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Abstract: X-ray dual-phase grating interferometry provides quantitative micro-structural infor-
mation beyond the optical resolution through its tunable correlation length. Ensuring optimal
performance of the set-up requires accurate correlation length estimation and precise alignment
of the gratings. This paper presents an automated procedure for determining the complete
geometrical parameters of the interferometer set-up with a high degree of precision. The
algorithm’s effectiveness is then evaluated through a series of experimental tests, illustrating its
accuracy and robustness.
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1. Introduction

X-ray Talbot(-Lau) grating interferometry (XT-GI) has attracted a lot of research interest over
the past decades and has proven its huge potential in medical imaging and material science
[1–10]. XT-GI demonstrates the capability to simultaneously provide three complementary
signals: conventional absorption, differential phase contrast, and dark-field signal. In contrast to
traditional X-ray radiography, which primarily relies on absorption contrast, the phase signal is
highly sensitive to electron density fluctuations, providing superior contrast for low-Z materials,
while the dark-field signal provides access to unresolvable micro-structural information. The
principle of this technique is based on the Talbot effect [11], in which a phase grating is used to
split the incident beam and produce the reference patterns at the fractional Talbot distances, and
an absorption grating is used to resolve the generated patterns. By quantitatively analyzing how
the reference pattern is distorted by a sample, the three complementary signals can subsequently
be retrieved.

However, the absorption grating behind the sample blocks almost half of the information-
carrying photons, significantly reducing the dose efficiency. To resolve this challenge, Miao et al.
and Kagias et al. proposed the dual-phase grating interferometry (DPGI) [12,13]. A schematic
of a generic implementation of the DPGI is depicted in Fig. 1. Two identical phase gratings,
G1 and G2, are placed between the X-ray source and the detector, with Rg ≪ R1 ≈ R2. Due
to the cone beam geometry, the slight difference in the magnification factors between the two
gratings generates resolvable Moiré fringes whose period is much larger than the pitch sizes
of the gratings, and the derivations of the fringe formation mechanism will be illustrated in
section 2. Therefore, the absorption grating is not required in DPGI. Another main advantage
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DPGI provides is that the correlation length can be easily adjusted by the inter-grating distance
Rg, thereby not influencing the sample’s magnification. The correlation length is a parameter
to characterize the beam separation [14], which is proportional to the spatial locations of two
gratings, given as [15]:

ξ ∝ Rg

R1 + R2
. (1)

Since the relation between the correlation length and the dark-field signal reveals the quantitative
small-angle scattering (SAS) information [16,17], the configuration of DPGI is promising to
implement this technique.

Fig. 1. Schematic of dual-phase grating interferometry. X-rays are generated by the
x-ray tube, propagate through the two gratings, and are subsequently captured by the
detector. 𝑅1, 𝑅2, 𝑅g represent source-to-G1, G1-to-detector, and inter-grating distances,
respectively. Moreover, the rotated angles for two gratings are denoted as 𝛼1 and 𝛼2.
The generated Moiré pattern can be directly resolved by the detector, and the angle and
period of the fringe are represented as 𝛼m and 𝑝m, respectively.

The recorded interference pattern consists of a fundamental frequency and its harmonics.85

2.2. Geometrical relationships between Moiré fringe and gratings86

According to Eq. (2) and (3), the Moiré patterns in DPGI originate from the basic patterns formed87

by individual gratings. Moreover, based on the derivations given by Gabrielyan et al. [20], the88

angle and period of the Moiré pattern are formulated as functions of the corresponding angles89

and periods of two basic patterns. Therefore, the angle 𝛼m of the Moiré pattern formed in DPGI90

(see Fig. 1) can be expressed as:91

𝛼m(𝛼1, 𝛼2, 𝑅g, 𝑅1) = arcsin
(𝑅1 + 𝑅g) sin𝛼2 − 𝑅1 sin𝛼1√︃

(𝑅1 + 𝑅g)2 + 𝑅2
1 − 2𝑅1(𝑅1 + 𝑅g) cos (𝛼2 − 𝛼1)

, (4)

where 𝛼1 and 𝛼2 represent the rotated angles of the gratings, as indicated in Fig. 1. Furthermore,92

the period 𝑝m of the Moiré pattern for the first diffraction order (𝑙 = 1) is given as:93

𝑝m(𝛼1, 𝛼2, 𝑅g, 𝑅1, 𝑅2, 𝑝g) =
(𝑅1 + 𝑅2)𝑝g√︃

(𝑅1 + 𝑅g)2 + 𝑅2
1 − 2𝑅1(𝑅1 + 𝑅g) cos (𝛼2 − 𝛼1)

. (5)

The derivations for Eq. (4) and (5) are illustrated in Appendix.94

2.3. Geometrical parameters determination95

The principle of the algorithm for determining the geometrical parameters is based on the96

relationships as provided by Eq. (4) and (5), elucidating how the Moiré patterns change with the97

geometrical configurations. Within the context of our experimental set-up, the adjustment of the98

geometrical configuration is achieved through the rotation of the two gratings in the xy-plane99

Fig. 1. Schematic of dual-phase grating interferometry. X-rays are generated by the x-ray
tube, propagate through the two gratings, and are subsequently captured by the detector.
R1, R2, Rg represent source-to-G1, G1-to-detector, and inter-grating distances, respectively.
Moreover, the rotated angles for two gratings are denoted as α1 and α2. The generated Moiré
pattern can be directly resolved by the detector, and the angle and period of the fringe are
represented as αm and pm, respectively.

