
for all datasets, with the mA almost reaching the level of
random guessing. This indicates that the obfuscation process
removes relevant information for PAR. For the ShanghaiTech
and WILDTRACK datasets, the performance drops signifi-
cantly to around 53 ∼ 60%mA for the model of Jia et al. and
50 ∼ 56% for VTB, indicating that the model can learn very
little from obfuscated frames. The PAR mA on the Avenues
dataset is still 66%. Although this is a drop of more than
10%, it is still far from the desired 50%. However, it should
be noted that the data in the Avenues dataset is the most
unbalanced in terms of attributes, featuring many attributes
slightly outside the cutoff for unbalance, which could be one
reason why the PAR performance is not close to random.

Detecting pedestrian attributes remains challenging even
in the reconstructed frames obtained through deobfuscation.
This difficulty stems from the absence of essential informa-
tion in the input data for the deobfuscator, i.e., the obfuscated
frame, due to the data processing inequality. As the deobfus-

123



S. De Coninck et al.

Fig. 3 Original (left) and
obfuscated (right) frames of the
WILDTRACK, ShanghaiTech
Campus and Avenues datasets.
The obfuscation appearance can
vary across datasets due to the
stochastic initialization of the
obfuscator and deobfuscator
models

cator cannot re-introduce information, this limitation results
in similar or worse pedestrian attribute recognition (PAR).
It is important to note that the reconstructed data, despite
its origin, does not offer improved suitability for our spe-
cific objective, as it significantly impedes effective pedestrian
detection.

Table 1 Relative pedestrian detection accuracy on obfuscated frames

Dataset Camera Person AP

Avenues 89.62

ShanghaiTech Campus 1 89.26

4 83.86

5 93.28

6 91.70

8 87.72

WILDTRACK 1 83.35

2 90.45

3 88.36

4 71.32

5 83.63

6 71.21

7 80.97

The obfuscation brings forth a small reduction in pedestrian detection
accuracy

4.3 Comparison with other obfuscation techniques

When it comes to protecting sensitive information in images,
a variety of techniques can be employed to obfuscate the
information and make it harder to discern. To ensure a com-
prehensive and unbiased evaluation, we conducted two sets
of experiments. In the first set, we compared our adversarial
obfuscator with traditional methods such as blurring, adding
noise, quantization, and pixelation. Similar to our approach,
these techniques were applied to the entire frame without
prior knowledge of the location of sensitive information.
However, a key limitation of these traditional methods is that
while they may effectively reduce the detection of privacy-
sensitive elements, they also compromise utility. To facilitate
a meaningful comparison between our technique and these
obfuscationmethods,we adjusted their parameters to achieve
a similar level of utility loss as ours, specifically aiming for
a relative pedestrian accuracy of approximately 90%. This
entailed using a kernel size of [9, 9] for Gaussian blurring,
adding 7.5% noise, quantizing to 8 values, and reducing the
image size by one-third for pixelation.

In the second set of experiments, we evaluate our approach
against more sophisticated, deep learning-based methods.
These methods follow a two-step procedure where individ-
uals are first identified and then anonymized. While these
approaches generally offer a better balance between privacy
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Table 2 Comparison of PAR
mA using common PAR models
trained on original, obfuscated
and reconstructed data

Jia et al. [35] VTB [36]
Orig. Obf. Rec. Orig. Obf. Rec.

Dataset

Avenues 76.28 66.51 60.98 80.73 66.40 55.75

ShanghaiTech Campus 1 76.85 57.17 55.96 80.38 56.31 60.98

ShanghaiTech Campus 4 65.83 53.23 52.34 65.06 50.17 55.96

ShanghaiTech Campus 5 78.88 60.48 57.77 78.47 62.03 52.34

ShanghaiTech Campus 6 71.49 59.62 57.49 69.97 57.74 57.77

ShanghaiTech Campus 8 71.19 58.20 56.57 79.00 52.47 57.49

WILDTRACK 1 74.06 56.19 54.34 72.21 53.09 56.57

WILDTRACK 2 79.85 60.59 56.96 82.56 53.50 54.34

WILDTRACK 3 78.57 58.04 57.29 80.55 56.02 56.96

WILDTRACK 4 74.21 54.29 54.67 70.67 51.40 57.29

WILDTRACK 5 75.53 57.58 56.00 76.41 55.79 54.67

WILDTRACK 6 73.78 55.57 54.32 74.93 53.20 56.00

WILDTRACK 7 72.73 57.02 55.75 73.04 53.76 54.32

The capacity to learn pedestrian attributes on obfuscated data is significantly reduced

