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Abstract

Visual analysis tasks, including crowd management, often require resource-intensive machine learning
models, posing challenges for deployment on edge hardware. Consequently, cloud computing emerges
as a prevalent solution. To address privacy concerns associated with offloading video data to remote
cloud platforms, we present a novel approach using adversarial training to develop a lightweight obfus-
cator neural network. Our method focuses on pedestrian detection as an example of visual analysis,
allowing the transformation of video frames on the camera itself to retain only essential information
for pedestrian detection while preserving privacy. Importantly, the obfuscated data remains compati-
ble with publicly available object detectors, requiring no modifications or significant loss in accuracy.
Additionally, our technique overcomes the common limitation of relying on labeled sensitive attributes
for privacy preservation. By demonstrating the inability of pedestrian attribute recognition models to
detect attributes in obfuscated videos, we validate the efficacy of our privacy protection method. Our
results suggest that this scalable approach holds promise for enabling camera usage in video analytics
while upholding personal privacy.

Keywords: Privacy-Preserving Edge Computing, Cloud-Edge Collaboration, Visual Analysis, Pedestrian
detection, Pedestrian Attribute Recognition

1 Introduction

Privacy has become a critical concern in the era
of smart cities and ubiquitous video surveillance
systems. As cities become more connected and
data-driven, individuals’ privacy rights must be
safeguarded, especially regarding their movements
and activities in public and semi-public spaces.
Many applications, such as crowd management or
people counting, rely on video data for process-
ing. However, this video data contains sensitive

privacy aspects that could be exploited for mali-
cious purposes beyond the original task, such as
person identification or racial profiling [1, 2]. The
growing usage of AI for smart city applications,
coupled with the prevalence of cloud computing,
further exacerbates these privacy concerns [3].

There are two potential solutions to address
privacy and security concerns in camera analytics.
One approach is to conduct all computations on
the camera device and only transmit the results,
which can prevent data leakage. However, this
approach has limitations as edge devices have
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fewer computational resources and are more prone
to wear and tear. Providing all cameras with
embedded processors capable of running analyt-
ics is, therefore, a costly solution. Moreover, to
safeguard the data from being compromised dur-
ing computation, it is necessary to work within
a Trusted Execution Environment (TEE), which
has severe memory limitations [4].

An alternative solution is to integrate a
privacy-preserving technique on the edge device,
which is less computationally intensive and more
suitable for TEEs while offloading the majority of
the computation to a cloud model. This approach
leverages the advantages of cloud computing, such
as lower computational costs, better maintainabil-
ity, and scalability, while requiring an additional
component to provide privacy protection. The
framework proposed in this paper belongs to this
category of solutions, which we apply to the visual
analysis task of pedestrian detection.

In this category, researchers have used
anonymization, encryption, and aggregation tech-
niques on surveillance footage to protect individ-
uals’ privacy while extracting valuable insights
from the data [5–8]. However, the models used in
this category of works are often explicitly trained
to prohibit inferring specific sensitive attributes,
which has several drawbacks. Firstly, this neces-
sitates defining all sensitive attributes before-
hand, making it vulnerable to oversight. Secondly,
these techniques need machine learning models to
infer these private attributes, and, subsequently,
labelled datasets of all private attributes which
requires compliance with data protection legisla-
tion. Finally, existing strategies frequently require
modifications to the machine learning model of
the allowed task, making them incompatible with
existing architectures for these tasks and more
costly to develop.

This paper proposes a novel approach
for privacy-preserving edge-cloud visual anal-
ysis based on Generative Adversarial Privacy
(GAP) [9]. We apply our technique to pedestrian
detection, as this is an indicative task for smart
city applications involving human data. Note that
the framework can be applied to any task. Our
method is designed to maintain high detection
accuracy while minimizing the amount of personal
data collected and processed, making it suitable
for use in smart cities and other urban appli-
cations. Critically, our privacy-preserving scheme

does not require access to sensitive task labels and
focuses solely on allowing the task (e.g. pedes-
trian detection) in an opt-in manner by preventing
adversaries from recreating the original data from
the privatized form. Furthermore, our technique
does not require modification of the downstream
model, making it compatible with existing util-
ity models and allowing the usage of third-party
software.

We validate privacy preservation by training
Pedestrian Attribute Recognition (PAR) models
on obfuscated data using labels from the original
data, positing that they will be unable to learn on
filtered data since most attributes are related to
identification but are not necessary for detection
of the presence of a pedestrian. PAR accuracy was
chosen as an indication of privacy as the attributes
recognized can be considered sensitive, such as
gender, age, etc. Moreover, PAR is regarded as
a foundational computer vision block in intrusive
tasks such as person re-identification and track-
ing [10]. Figure 1 showcases the intended use of
our work.