To obtain reliable results, two challenges need to be resolved. Firstly, to precisely estimate
the correlation length, the distances R1, R2, and Rg, as shown in Fig. 1, should be measured
with high accuracy. Especially, since the inter-grating distance Rg is normally small between
1 and 10 mm, the desired measurement error for it should be within tens of micrometers to
avoid noticeable deviations when estimating the correlation length. However, achieving such
precision is challenging or even impossible when employing a conventional ruler-based approach
for distance measurement. This difficulty is aggravated by the fixed placement of the gratings
within metallic frames, rendering the accurate positions unobservable from view. Secondly, the
gratings need to be aligned to ensure optimal performance. This means that the lamellas of the
two gratings remain parallel and are oriented vertically with respect to the stepping direction
(x-axis), with α1 = α2 = 0 (see Fig. 1). One intuitive way for aligning the two gratings involves
the rotation of one grating until the Moiré pattern appears upright (αm ≈ 0). However, the angle
of the other grating remains undetermined, rendering the angle of the Moiré pattern unsuitable as
an indicator of alignment. Furthermore, the orientation determination of the pattern rests upon
human assessment, introducing subjectivity and potential inaccuracies. Moreover, aligning under
supervision is a laborious and time-consuming task.

In this work, based on the properties of the Moiré patterns, we develop an automated workflow
encompassing image acquisition and subsequent data analysis, to ensure the precise determination
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of all relevant geometrical parameters: three distances (R1, R2, Rg) and two angles (α1, α2).
Furthermore, the accuracy and robustness of the algorithm are validated by the experimental
results.

2. Method

2.1. Moiré patterns formation mechanism in DPGI

The Moiré patterns in DPGI are formed by a cross-modulation between the individual patterns
generated by the two gratings [18,19]. First, we consider the situation when two identical gratings
are aligned. The intensity pattern generated solely by G1 is represented by exp

(︂
i2πlx
M1pg

)︂
, where

l indexes the diffraction order and pg is the pitch size of the grating. The magnification factor
for G1 is given as: M1 =

R1+R2
R1

. Similarly, in the absence of G1, the intensity pattern for a

diffraction order generated by G2 is represented by exp
(︂

i2πrx
M2pg

)︂
, with r the diffraction order and the

magnification factor M2 =
R1+R2
R1+Rg

. Then, the relative intensity oscillation of the cross-modulation
can be represented as [19]:

Ic(x) = exp
[︃
i2π

(︃
l

M1pg
+

r
M2pg

)︃
x
]︃

. (2)

Only when r = −l, the resultant Moiré patterns, characterized by sufficiently low frequencies,
can be directly resolved. Meanwhile, other fringes that cannot be resolved merely add to
the background signal. Consequently, the relative intensity oscillation of the Moiré pattern
corresponding to the diffraction order l is expressed as follows [19]:

Im(x) = exp
[︃−i2πl

pg

(︃ Rg

R1 + R2

)︃
x
]︃

. (3)

The recorded interference pattern consists of a fundamental frequency and its harmonics.

2.2. Geometrical relationships between Moiré fringe and gratings

According to Eqs. (2) and (3), the Moiré patterns in DPGI originate from the basic patterns
formed by individual gratings. Moreover, based on the derivations given by Gabrielyan et al.
[20], the angle and period of the Moiré pattern are formulated as functions of the corresponding
angles and periods of two basic patterns. Therefore, the angle αm of the Moiré pattern formed in
DPGI (see Fig. 1) can be expressed as:

αm(α1,α2, Rg, R1) = arcsin
(R1 + Rg) sinα2 − R1 sinα1√︂

(R1 + Rg)2 + R2
1 − 2R1(R1 + Rg) cos (α2 − α1)

, (4)

where α1 and α2 represent the rotated angles of the gratings, as indicated in Fig. 1. Furthermore,
the period pm of the Moiré pattern for the first diffraction order (l = 1) is given as:

pm(α1,α2, Rg, R1, R2, pg) =
(R1 + R2)pg√︂

(R1 + Rg)2 + R2
1 − 2R1(R1 + Rg) cos (α2 − α1)

. (5)

The derivations for Eqs. (4) and (5) are illustrated in Appendix.