and utility compared to the previous category, they are less
adaptable in terms of specifying which privacy-sensitive
aspects to safeguard. Additionally, they are more prone to
instances where individuals are missed during detection,
resulting in their exclusion from anonymization. Moreover,
these methods demand substantially higher computational
resources, rendering them less suitable for edge deploy-
ment. Within this category, we compare our approach with
a two-step anonymizer utilizing Mask R-CNN [38] for
person segmentation, followed by either blurring or com-
plete removal of individuals through mask replacement.
Furthermore, we assess our approach against the current
state-of-the-art in realistic whole-body anonymization, rep-
resented by DeepPrivacy2 [7].

The results from both experiments conducted on cam-
era 1 of the ShanghaiTech Campus dataset are presented in
Table 3. The upper section displays the outcomes of the first
experiment set, while those below the dashed line represent

Table 3 Comparison with other privacy-preserving techniques

Technique Person AP ↑ PAR mA ↓
Original image 100 76.85

Blurring 87.51 73.16

Noise 87.65 74.33

Quantization 87.60 75.34

Pixelisation 91.17 72.60

DeepPrivacy2 [7] 93.60 63.60

Mask R-CNN + blur 56.25 69.65

Mask R-CNN + mask-out 27.06 67.72

Adversarial obfuscation (ours) 89.26 57.17

Best results are highlighted in bold

the second set. Figure 4 provides a visual comparison of all
techniques.

Concerning the classic obfuscationmethods, our approach
demonstrates themost balanced privacy-utility tradeoff. This
is evident in the significantly lower PAR mA compared to
other techniques, while maintaining a similar person AP.

Results from the second set of experiments exhibit greater
variability. Notably, in the case ofMaskR-CNN+blur/mask-
out, there is a significant reduction in utility. However,
PAR performance remains relatively stable. This may be
due to two factors: first, not all individuals are detected
and, therefore, not all are anonymized. Second, even after
anonymization, the contour of individuals remains dis-
cernible, potentially providing the PAR model with valuable
cues. For Mask R-CNN, we found that it is mainly the latter
case, as almost all persons in the ground truth are detected.
DeepPrivacy2 achieves a comparable privacy-utility tradeoff
compared to our technique. However, the decline in PAR per-
formance is less pronounced than in our approach. One cause
for this is that, for all two-step techniques, the anonymiza-
tion is only applied to those persons detected. We found that
for DeepPrivacy2, over one-third of all persons in the test
dataset were not detected, leading to significant privacy leak-
age. Note that this discrepancy between the Mask R-CNN
techniques and DeepPrivacy2, even though DeepPrivacy2
also relies on Mask R-CNN, lies in part to the evaluation.
We use data that was labelled using a Faster R-CNN model
with the same backbone as the Mask R-CNN (ResNet50),
whereas DeepPrivacy2 uses Mask R-CNN with a ResNeXt-
101 backbone.

Finally, it’s worth noting that these two-step techniques
demand substantially more computational resources com-
pared to ours, which might not always be readily available
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Fig. 4 Obfuscation with other obfuscation techniques. From left to
right, top to bottom: Original image, blurred, noised, quantized, pix-
elized, obfuscated (ours), DeepPrivacy2, Mask-out, Mask + blur

when working with edge devices. To support this claim, we
included the number of parameters of all models (which
correspond to memory and storage requirements) and the
execution time on the Jetson Orin AGX to anonymize one
frame. The findings are presented in Table 4. It’s impor-
tant to highlight that for these techniques, the computation
needed depends on the number of pedestrians detected, as

Table 4 Execution time on JetsonAGXOrin and number of parameters
of deep learning-based obfuscation techniques

Method Time (ms) Params (M)

Adversarial obfuscator (ours) 5.50 ± 1.25 0.04

DeepPrivacy2 613.62 ± 212.82 234.43

Mask R-CNN + mask-out 165.78 ± 19.57 44.18

Mask R-CNN + blur 170.02 ± 22.54 44.18

the anonymization phase is only triggered for detections.
The results show our technique significantly outperforms the
alternatives, concerning both execution time as well as mem-
ory required to store the model.