Edge Camera

Cloud Processor

Privatized

Obfuscation 

Raw

Pedestrian Detection

Pedestrian Attribute 
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Fig. 1 Intended deployment of our obfuscation technique.
The camera footage is obfuscated to a privatized form,
which allows a certain downstream utility (e.g. pedestrian
detection) but disallows other, possibly malicious, tasks to
be performed (e.g. inferring pedestrian attributes)

We compare our technique against both
classic obfuscation methods like blurring, nois-
ing, quantizing and pixelating as well as deep-
learning-based techniques focusing on pedestrian
anonymization. Subsequently, we verify additional
wanted properties of our technique when used in
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an edge-cloud setup, such as efficiency in compar-
ison to pedestrian detection models and general-
izability across multiple object detection models
and cameras. Lastly, we investigate the effect of
model complexity on the privacy-utility tradeoff.

The main contributions of our work are as
follows:

• Our adversarial obfuscation allows pedestrian
detection with minimal accuracy degradation
while significantly decreasing the information
on pedestrian attributes in the video transmit-
ted to the cloud-based model.

• Our method provides significantly better pri-
vacy protection than classic obfuscation tech-
niques, given the same utility. The adversarial
obfuscator outperforms the deep-learning based
methods while requiring less time to execute
and memory to store.

• Our method can generalize over multiple cam-
eras from the same dataset. It is, however,
not compatible with different person detection
models other than the one it was trained for.

• The complexity of the obfuscator model can
be used to tune the privacy-accuracy tradeoff
slightly.

The outline of this paper is as follows: Section
2 describes the related works in privacy-preserving
machine learning and pedestrian detection. Sub-
sequently, we describe the architecture of our
privacy-preserving scheme and evaluation tech-
nique in Section 3 and 3.2. The experiments and
their results are described in Section 4. Finally, we
conclude our paper and look to future works in
Section 5.

2 Related works

2.1 Privacy-Preserving Machine
Learning

Apart from pedestrian detection, privacy-
preserving machine learning techniques are
available for several applications. The main
techniques involve differential privacy [11],
homomorphic encryption [12], secure multi-
party computation [13], or reliance on
information-theoretic properties [14].

As our work falls in the latter group, we will
highlight some works in this section. In the context

of video data, a common approach is to use a two-
step process, where sensitive regions (e.g. faces)
are first detected and then modified using inpaint-
ing techniques [15–17] or more basic methods such
as blurring or pixelization. The former approach’s
use of two deep neural networks (DNNs) makes
it challenging for real-time processing, while the
latter approach is vulnerable to deep learning
attacks [18]. An alternative one-step solution is
generative adversarial privacy [9]. GAP involves
training a privatizing network to degrade the data
and an adversary network that attempts to infer
the sensitive data from the degraded version. How-
ever, its usage is limited by the need to define and
label all sensitive aspects. Recently some works
have managed to circumvent these issues when
working with audio data [19], or for image classi-
fication [20]. Though, this solution has yet to be
applied to the domain of object detection on video
data.

2.2 Privacy-Preserving Pedestrian
Detection

Privacy-preserving pedestrian detection has
become an increasing concern in developing
surveillance technology. Several researchers have
explored innovative techniques to balance the
need for accurate detection while protecting indi-
vidual privacy. Yuan et al. [5] utilized differential
privacy to address privacy concerns in pedestrian
detection by adding Gaussian noise to the entire
frame. Other works utilize a two-step approach
where people are first detected and subsequently
replaced with an anonymized version [7, 8]. Chan
et al. [21] proposed a privacy-preserving approach
to crowd monitoring that did not require person
detection but required special-purpose cameras
that output low-level features. Kieu et al. [22] sug-
gested using thermal cameras to protect privacy,
but did not substantiate their claim that person
identification is difficult or impossible. Bentafat
et al. [6] provide a solution for real-time privacy-
preserving video surveillance by encrypting the
regions of faces, though they do not address any
other attributes that can be used for recogni-
tion. Lastly, Yang et al. [23] utilize homomorphic
encryption, to encrypt images while allowing the
extraction of Histogram of Oriented Gradients
features, which can then be used by an SVM
model to detect pedestrians.
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3 Architecture