2.3. Geometrical parameters determination

The principle of the algorithm for determining the geometrical parameters is based on the
relationships as provided by Eqs. (4) and (5), elucidating how the Moiré patterns change with the
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geometrical configurations. Within the context of our experimental set-up, the adjustment of the
geometrical configuration is achieved through the rotation of the two gratings in the xy-plane
and the controlled movement of G2 along the z-axis to fine-tune the inter-grating distance. The
angular deviations are denoted as ∆α1 and ∆α2, representing the relative rotated angles of the
two gratings. Additionally, the relative displacement of G2 is represented by the parameter ∆d.
All these relative movements are precisely controlled by the motors.

To determine the initial geometrical parameters (α1, α2, Rg, R1, R2), a series of adjustments are
made to the geometrical configuration. For each configuration indexed as n, one Moiré pattern is
recorded, and the corresponding angle α̂n

m and period for the first diffraction order p̂n
m are extracted

from the images. The quantities denoted by hats represent the results obtained from measurements.
Utilizing Eqs. (4) and (5), the expected angle and period for each configuration are mathematically
modelled as αn

m(α1+∆α
n
1 ,α2+∆α

n
2 , Rg+∆dn, R1) and pn

m(α1+∆α
n
1 ,α2+∆α

n
2 , Rg+∆dn, R1, R2, pg),

respectively. Firstly, four initial geometrical parameters (α1, α2, Rg, R1) are retrieved by
minimizing the sum of squares of the difference between the measured and expected Moiré angle,
formulated as:

(α1,α2, Rg, R1) = arg min
N∑︂

n=1

[︁
α̂n

m − αn
m(α1 + ∆α

n
1 ,α2 + ∆α

n
2 , Rg + ∆dn, R1)

]︁2 . (6)

Subsequently, combining the extracted parameters from Eq. (6) and the knowledge of the
grating pitch size pg, the determination of R2 is realised by minimizing the summation of the
squared residuals of Moiré periods for the first diffraction order. The optimization process is
formulated as:

R2 = arg min
N∑︂

n=1

[︁
p̂n

m − pn
m(α1 + ∆α

n
1 ,α2 + ∆α

n
2 , Rg + ∆dn, R1, R2, pg)

]︁2 . (7)

2.4. Extraction of angle and period information from Moiré fringes

To implement the optimization processes outlined in Eqs. (6) and (7), an image processing
algorithm is developed to automatically extract the angle α̂n

m and the period p̂n
m from the recorded

Fig. 2. A normalized image is shown in (a), where evident artefacts resulting from
geometric distortion are observable at the image’s boundaries. To mitigate the influences
of the geometrical distortion and prepare for a two-dimensional Fourier transform, the
normalized image is masked by a circular window, as shown in (b).

frequency for the harmonic 𝑘 is related to the Fourier distance between the harmonic’s position144

and the origin, denoted as 𝑓𝑘 . The Fourier space is discretized with intervals of 1
𝑁d

, where the145

unit is periods per pixel. Considering that the detector dimensions are equal in both the x and y146

axis, the number of pixels for each dimension is represented as 𝑁d. According to the located147

positions for all harmonics, the period of the Moiré pattern for the first diffraction order can be148

estimated as:149

𝑝m = 𝑝d ·
∑𝐾
𝑘=1

𝑘

𝑓𝑘

𝐾
, (8)

where 𝑝d represents the pixel size. Since the negative harmonics contain the same information150

as positive ones, it is adequate to use only positive harmonics (𝑘 > 0) to determine the first-151

diffraction-order period. To ensure accurate results empirically, a minimum of five identified152

positions (𝐾 ≥ 2) is required for the retrieval of angles and periods. Moreover, the average153

distance of identified positions (black crosses in Fig. 3 (d)) from the fitted line should be lower154

than 1
𝑁d

. Failure to satisfy these two criteria results in the exclusion of the corresponding Moiré155

pattern from subsequent optimization procedures.156

3. Experiment and results157

3.1. Experimental settings158

X-rays were generated by a transmission-type microfocus X-ray tube (FXT-160.51, FEINFOCUS159

GmbH, Germany), employing a 1 µm tungsten-coated CVD diamond anode. The tube operated160

in microfocus mode at 40 kV tube voltage and 200 µA filament current. Recordings of images161

were carried out using an sCMOS camera (Gsense, PHOTONIC SCIENCE, UK) with a 100 µm162

CsI:TI scintillator. The detector featured an active input area of 67 × 67 mm2 and an effective163

pixel size of 16.4 × 16.4 µm2, resulting in a total of 4095 × 4095 pixels. Two identical phase164

gratings were etched into silicon substrates of 250 µm thickness, reaching the same depth of 28165

µm, as detailed in a previous publication [21]. The depth of 28 µm induced a 𝜋 phase-shift at the166

photon energy of 22 keV. The grating pattern was realized with a period of 1 µm and a duty167

cycle of 0.5. The set-up’s total distance spanning from the source to the detector was maintained168