4.4 Cross-camera generalization

The present study describes a filtering method specifically
tailored to edge device cameras. Given the abundance of such
cameras, it is important to assess the ability of the proposed
filter to generalize across different cameras, thereby avoid-
ing the need for training specific models for each camera.
To evaluate cross-camera generalization, two datasets were
employed. The first, the ShanghaiTech Campus dataset, con-
sists of footage from13 cameras placed at various heights and
illuminance levels in different locations. To test the model’s
performance, data from cameras 1-8 were used for train-
ing, while data from cameras 9-13 were used for testing.
TheWILDTRACK dataset offered a different perspective on
cross-camera generalization, in which all cameras were sit-
uated in different locations but had a view of the same area,
resulting in a considerable amount of shared information.

The results of this experiment can be seen in Table 5. We
observe generalization on the ShanghaiTechCampus dataset,
as the person AP on new cameras is similar to the results
in Table 1, where we evaluated on the same cameras. For
the WILDTRACK dataset, the results are less conclusive.
Camera 7 shows good performance, though for camera 6,
there is amore significant decrease in accuracy. This could be
attributed to the fact that this camera is directedmore towards
buildings and less towards the square than the other cameras.
These results indicate that to generalize to other cameras,
the obfuscator should be trained on a well-diversified set of
cameras.

The results for privacy protection can be seen in Table 6.
As the data of the separate ShanghaiTech Campus cam-
eras are too small to both train and test a PAR model, we

Table 5 Cross-Camera pedestrian detection accuracy

Dataset Train Cameras Test Camera Person AP

ShanghaiTech
Campus

1-8 9 87.23

10 83.43

11 92.53

12 82.07

13 87.56

WILDTRACK 1-5 6 60.27

7 82.04

Generalisation is acquired for the ShanghaiTech Campus but not for the
WILDTRACK dataset
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Table 6 Cross-Camera PAR mean accuracy

Dataset Jia et al. [35] VTB [36]
Orig. Obf. Orig. Obf.

ShanghaiTech Campus 9-13 74.33 57.18 78.23 55.64

WILDTRACK 6 70.76 57.21 73.83 55.16

WILDTRACK 7 70.66 55.70 74.93 54.03

Even on different cameras, obfuscation removes attribute information

decided to aggregate all test cameras in one set. The results
are similar to those for the single-camera setting, even for the
WILDTRACKdataset.We can conclude that our obfuscation
method can generalize across cameras, sacrificing slightly in
utility but not in privacy protection.

4.5 Suitability for edge processing

Our obfuscation technique is designed to be used on edge
devices,while pedestrian detection is performedon the cloud.
Therefore, we would expect our obfuscation to be consider-
ably more lightweight than the pedestrian detection model
used. Otherwise, one might argue that it would be more
privacy-safe to run detection on the edge and send through
the results. Note, however, that execution on the cloud brings
considerable benefits, such as better maintainability and
cheaper compute.

To evaluate the suitability of our technique for edge
devices, two metrics of DNNs are examined. The first metric
is the number ofMultiplyAccumulates (MACs),which refers
to the number of arithmetic operations that involve multipli-
cation and addition. This metric is a reliable indicator of the
computation required to process the data. The second metric
is the number ofmodel parameters, which indicates themem-

ory cost of storing the model. The latter metric is particularly
critical when considering the implementation of the obfus-
cator in a TEE. Smaller values for both metrics indicate that
a model is better suited for edge deployment. In addition to
these metrics, we measure the time to process a single frame
on a Jetson Orin AGX device to indicate compatibility on an
edge device.

Table 7 shows an overview of these metrics. Values are
calculated by the ptflops [39] package. The results show that
our proposed obfuscation model is considerably smaller than
object detectionmodels.Most notably, ourmodel uses almost
100 times fewer parameters than the Yolov8 nano model,
making it highly suitable for deployment on edge devices.
We also require significantly less compute, and can execute
a single frame in around 5.5ms.

4.6 Object detectionmodel independence

We train our obfuscator by including the object detection
model in the training loop. Nonetheless, the goal is for it to
function independently of the detectionmodel.When using a
cloud-hosted detection service, the architecture of the object
detection model may not be publicly available.