3.1 Model architecture

The goal of our technique is to transform frames
of a video in a manner that enables the detec-
tion of pedestrians while simultaneously removing
any superfluous information. Critically, we aim
to achieve this without modifying the pedestrian
detection model, making it compatible with third-
party models, and without relying on a dataset of
sensitive attributes. To this end, we have applied
adversarial training to obtain a filtered version
of our input frames, which is achieved through
the use of an autoencoder, referred to as the
“obfuscator”, denoted as O. This autoencoder
transforms the frame in a manner that permits
pedestrian detection while simultaneously hinder-
ing the reconstruction of the original image using
a second autoencoder, referred to as the “deob-
fuscator” and denoted as D. By training both
autoencoders in tandem, we posit that the obfus-
cator learns a transformation that solely retains
the required features for pedestrian detection.
Figure 2 showcases the architecture of our pro-
posed approach, which we term the adversarial
obfuscator.

The deobfuscator reconstructs the original
image from its obfuscated version, essentially act-
ing as an adaptable mutual information estimator
between the two. We experimented with different
image similarity metrics, including SSIM [24],
LPIPS [25], DISTS [26], VIF [27], and Mean
Squared Error (MSE), to train the deobfuscator.
However, we observed minimal differences in the
results and thus chose the simplest metric. There-
fore, the deobfuscator is trained by minimizing
the pixel-wise MSE between the original image X
and the deobfuscated image. The loss function,
denoted by Lrec, is defined as follows:

Lrec =
1

n

n∑
i=1

(Xi −D(O(Xi)))
2.

The obfuscator is trained by minimizing the
loss of the object detection model Lobj and maxi-
mizing the reconstruction loss of the deobfuscator.
The loss function is defined as follows, with αobj

and αrec as weight factors:

LO = αobjLobj − αrecLrec.

Original image

Deobfuscated image

Obfuscated image

Person detections

Trained object 

detection model
Deobfuscator

Obfuscator

Fig. 2 The architecture of the adversarial obfuscator. The
obfuscator transforms the input image to allow pedestrian
detection but disallow an adversary (the deobfuscator) to
reconstruct the original image using its obfuscated image.

Our training procedure thus requires access to
the weights of the object detection model for
performing gradient descent, and to the loss func-
tion on which this model was trained to cal-
culate LO. These requirements are an inherent
restriction of the GAP framework. The obfusca-
tor and deobfuscator are constructed based on the
MobileNet [28] architecture, which was designed
for devices with limited computational resources
making the obfuscation process more suited for
edge devices and inference in a TEE.

3.2 Evaluation

The evaluation of our technique is twofold. We
want to evaluate the intended task (utility), i.e.
the accuracy of detecting pedestrians on obfus-
cated images. Meanwhile, the evaluation of the
privacy protection has to be considered. As both
evaluations require labelled data, we created our
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own dataset from publicly available CCTV-like
videos and created pseudo-labels for the target
task and the sensitive labels using pre-trained
pedestrian detection and attribute recognition
models.

3.2.1 Utility

The utility is defined by the performance of the
intended task, in this case, pedestrian detection.
We trained the obfuscator to be compatible with a
pre-trained object detection model. Evaluation of
the utility can thus be achieved using the detection
accuracy of this pre-trained neural network on the
obfuscated frames. We measured the performance
of this network by calculating the Average Pre-
cision (AP) for the pedestrian class. We did this
using the implementation of Cartucho et al. [29],
which uses the PASCAL VOC criterium.

3.2.2 Privacy

Obtaining a metric to evaluate the performance
of privacy protection is challenging due to the
absence of publicly available datasets containing
ground truth labels of privacy-sensitive attributes,
as well as a lack of a precise definition of what
constitutes such attributes. To address this issue,
we assess the effectiveness of privacy protection
by evaluating the ability of pedestrian attribute
recognition (PAR) models to learn from datasets
with obfuscated images. PAR models are designed
to predict various attributes of individuals; e.g.
age, gender, clothing, etc.; and are often used as
a foundation for privacy-invading tasks, including
person re-identification [10].

The performance of the PAR models is mea-
sured using two groups of metrics: instance-
level and attribute-level. Instance-level metrics
are used to assess the model’s ability to clas-
sify the attributes of individual persons in
the dataset. Attribute-level metrics evaluate the
model’s effectiveness in classifying the attributes
themselves over the entire dataset. The instance-
level attributes include Accuracy (Acc), Precision
(Prec), Recall (Rec) and F1. Attribute-level con-
sists of the mean Accuracy (mA), which can be
calculated as follows, with M being the number of

attributes:

mA =
1

M

M∑
j=1

1

2
(

TP j

TP j + FN j
+

TN j

TN j + FP j
).