Fig. 2. A normalized image is shown in (a), where evident artefacts resulting from
geometric distortion are observable at the image’s boundaries. To mitigate the influences
of the geometrical distortion and prepare for a two-dimensional Fourier transform, the
normalized image is masked by a circular window, as shown in (b).
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Fig. 3. The process to extract angle and period from Moiré fringe. The images in real
and Fourier space are depicted in (a) and (b), respectively. To facilitate visualization,
only the central regions of interest are displayed for both images. Based on the
magnitudes in Fourier space, several peaking positions are identified and small circular
regions are segmented around these peaking positions, as shown in (c). The center of
mass for each isolated region is calculated and marked as the black cross in (d). A line
is fitted to the location information, and the angle spanned between the fitted line and
the horizontal axis provides the angle of the Moiré fringe, denoted as 𝛼̂m. Moreover,
the distance between the first harmonics and the fundamental frequency is represented
as 𝑓1, which indicates the frequency of the pattern.

at approximately 1 m, with G1 positioned approximately at the midpoint between the source and169

the detector. G2 was located downstream and in close proximity to G1. Four motors were utilized170

to precisely control the movements of the two gratings. Two goniometer stages (CGO-77.5,171

SmarAct GmbH, Germany) were employed to independently rotate the two gratings within the172

xy-plane. These stages offer a travel range of +/−5 degrees and a resolution of approximately 7173

micro-degrees. To adjust the inter-grating distance, a linear stage (CLS-5282-L, SmarAct GmbH,174

Germany) was used to move G2 along the z-axis. This stage declares a travel range of 51 mm175

and a resolution of 4 nm. Another linear stage (CLS-5252-L, SmarAct GmbH, Germany) was176

utilized to move G1 along the x-axis, enabling the phase stepping technique [3, 13]. This stage177

has a declared travel range of 31 mm and 4 nm resolution.178

To adjust the geometrical configuration, the following steps are taken. Firstly, with G2 kept179

static at the initial angle 𝛼2, G1 is rotated from 𝛼1 − 0.4 to 𝛼1 + 0.4 degrees with a step size of180

0.08 degree, resulting in a total of 11 discrete steps. Then, with G1 held at its initial angle 𝛼1, the181

rotation for G2 is executed from 𝛼2 − 0.4 to 𝛼2 + 0.4 degrees. Following this, the inter-grating182

distance is adjusted through the displacement of G2. The rotation process for the two gratings is183

then repeated for each inter-grating distance. The displacement of G2 from its initial position 𝑅g184

spans from 0 to 5 mm, with a step size of 0.5 mm. Fig. 4 (c) exemplifies the adjustment of the185

geometrical configuration. In total, 242 distinct geometrical configurations are achieved, and186

for each configuration, the Moiré pattern is recorded with an exposure time of 15 s. The whole187

image acquisition process is fully automated.188

Fig. 3. The process to extract angle and period from Moiré fringe. The images in real and
Fourier space are depicted in (a) and (b), respectively. To facilitate visualization, only the
central regions of interest are displayed for both images. Based on the magnitudes in Fourier
space, several peaking positions are identified and small circular regions are segmented
around these peaking positions, as shown in (c). The center of mass for each isolated region
is calculated and marked as the black cross in (d). A line is fitted to the location information,
and the angle spanned between the fitted line and the horizontal axis provides the angle of
the Moiré fringe, denoted as α̂m. Moreover, the distance between the first harmonics and the
fundamental frequency is represented as f̂1, which indicates the frequency of the pattern.

Moiré patterns. Firstly, to remove the fixed-pattern noise, which originates from the dark current
and variations in pixel sensitivity, the captured image is normalized based on a dark image and
a flat-field image. Presented in Fig. 2(a) is a representative instance of a normalized image.
Subsequently, a circular window is applied to the normalized image (see Fig. 2(b)), whereby
the amplitude remains consistent within the kernel while diminishing exponentially to zero at
the periphery. There are two reasons to perform this windowing process. Firstly, to prepare for
a two-dimensional Fourier transform, the sharp transition changes at the boundary should be
removed to diminish the effect of spectral leakage. Secondly, it can be seen from Fig. 2(a) that
the image is subject to geometric distortions introduced by the presence of fiber optics integrated
within the detector. Especially, these distortions are particularly pronounced at the image’s
peripheries. Therefore, the windowing process serves to mitigate the impact of both of these
effects.

Then, the windowed image is transformed into the Fourier space. For better visualization,
the zoomed images corresponding to the real and Fourier spaces are displayed in Fig. 3(a) and
(b), respectively. Logarithmic magnitudes are employed to visualize the image in Fourier space.
Given that the harmonics within the Fourier space respond sensitively to both the orientation
and frequencies of the periodic patterns, the Fourier domain provides accurate information for
extracting the angle and period of the Moiré pattern. Based on the Fourier space magnitudes,
distinct peaking positions can be located. At each of these peaking positions, a small circular
region is isolated, as depicted in Fig. 3(c). The center of mass within each segmented region is
subsequently calculated, representing its spatial frequency and orientation. As shown in Fig. 3(d),
the located positions are denoted by black crosses. These positions are subjected to a linear
fitting process, and the fitted line is plotted as the white solid line. The angle of Moiré pattern α̂m
is determined by the angle spanned between the fitted line and the horizontal axis. Moreover, the
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frequency for the harmonic k is related to the Fourier distance between the harmonic’s position
and the origin, denoted as f̂k. The Fourier space is discretized with intervals of 1