To test the obfuscator’s independence, we evaluate its per-
formance on various object detection models with different
backbone architectures, after training it on a Faster R-CNN
model with a ResNet50 backbone. Table 8 shows the results
of this experiment. We see that for most different object
detection models, the performance decreases considerably.
Only those models with the same backbone and comparable
head architectures show some level of compatibility. How-
ever, the extent of this compatibility is hard to determine, and

Table 7 Comparisons of model
complexity with common object
detection models

Model MACS (G) Params (M) mAP COCO Time (ms)

Faster R-CNN v1
(Resnet50)

199.79 41.53 37.0 130.48 ± 1.63

Faster R-CNN
(MobileNetV3 Large)

8.26 19.33 32.8 49.40 ± 0.65

Faster R-CNN
(MobileNetV3 Large 320)

1.16 19.33 22.8 43.71 ± 2.71

FCOS (Resnet50) 205.43 43.71 39.2 113.33 ± 8.07

RetinaNet (ResNet50) 242.66 33.79 36.4 126.04 ± 1.81

SSD (VVG16) 34.92 35.60 25.1 57.03 ± 2.07

YOLOv8n 1.10 3.15 37.3 20.41 ± 2.26

YOLOv8s 11.17 3.70 44.9 18.92 ± 1.83

Adversarial Obfuscator (Ours) 0.35 0.04 − 5.50 ± 1.25

Ours is far smaller than the compared models, especially concerning the number of parameters
Best results are highlighted in bold
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Table 8 Cross-model pedestrian detection accuracy on Faster-RCNN guided images

Dataset Faster R-CNN Faster R-CNN v2 RetinaNet Mask R-CNN Faster R-CNN Faster R-CNN YOLOv8
ResNet50 ResNet50 ResNet50 ResNet50 MobileNetV3 large MobileNetV3 large 320 n

Avenues 89.62 92.82 5.04 92.72 66.49 62.12 19.79

ShanghaiTech
Campus Cam-
era 1

89.18 82.13 11.36 88.09 33.75 45.03 24.27

WILDTRACK
Camera 1

82.31 64.42 4.06 74.95 29.19 32.26 32.42

The obfuscator’s generalizability across object detection models is limited

it can only be concluded that the obfuscator’s generalizability
across object detection models is limited.

4.7 Model complexity and the accuracy-privacy
tradeoff

In this section, we investigate the feasibility of manipulat-
ing the privacy-utility tradeoff by adjusting the complexity
of the obfuscator model. Specifically, reducing the model
complexity may result in a decreased ability to preserve rel-
evant features, leading to a reduction in person detection
accuracy. However, it may also increase privacy protection
by decreasing the number of sensitive features that can be
retained. The impact of reducingmodel complexity on utility
is depicted in Fig. 5, which demonstrates that utility remains
relatively stable at around 90% until the models become too
small, at which point it declines rapidly. Conversely, Fig. 6
demonstrates that reducing the model size has an inverse
effect on privacy, as the mA on obfuscated frames remains
stable until a certain point, after which it decreases further
(thus enhancing privacy).

The aforementioned figures suggest that adjusting the
complexity of the obfuscator model can lead to a tradeoff
between privacy and utility. However, it is worth noting

Fig. 5 Influence of model complexity (MACS and parameters) on util-
ity. Smaller models lead to more loss in utility

that the reduction in person detection accuracy ability is
considerably less pronounced than the decrease in utility.
Consequently, using model complexity to tune the tradeoff
may not be ideal.

5 Conclusion and future work

This paper presented a novel framework for privacy-preserving
visual analysis in an edge-cloud setup, with pedestrian
detection as the example task. The proposed method uses
adversarial training to achieve obfuscation of frames while
retaining utility without modifying the utility network or
requiring labelled sensitive data. Our technique results in
near-random PAR performance while maintaining a pedes-
trian detection accuracy of 90%, outperforming classic and
deep learning based obfuscation techniques. The obfusca-
tor is smaller than object detection models and can protect
across multiple cameras, making it suited for edge deploy-
ment. However, our approach requires white-box access to a
trained object detection model and its loss function, limiting
its applicability in certain situations. In addition, the obfus-

Fig. 6 Influence of model complexity (MACS and parameters) on pri-
vacy (the accuracy of a PARmodel trained on obfuscated data). Smaller
models lead to worse PAR and, thus, better privacy protection
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cator is reliant on using the object detection model it was
trained with.

Future work should focus on developing privacy met-
rics that do not require ground truth labels and investigating
methods to make our technique more object detection model
independent. We should also explore the compatibility of
our approach in trusted execution environments to ensure
its effective deployment on edge devices. Finally, it would
prove valuable to research this technique in the setting of
smart cars involving non-stationary cameras to understand
its performance in more challenging situations.
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