It is crucial to consider the ideal values cor-
responding to the metrics used to evaluate the
filtering technique, as they may not be immedi-
ately intuitive. Although lower values may appear
to indicate better filtering, it is important to note
that the labels for most sensitive attributes in
PAR are heavily unbalanced. Hence, an adversary
with prior knowledge could achieve better-than-
random accuracy by consistently guessing the
majority class. Precision and recall metrics mea-
sure the fraction of correct positive predictions
and the number of positive instances retrieved,
respectively. However, in datasets with a large pro-
portion of negative samples, these metrics may not
have enough samples to calculate accurately. The
mean accuracy metric is a better measure in this
case, as it takes the average between the positive
and negative recall, requiring both positive and
negative samples to be well classified. Therefore,
we focus on the mA metric in this paper, where a
value of 0.5 is considered optimal for filtered data.

4 Experiments

We utilized three datasets for experimentation:
the Avenues dataset [30], ShanghaiTech Cam-
pus [31] dataset and WILDTRACK [32] dataset.
These datasets comprise CCTV camera footage
featuring a high volume of pedestrian activity,
where pedestrians are close enough to the cam-
era for their attributes to be recognized. For the
Avenues dataset,which contains 16 training videos
and 21 testing videos, we used 8 videos of the test
set as a validation set. As for the ShanghaiTech
and WILDTRACK datasets, we divided the data
of every camera into train/validation/test sets
with a ratio of 80/10/10, ensuring videos were
not split over different sets. The WILDTRACK
dataset contains data of 7 cameras, each with over
30 minutes each of footage. Whereas the Shang-
haiTech Campus dataset consists of footage of 11
cameras, of which we selected the 5 cameras that
have the most footage available (i.e. more than
20 videos), as others had too little to train and
evaluate our technique. Given that these datasets
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were not originally intended for pedestrian detec-
tion, they do not possess any ground-truth labels1.
As a solution, we employed a pre-trained Faster
R-CNN [33] model to obtain pseudo-labels. We
retained only those labels with a confidence score
of at least 90% to mitigate the presence of overly
noisy labels. We resized the videos to 200 × 320
pixels to decrease the computational load and
extracted frames at 5 fps.

As for the training details: we alternated
between training our obfuscator and deobfuscator
for a total of 30 epochs, starting with a learning
rate of 1 × 10−3 and decreasing it by a factor of
10 at the halfway point. The AdamW [34] opti-
mizer was used with a weight decay of 1 × 10−6

and PyTorch’s automatic mixed precision train-
ing. We used 1 as value for both αrec and αobj .
PyTorch’s pre-trained Faster R-CNN model was
used as our object detection model to train the
obfuscator. After training, the deobfuscator is dis-
carded, and the obfuscator is used to filter private
information in the camera frames. Some exam-
ple images of obfuscated frames from the three
datasets can be seen in Figure 3. Variations in
the visual appearance of obfuscations may occur
due to the stochastic initialization of both the
obfuscator and deobfuscator models.

4.1 Pedestrian detection ability

We use the AP metric, to assess the opt-in effec-
tiveness of our framework. The results are shown
in Table 1. It is important to note that, since
our ground-truth labels were acquired through an
object detection model, the reported accuracies
should be interpreted with caution. Any persons
not detected in the original data may be detected
in the obfuscated data, but will still be considered
inaccurate predictions. The AP values for person
detections range mostly around 90%, indicating
that most pedestrians are detected the same as
if the images were not obfuscated. The WILD-
TRACK cameras exhibit the highest degree of
variability in accuracy across cameras. This can
be attributed to the fact that this is the dataset
with the highest density of pedestrians visible.

1The WILDTRACK dataset does contain ground-truth val-
ues, however, due to the limited amount available and the fact
that only a particular section of pedestrians was annotated, we
chose not to use these.

Fig. 3 Original (left) and obfuscated (right) frames of
the WILDTRACK, ShanghaiTech Campus and Avenues
datasets. The obfuscation appearance can vary across
datasets due to the stochastic initialization of the obfusca-
tor and deobfuscator models.

Table 1 Relative pedestrian detection accuracy on
obfuscated frames. The obfuscation brings forth a small
reduction in pedestrian detection accuracy.