Nd
, where the

unit is periods per pixel. Considering that the detector dimensions are equal in both the x and y
axis, the number of pixels for each dimension is represented as Nd. According to the located
positions for all harmonics, the period of the Moiré pattern for the first diffraction order can be
estimated as:

p̂m = pd ·
∑︁K

k=1
k
f̂k

K
, (8)

where pd represents the pixel size. Since the negative harmonics contain the same information as
positive ones, it is adequate to use only positive harmonics (k>0) to determine the first-diffraction-
order period. To ensure accurate results empirically, a minimum of five identified positions
(K ≥ 2) is required for the retrieval of angles and periods. Moreover, the average distance of
identified positions (black crosses in Fig. 3(d)) from the fitted line should be lower than 1

Nd
.

Failure to satisfy these two criteria results in the exclusion of the corresponding Moiré pattern
from subsequent optimization procedures.

3. Experiment and results

3.1. Experimental settings

X-rays were generated by a transmission-type microfocus X-ray tube (FXT-160.51, FEINFOCUS
GmbH, Germany), employing a 1 µ tungsten-coated CVD diamond anode. The tube operated in
microfocus mode at 40 kV tube voltage and 200 µA filament current. Recordings of images were
carried out using an sCMOS camera (Gsense, PHOTONIC SCIENCE, UK) with a 100 µ CsI:TI
scintillator. The detector featured an active input area of 67×67 mm2 and an effective pixel size
of 16.4×16.4 µ2, resulting in a total of 4095×4095 pixels. Two identical phase gratings were
etched into silicon substrates of 250 µ thickness, reaching the same depth of 28 µ, as detailed
in a previous publication [21]. The depth of 28 µ induced a π phase-shift at the photon energy
of 22 keV. The grating pattern was realized with a period of 1 µ and a duty cycle of 0.5. The
set-up’s total distance spanning from the source to the detector was maintained at approximately
1 m, with G1 positioned approximately at the midpoint between the source and the detector. G2
was located downstream and in close proximity to G1. Four motors were utilized to precisely
control the movements of the two gratings. Two goniometer stages (CGO-77.5, SmarAct GmbH,
Germany) were employed to independently rotate the two gratings within the xy-plane. These
stages offer a travel range of +/−5 degrees and a resolution of approximately 7 micro-degrees.
To adjust the inter-grating distance, a linear stage (CLS-5282-L, SmarAct GmbH, Germany) was
used to move G2 along the z-axis. This stage declares a travel range of 51 mm and a resolution of
4 nm. Another linear stage (CLS-5252-L, SmarAct GmbH, Germany) was utilized to move G1
along the x-axis, enabling the phase stepping technique [3,13]. This stage has a declared travel
range of 31 mm and 4 nm resolution.

To adjust the geometrical configuration, the following steps are taken. Firstly, with G2 kept
static at the initial angle α2, G1 is rotated from α1 − 0.4 to α1 + 0.4 degrees with a step size of
0.08 degree, resulting in a total of 11 discrete steps. Then, with G1 held at its initial angle α1, the
rotation for G2 is executed from α2 − 0.4 to α2 + 0.4 degrees. Following this, the inter-grating
distance is adjusted through the displacement of G2. The rotation process for the two gratings is
then repeated for each inter-grating distance. The displacement of G2 from its initial position Rg
spans from 0 to 5 mm, with a step size of 0.5 mm. Figure 4(c) exemplifies the adjustment of the
geometrical configuration. In total, 242 distinct geometrical configurations are achieved, and
for each configuration, the Moiré pattern is recorded with an exposure time of 15 s. The whole
image acquisition process is fully automated.
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Fig. 4. Illustration of the deviations between the experimental and estimated results
among the used Moiré patterns. (a) compares the extracted Moiré angles (red squares)
and estimated ones (black crosses) for each Moiré pattern. The deviations between the
experimental and estimated results are represented as a blue line, and the corresponding
values are displayed on the secondary y-axis on the right-hand side. Similarly, (b)
illustrates the results for the Moiré periods. The average absolute deviations between
the experimental and estimated results are 0.0811◦ for the angles and 0.3757 µm for
the periods, which is quite accurate compared to the range of −60◦ to 60◦ degrees
and 100 to 500 µm. (c) presents the corresponding geometrical configuration for
each Moiré pattern. The relative rotated angles of G1 and G2 are represented as red
upward-pointing triangles and black pluses, respectively. The relative displacements of
G2 from the initial inter-grating distance are represented as blue horizontal lines and
the corresponding values are displayed on the secondary y-axis on the right-hand side.

3.2. Results189

To determine the geometrical parameters, all 242 Moiré patterns are analyzed by the proposed190

algorithm to extract the corresponding angles and periods, as elaborated in section 2.4. As191

previously mentioned, certain Moiré patterns are excluded if they fail to meet the two criteria192

established to ensure accuracy. The extracted angles and periods are shown in Fig. 4 (a)193

and (b), respectively, represented as red squares. The current dataset consists of 231 Moiré194

patterns that are used for the following optimization process. Based on Eq. (6) and (7),195

the initial geometrical parameters are extracted, yielding: 𝑅1 = 0.5024 m, 𝑅2 = 0.5018 m,196

𝑅g = 1.9539 mm, 𝛼1 = −1.2794◦ and 𝛼2 = −1.1762◦. In Fig. 4 (a) and (b), the black cross197

represents quantities estimated by the model for different geometrical configurations (refer to Eq.198

(4) and (5)), utilizing the extracted initial geometrical parameters. The corresponding deviations199

between the experimental and estimated results are shown as blue lines in Fig. 4 (a) and (b).200

The notably low deviations between the experimental and estimated values imply the accurate201

determination of the initial parameters. The average absolute deviations for angles and periods202

are 0.0811◦ and 0.3757 µm, respectively. Fig. 4 (c) illustrates the corresponding geometrical203

configuration (Δ𝛼1 , Δ𝛼2 and Δ𝑑 ) for each Moiré pattern.204

Fig. 4. Illustration of the deviations between the experimental and estimated results among
the used Moiré patterns. (a) compares the extracted Moiré angles (red squares) and estimated
ones (black crosses) for each Moiré pattern. The deviations between the experimental and
estimated results are represented as a blue line, and the corresponding values are displayed on
the secondary y-axis on the right-hand side. Similarly, (b) illustrates the results for the Moiré
periods. The average absolute deviations between the experimental and estimated results
are 0.0811◦ for the angles and 0.3757 µ for the periods, which is quite accurate compared
to the range of −60◦ to 60◦ degrees and 100 to 500 µ. (c) presents the corresponding
geometrical configuration for each Moiré pattern. The relative rotated angles of G1 and G2
are represented as red upward-pointing triangles and black pluses, respectively. The relative
displacements of G2 from the initial inter-grating distance are represented as blue horizontal
lines and the corresponding values are displayed on the secondary y-axis on the right-hand
side.

3.2. Results

To determine the geometrical parameters, all 242 Moiré patterns are analyzed by the proposed
algorithm to extract the corresponding angles and periods, as elaborated in section 2.4. As
previously mentioned, certain Moiré patterns are excluded if they fail to meet the two criteria
established to ensure accuracy. The extracted angles and periods are shown in Fig. 4(a) and
(b), respectively, represented as red squares. The current dataset consists of 231 Moiré patterns
that are used for the following optimization process. Based on Eqs. (6) and (7), the initial
geometrical parameters are extracted, yielding: R1 = 0.5024 m, R2 = 0.5018 m, Rg = 1.9539
mm, α1 = −1.2794◦ and α2 = −1.1762◦. In Fig. 4(a) and (b), the black cross represents
quantities estimated by the model for different geometrical configurations (refer to Eqs. (4) and
(5)), utilizing the extracted initial geometrical parameters. The corresponding deviations between
the experimental and estimated results are shown as blue lines in Fig. 4(a) and (b). The notably
low deviations between the experimental and estimated values imply the accurate determination
of the initial parameters. The average absolute deviations for angles and periods are 0.0811◦ and
0.3757 µ, respectively. Figure 4(c) illustrates the corresponding geometrical configuration (∆α1 ,
∆α2 and ∆d ) for each Moiré pattern.
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If the initial values read from the two goniometers are represented as A′
1 and A′

2, then the
aligned positions for the goniometers are calculated as A1 = A′

1 − α1 and A2 = A′
2 − α2,

respectively. Figure 5(a) and (b) illustrate the recorded Moiré patterns before and after the
alignment, respectively. According to Eq. (4), when two gratings are aligned the Moiré pattern
should be vertical (α̂m = 0), a characteristic that can be visually confirmed in Fig. 5(b). Moreover,
the average visibility V is compared between Fig. 5(a) and (b) within the depicted field of view,
which illustrates the fringe contrasts in the transverse axis (x-axis). The visibility for the pixel
(i, j) is determined by searching for the minimum and maximum intensity values within the pixel
range from (i, j) to (i + pt, j), denoted as Imin(i, j) and Imax(i, j). pt represents the period of the
fringe along the transverse axis, specified in pixels. Then the visibility is calculated as:

V(i, j) = Imax(i, j) − Imin(i, j)
Imax(i, j) + Imin(i, j) , (9)

Compared between Fig. 5(a) and (b), the average visibility experiences a 5% increase after
the alignment process. Additional discussions about the relationship between misalignment and
visibility are given in section 4.

Fig. 5. The interference patterns are depicted before (a) and after (b) the alignment
process, with the inter-grating distance at the initial value 𝑅g = 1.9539 mm. The
average visibility within the depicted field of view is increased from 11.95% to 12.51%
after the alignment process.