Dataset Camera Person AP

Avenues 89.62
ShanghaiTech Campus 1 89.26

4 83.86
5 93.28
6 91.70
8 87.72

WILDTRACK 1 83.35
2 90.45
3 88.36
4 71.32
5 83.63
6 71.21
7 80.97

4.2 Assessing privacy through
pedestrian attribute recognition

To test PAR performance on obfuscated data,
we employ two baseline models, the model of
Jia et al. [35], and the Visual Textual Base-
line (VTB) [36]. We trained these models on the
UPAR [37] dataset and used them on cropped-out
persons from our pedestrian detection datasets to
obtain ground truth (pseudo-)labels. These mod-
els are trained to detect 40 binary attributes, such

6



as various age indicators, accessories, clothing etc.
We then created a new dataset by replacing the
person crops with obfuscated versions, simulat-
ing an attack by an adversary that has access to
the obfuscation model. Our hypothesis is that if a
PAR model is unable to train on the obfuscated
dataset, it no longer contains the data necessary
for this task, suggesting that the obfuscation suc-
cessfully removes sensitive data, such as those
necessary for attribute recognition. We removed
the most unbalanced attributes (i.e. when more
than 99% of the samples are entirely in one cat-
egory), and crops smaller than 20 × 20 pixels,
as these prove to be too small to detect any
attributes. The results of pedestrian attribute
recognition on the original, obfuscated and recon-
structed frame for both PAR models are shown in
Table 2.

Table 2 Comparison of PAR mA using common PAR
models trained on original, obfuscated and reconstructed
data. The capacity to learn pedestrian attributes on
obfuscated data is significantly reduced.

Jia et al. [35] VTB [36]
Orig. Obf. Rec. Orig. Obf. Rec.

Dataset

Avenues 76.28 66.51 60.98 80.73 66.40 55.75
ShanghaiTech Campus 1 76.85 57.17 55.96 80.38 56.31 60.98
ShanghaiTech Campus 4 65.83 53.23 52.34 65.06 50.17 55.96
ShanghaiTech Campus 5 78.88 60.48 57.77 78.47 62.03 52.34
ShanghaiTech Campus 6 71.49 59.62 57.49 69.97 57.74 57.77
ShanghaiTech Campus 8 71.19 58.20 56.57 79.00 52.47 57.49
WILDTRACK 1 74.06 56.19 54.34 72.21 53.09 56.57
WILDTRACK 2 79.85 60.59 56.96 82.56 53.50 54.34
WILDTRACK 3 78.57 58.04 57.29 80.55 56.02 56.96
WILDTRACK 4 74.21 54.29 54.67 70.67 51.40 57.29
WILDTRACK 5 75.53 57.58 56.00 76.41 55.79 54.67
WILDTRACK 6 73.78 55.57 54.32 74.93 53.20 56.00
WILDTRACK 7 72.73 57.02 55.75 73.04 53.76 54.32

The results show that there is a significant
performance degradation in attribute recognition
on obfuscated frames for all datasets, with the
mA almost reaching the level of random guess-
ing. This indicates that the obfuscation process
removes relevant information for PAR. For the
ShanghaiTech and WILDTRACK datasets, the
performance drops significantly to around 53 ∼
60% mA for the model of Jia et al. and 50 ∼ 56%
for VTB, indicating that the model can learn very
little from obfuscated frames. The PAR mA on
the Avenues dataset is still 66%. Although this
is a drop of more than 10%, it is still far from
the desired 50%. However, it should be noted
that the data in the Avenues dataset is the most
unbalanced in terms of attributes, featuring many

attributes slightly outside the cutoff for unbal-
ance, which could be one reason why the PAR
performance is not close to random.

Detecting pedestrian attributes remains chal-
lenging even in the reconstructed frames obtained
through deobfuscation. This difficulty stems from
the absence of essential information in the input
data for the deobfuscator, i.e., the obfuscated
frame, due to the data processing inequality. As
the deobfuscator cannot re-introduce information,
this limitation results in similar or worse pedes-
trian attribute recognition (PAR). It is important
to note that the reconstructed data, despite its
origin, does not offer improved suitability for
our specific objective, as it significantly impedes
effective pedestrian detection.