If the initial values read from the two goniometers are represented as 𝐴′
1 and 𝐴′

2, then the aligned205

positions for the goniometers are calculated as 𝐴1 = 𝐴
′
1 − 𝛼1 and 𝐴2 = 𝐴

′
2 − 𝛼2, respectively. Fig.206

5 (a) and (b) illustrate the recorded Moiré patterns before and after the alignment, respectively.207
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, (9)

Compared between Fig. 5 (a) and (b), the average visibility experiences a 5% increase after the215
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visibility are given in section 4.217

The geometrical determination procedure is independently repeated five times, with different218

initial angles of two gratings. Therefore, by comparing the extracted geometrical parameters219

across these procedures, the algorithm’s accuracy and robustness are evaluated. Moreover,220

instead of using the complete dataset from each procedure, the number of Moiré patterns used221

for fitting is gradually increased from 5 to 220 to evaluate the relationship between the size of the222

dataset and the accuracy of the algorithm. In order to diminish the potential correlations among223

the geometrical configurations, the Moiré patterns used for fitting are randomly picked from the224

full dataset. Then, for each dataset size, the initial geometrical parameters are retrieved, and the225

corresponding mean value and standard deviation are calculated among the five independent226

procedures. The statistical results for the parameters related to the three distances are shown227

in Fig. 6 (a) - (c). The mean values are depicted as black lines, while the grey background228

illustrates the standard deviations. Fig. 6 (d) and (e) illustrate the results for the aligned positions229

of two goniometers. Moreover, Figure 6 (f) presents the results of the differences in readout230

values between the two goniometers, which provide insights into the accuracy and robustness of231

achieving the same orientations for the two gratings. Overall, with the dataset size increased,232

Fig. 5. The interference patterns are depicted before (a) and after (b) the alignment process,
with the inter-grating distance at the initial value Rg = 1.9539 mm. The average visibility
within the depicted field of view is increased from 11.95% to 12.51% after the alignment
process.

The geometrical determination procedure is independently repeated five times, with different
initial angles of two gratings. Therefore, by comparing the extracted geometrical parameters
across these procedures, the algorithm’s accuracy and robustness are evaluated. Moreover,
instead of using the complete dataset from each procedure, the number of Moiré patterns used
for fitting is gradually increased from 5 to 220 to evaluate the relationship between the size of the
dataset and the accuracy of the algorithm. In order to diminish the potential correlations among
the geometrical configurations, the Moiré patterns used for fitting are randomly picked from the
full dataset. Then, for each dataset size, the initial geometrical parameters are retrieved, and the
corresponding mean value and standard deviation are calculated among the five independent
procedures. The statistical results for the parameters related to the three distances are shown in
Fig. 6(a) - (c). The mean values are depicted as black lines, while the grey background illustrates
the standard deviations. Figure 6(d) and (e) illustrate the results for the aligned positions of two
goniometers. Moreover, Fig. 6(f) presents the results of the differences in readout values between
the two goniometers, which provide insights into the accuracy and robustness of achieving the
same orientations for the two gratings. Overall, with the dataset size increased, the retrieval
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Fig. 6. The accuracy and robustness of the algorithm are evaluated by examining the
relationships between the extracted geometrical parameters among five independent
procedures and the number of Moiré patterns used for fitting. The number of Moiré
patterns used varies from 5 to 220. For each size of the dataset, the mean and standard
deviation are calculated from five procedures. As the dataset size increases, the retrieval
of all parameters, namely 𝑅1, 𝑅2, 𝑅g, 𝐴1, 𝐴2, and 𝐴1 − 𝐴2, becomes more consistent
and stable.

the retrieval of all six geometrical quantities becomes more accurate, indicated by more stable233

mean values and lower standard deviations. This is expected, as the standard error decreases234

with a larger dataset size. Table 1 presents the mean values and the standard deviations for the235

corresponding parameters for the analysis of 5 independent procedures of 220 Moiré patterns236

each. All three parameters related to the distances (𝑅1, 𝑅2 and 𝑅g) can be determined with237

high precision with the relative errors lower than 0.5%. While the values of 𝐴1 and 𝐴2 exhibit238

relatively higher uncertainties individually, their difference (𝐴1 − 𝐴2) demonstrates significantly239

lower standard deviation. This suggests that the algorithm can effectively align the two gratings240

to closely matching orientations, even though the individual angles of the gratings may not be241

determined with equivalent accuracy. This can be understood by considering Eq. (4), which242

implies that the Moiré angle is highly sensitive to discrepancies in orientations between the two243

gratings (𝐴1 − 𝐴2). The level of uncertainty, which remains below 0.1◦, for the angles of the244

individual gratings is acceptable for DPGI applications.245

4. Discussion246

The relationship between dark-field signal and correlation length can provide quantitative small-247

angle-scattering (SAS) information of the sample [16]. One advantage provided by DPGI is that248

tuning correlation length does not influence sample magnification [13]. This feature facilitates249

the retrieval of SAS structural information for each pixel. To accurately retrieve SAS information,250

the correlation length should be determined with high accuracy. Meanwhile, the contrast of the251

interference pattern should be maintained as high as possible, since a higher contrast will lead to252

Fig. 6. The accuracy and robustness of the algorithm are evaluated by examining the rela-
tionships between the extracted geometrical parameters among five independent procedures
and the number of Moiré patterns used for fitting. The number of Moiré patterns used varies
from 5 to 220. For each size of the dataset, the mean and standard deviation are calculated
from five procedures. As the dataset size increases, the retrieval of all parameters, namely
R1, R2, Rg, A1, A2, and A1 − A2, becomes more consistent and stable.