4.3 Comparison with other
obfuscation techniques

When it comes to protecting sensitive information
in images, a variety of techniques can be employed
to obfuscate the information and make it harder to
discern. To ensure a comprehensive and unbiased
evaluation, we conducted two sets of experiments.
In the first set, we compared our adversarial obfus-
cator with traditional methods such as blurring,
adding noise, quantization, and pixelation. Simi-
lar to our approach, these techniques were applied
to the entire frame without prior knowledge of
the location of sensitive information. However, a
key limitation of these traditional methods is that
while they may effectively reduce the detection
of privacy-sensitive elements, they also compro-
mise utility. To facilitate a meaningful compari-
son between our technique and these obfuscation
methods, we adjusted their parameters to achieve
a similar level of utility loss as ours, specifi-
cally aiming for a relative pedestrian accuracy of
approximately 90%. This entailed using a kernel
size of [9, 9] for Gaussian blurring, adding 7.5%
noise, quantizing to 8 values, and reducing the
image size by one-third for pixelation.

In the second set of experiments, we eval-
uate our approach against more sophisticated,
deep learning-based methods. These methods
follow a two-step procedure where individuals
are first identified and then anonymized. While
these approaches generally offer a better bal-
ance between privacy and utility compared to
the previous category, they are less adaptable in
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terms of specifying which privacy-sensitive aspects
to safeguard. Additionally, they are more prone
to instances where individuals are missed dur-
ing detection, resulting in their exclusion from
anonymization. Moreover, these methods demand
substantially higher computational resources, ren-
dering them less suitable for edge deployment.
Within this category, we compare our approach
with a two-step anonymizer utilizing Mask R-
CNN [38] for person segmentation, followed by
either blurring or complete removal of individu-
als through mask replacement. Furthermore, we
assess our approach against the current state-
of-the-art in realistic whole-body anonymization,
represented by DeepPrivacy2 [7].

The results from both experiments conducted
on camera 1 of the ShanghaiTech Campus dataset
are presented in Table 3. The upper section dis-
plays the outcomes of the first experiment set,
while those below the dashed line represent the
second set. Figure 4 provides a visual comparison
of all techniques.

Concerning the classic obfuscation methods,
our approach demonstrates the most balanced
privacy-utility tradeoff. This is evident in the
significantly lower PAR mA compared to other
techniques, while maintaining a similar person AP.

Results from the second set of experiments
exhibit greater variability. Notably, in the case
of Mask R-CNN + blur/mask-out, there is a
significant reduction in utility. However, PAR per-
formance remains relatively stable. This may be
due to two factors: first, not all individuals are
detected and, therefore, not all are anonymized.
Second, even after anonymization, the contour of
individuals remains discernible, potentially pro-
viding the PAR model with valuable cues. For
Mask R-CNN, we found that it is mainly the lat-
ter case, as almost all persons in the ground truth
are detected. DeepPrivacy2 achieves a comparable
privacy-utility tradeoff compared to our tech-
nique. However, the decline in PAR performance
is less pronounced than in our approach. One
cause for this is that, for all two-step techniques,
the anonymization is only applied to those per-
sons detected. We found that for DeepPrivacy2,
over one-third of all persons in the test dataset
were not detected, leading to significant privacy
leakage. Note that this discrepancy between the
Mask R-CNN techniques and DeepPrivacy2, even
though DeepPrivacy2 also relies on Mask R-CNN,

Table 3 Comparison with other privacy-preserving
techniques

Technique Person AP ↑ PAR mA ↓

Original image 100 76.85
Blurring 87.51 73.16
Noise 87.65 74.33
Quantization 87.60 75.34
Pixelisation 91.17 72.60
DeepPrivacy2 [7] 93.60 63.60
Mask R-CNN + blur 56.25 69.65
Mask R-CNN + mask-out 27.06 67.72
Adversarial obfuscation (ours) 89.26 57.17

Table 4 Execution time on Jetson AGX Orin and
number of parameters of deep learning-based obfuscation
techniques.

Method Time (ms) Params (M)

Adversarial obfuscator (ours) 5.50 ± 1.25 0.04
DeepPrivacy2 613.62 ± 212.82 234.43
Mask R-CNN + mask-out 165.78 ± 19.57 44.18
Mask R-CNN + blur 170.02 ± 22.54 44.18

lies in part to the evaluation. We use data that
was labelled using a Faster R-CNN model with the
same backbone as the Mask R-CNN (ResNet50),
whereas DeepPrivacy2 uses Mask R-CNN with a
ResNeXt-101 backbone.

Finally, it’s worth noting that these two-step
techniques demand substantially more computa-
tional resources compared to ours, which might
not always be readily available when working with
edge devices. To support this claim, we included
the number of parameters of all models (which
correspond to memory and storage requirements)
and the execution time on the Jetson Orin AGX to
anonymize one frame. The findings are presented
in Table 4. It’s important to highlight that for
these techniques, the computation needed depends
on the number of pedestrians detected, as the
anonymization phase is only triggered for detec-
tions. The results show our technique significantly
outperforms the alternatives, concerning both exe-
cution time as well as memory required to store
the model.

4.4 Cross-camera generalization

The present study describes a filtering method
specifically tailored to edge device cameras. Given
the abundance of such cameras, it is important
to assess the ability of the proposed filter to gen-
eralize across different cameras, thereby avoiding
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Fig. 4 Obfuscation with other obfuscation techniques.
From left to right, top to bottom: Original image, blurred,
noised, quantized, pixelized, obfuscated (ours), DeepPri-
vacy2, Mask-out, Mask + blur

the need for training specific models for each cam-
era. To evaluate cross-camera generalization, two
datasets were employed. The first, the Shang-
haiTech Campus dataset, consists of footage from
13 cameras placed at various heights and illu-
minance levels in different locations. To test the
model’s performance, data from cameras 1-8 were
used for training, while data from cameras 9-13
were used for testing. The WILDTRACK dataset
offered a different perspective on cross-camera
generalization, in which all cameras were situated
in different locations but had a view of the same
area, resulting in a considerable amount of shared
information.

The results of this experiment can be seen in
Table 5. We observe generalization on the Shang-
haiTech Campus dataset, as the person AP on

new cameras is similar to the results in Table 1,
where we evaluated on the same cameras. For the
WILDTRACK dataset, the results are less conclu-
sive. Camera 7 shows good performance, though
for camera 6, there is a more significant decrease
in accuracy. This could be attributed to the fact
that this camera is directed more towards build-
ings and less towards the square than the other
cameras. These results indicate that to generalize
to other cameras, the obfuscator should be trained
on a well-diversified set of cameras.

Table 5 Cross-Camera pedestrian detection accuracy.
Generalisation is acquired for the ShanghaiTech Campus
but not for the WILDTRACK dataset.

Dataset Train Cameras Test Camera Person AP

ShanghaiTech Campus 1-8 9 87.23
10 83.43
11 92.53
12 82.07
13 87.56

WILDTRACK 1-5 6 60.27
7 82.04

The results for privacy protection can be seen
in Table 6. As the data of the separate Shang-
haiTech Campus cameras are too small to both
train and test a PAR model, we decided to aggre-
gate all test cameras in one set. The results are
similar to those for the single-camera setting, even
for the WILDTRACK dataset. We can conclude
that our obfuscation method can generalize across
cameras, sacrificing slightly in utility but not in
privacy protection.

Table 6 Cross-Camera PAR mean accuracy. Even on
different cameras, obfuscation removes attribute
information.

Jia et al. [35] VTB [36]
Orig. Obf. Orig. Obf.

Dataset

ShanghaiTech Campus 9-13 74.33 57.18 78.23 55.64
WILDTRACK 6 70.76 57.21 73.83 55.16
WILDTRACK 7 70.66 55.70 74.93 54.03

4.5 Suitability for edge processing

Our obfuscation technique is designed to be used
on edge devices, while pedestrian detection is
performed on the cloud. Therefore, we would
expect our obfuscation to be considerably more
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lightweight than the pedestrian detection model
used. Otherwise, one might argue that it would
be more privacy-safe to run detection on the edge
and send through the results. Note, however, that
execution on the cloud brings considerable ben-
efits, such as better maintainability and cheaper
compute.

To evaluate the suitability of our technique for
edge devices, two metrics of DNNs are examined.
The first metric is the number of Multiply Accu-
mulates (MACs), which refers to the number of
arithmetic operations that involve multiplication
and addition. This metric is a reliable indicator
of the computation required to process the data.
The second metric is the number of model param-
eters, which indicates the memory cost of storing
the model. The latter metric is particularly crit-
ical when considering the implementation of the
obfuscator in a TEE. Smaller values for both met-
rics indicate that a model is better suited for edge
deployment. In addition to these metrics, we mea-
sure the time to process a single frame on a Jetson
Orin AGX device to indicate compatibility on an
edge device.

Table 7 shows an overview of these metrics.
Values are calculated by the ptflops [39] package.
The results show that our proposed obfuscation
model is considerably smaller than object detec-
tion models. Most notably, our model uses almost
100 times fewer parameters than the Yolov8 nano
model, making it highly suitable for deployment
on edge devices.We also require significantly less
compute, and can execute a single frame in around
5.5ms.

Table 7 Comparions of model complexity with common
object detection models. Our is far smaller than the
compared models, especially concerning the number of
parameters.

Model MACS (G) Params (M) mAP COCO Time (ms)

Faster R-CNN v1
(Resnet50)

199.79 41.53 37.0 130.48 ± 1.63

Faster R-CNN
(MobileNetV3 Large)

8.26 19.33 32.8 49.40 ± 0.65

Faster R-CNN
(MobileNetV3 Large 320)

1.16 19.33 22.8 43.71 ± 2.71

FCOS (Resnet50) 205.43 43.71 39.2 113.33 ± 8.07
RetinaNet (ResNet50) 242.66 33.79 36.4 126.04 ± 1.81
SSD (VVG16) 34.92 35.60 25.1 57.03 ± 2.07
YOLOv8n 1.10 3.15 37.3 20.41 ± 2.26
YOLOv8s 11.17 3.70 44.9 18.92 ± 1.83
Adversarial Obfuscator (Ours) 0.35 0.04 - 5.50 ± 1.25

4.6 Object detection model
independence

We train our obfuscator by including the object
detection model in the training loop. Nonethe-
less, the goal is for it to function independently of
the detection model. When using a cloud-hosted
detection service, the architecture of the object
detection model may not be publicly available.

To test the obfuscator’s independence, we
evaluate its performance on various object detec-
tion models with different backbone architectures,
after training it on a Faster R-CNN model with
a ResNet50 backbone. Table 8 shows the results
of this experiment. We see that for most dif-
ferent object detection models, the performance
decreases considerably. Only those models with
the same backbone and comparable head architec-
tures show some level of compatibility. However,
the extent of this compatibility is hard to deter-
mine, and it can only be concluded that the
obfuscator’s generalizability across object detec-
tion models is limited.

4.7 Model complexity and the
accuracy-privacy tradeoff

In this section, we investigate the feasibility
of manipulating the privacy-utility tradeoff by
adjusting the complexity of the obfuscator model.
Specifically, reducing the model complexity may
result in a decreased ability to preserve relevant
features, leading to a reduction in person detection
accuracy. However, it may also increase privacy
protection by decreasing the number of sensi-
tive features that can be retained. The impact of
reducing model complexity on utility is depicted in
Figure 5, which demonstrates that utility remains
relatively stable at around 90% until the mod-
els become too small, at which point it declines
rapidly. Conversely, Figure 6 demonstrates that
reducing the model size has an inverse effect
on privacy, as the mA on obfuscated frames
remains stable until a certain point, after which it
decreases further (thus enhancing privacy).

The aforementioned figures suggest that
adjusting the complexity of the obfuscator model
can lead to a tradeoff between privacy and util-
ity. However, it is worth noting that the reduction
in person detection accuracy ability is consider-
ably less pronounced than the decrease in utility.
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Table 8 Cross-model pedestrian detection accuracy on Faster-RCNN guided images. The obfuscator’s generalizability
across object detection models is limited.
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Fig. 5 Influence of model complexity (MACS and param-
eters) on utility. Smaller models lead to more loss in utility.

Consequently, using model complexity to tune the
tradeoff may not be ideal.

5 Conclusion and future work

This paper presented a novel framework for
privacy-preserving visual analysis in an edge-cloud
setup, with pedestrian detection as the example
task. The proposed method uses adversarial train-
ing to achieve obfuscation of frames while retain-
ing utility without modifying the utility network
or requiring labelled sensitive data. Our tech-
nique results in near-random PAR performance
while maintaining a pedestrian detection accuracy
of 90%, outperforming classic and deep learning
based obfuscation techniques. The obfuscator is
smaller than object detection models and can pro-
tect across multiple cameras, making it suited for
edge deployment. However, our approach requires
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Fig. 6 Influence of model complexity (MACS and param-
eters) on privacy (the accuracy of a PAR model trained on
obfuscated data). Smaller models lead to worse PAR and,
thus, better privacy protection.

white-box access to a trained object detection
model and its loss function, limiting its appli-
cability in certain situations. In addition, the
obfuscator is reliant on using the object detection
model it was trained with.

Future work should focus on developing pri-
vacy metrics that do not require ground truth
labels and investigating methods to make our
technique more object detection model indepen-
dent. We should also explore the compatibility of
our approach in trusted execution environments
to ensure its effective deployment on edge devices.
Finally, it would prove valuable to research this
technique in the setting of smart cars involving
non-stationary cameras to understand its perfor-
mance in more challenging situations.
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