Table 1. Mean values and standard deviations of
the six parameters that the algorithm can retrieve

when the dataset size is 220.

Parameter Unit Mean value Standard deviation

R1 m 0.5036 0.0015

R2 m 0.5001 0.0025

Rg mm 1.9541 0.0050

A1
degree 1.8047 0.0815

rad 0.0315 0.0014

A2
degree −0.5916 0.0835

rad −0.0103 0.0015

A1 − A2
degree 2.3962 0.0037

rad 0.0418 0.0001

of all six geometrical quantities becomes more accurate, indicated by more stable mean values
and lower standard deviations. This is expected, as the standard error decreases with a larger
dataset size. Table 1 presents the mean values and the standard deviations for the corresponding
parameters for the analysis of 5 independent procedures of 220 Moiré patterns each. All three
parameters related to the distances (R1, R2 and Rg) can be determined with high precision with
the relative errors lower than 0.5%. While the values of A1 and A2 exhibit relatively higher
uncertainties individually, their difference (A1 − A2) demonstrates significantly lower standard
deviation. This suggests that the algorithm can effectively align the two gratings to closely
matching orientations, even though the individual angles of the gratings may not be determined
with equivalent accuracy. This can be understood by considering Eq. (4), which implies that
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the Moiré angle is highly sensitive to discrepancies in orientations between the two gratings
(A1 − A2). The level of uncertainty, which remains below 0.1◦, for the angles of the individual
gratings is acceptable for DPGI applications.

4. Discussion

The relationship between dark-field signal and correlation length can provide quantitative small-
angle-scattering (SAS) information of the sample [16]. One advantage provided by DPGI is that
tuning correlation length does not influence sample magnification [13]. This feature facilitates
the retrieval of SAS structural information for each pixel. To accurately retrieve SAS information,
the correlation length should be determined with high accuracy. Meanwhile, the contrast of the
interference pattern should be maintained as high as possible, since a higher contrast will lead to
a higher signal-to-noise ratio in the dark-field images [22,23]. The proposed parameter space
determination process provides foundations for meeting both requirements.

Firstly, we can attain a minimum inter-grating distance of 1.5 mm in our set-up. If the
inter-grating distance is measured by a ruler-based approach, the absolute error can be easily
higher than 1 mm, since the exact positions of two gratings are blocked by grating holders.
Consequently, more than 60% relative error is introduced when estimating the closest inter-grating
distance, leading to the same relative error in estimating the minimum correlation length (see
Eq. (1)). In comparison, lower than 0.5% relative errors are achievable by using the method
presented in this work when determining three distances (R1, R2 and Rg), as illustrated in Table 1.
This guarantees a much higher precision in estimating the correlation length.

A good alignment is required to guarantee high-contrast interference patterns formed in the
grating interferometry [24]. To evaluate how the contrast of the patterns is influenced by the
misalignment of two gratings in DPGI, with G1 remaining at the aligned angle A1, as given
in Table 1, G2 is rotated with a relative deviation (∆α2) from its aligned angle A2 within the
range of −0.4◦ to 0.4◦. The inter-grating distance is maintained at 3.74 mm. At each deviated
angle ∆α2, the Moiré pattern is recorded and the corresponding visibility is extracted based
on Eq. (9). Figure 7 plots the relationship between the deviated angle ∆α2 and the averaged
visibility among 2000 × 3000 pixels. It indicates that the highest contrast is achieved when two
gratings are aligned (∆α2 = 0). Moreover, with a larger angular deviation between two gratings,
the visibility reduces. If the angular deviation |∆α2 | is smaller than 0.05◦, the reduction of the
visibility is lower than 0.5%, which is negligible. Since our algorithm can determine the angular
deviation (A1 −A2) between two gratings with a precision better than 0.005◦, as shown in Table 1,
which is one magnitude higher than 0.05◦, the highest-contrast interference patterns can be well
guaranteed by the parameter space determination process.

The proposed algorithm is based on Eqs. (4) and (5), which assume that two gratings are
perpendicular to the optical axis (z-axis). However, in real-world scenarios, both gratings can
deviate from perfectly perpendicular positions. As shown in Fig. 8(a), though the lamellas of
both gratings are aligned by the alignment process, there is an inclination angle θ between the
planes of two gratings. Due to the non-uniformity of the inter-grating distance across the field of
view, the generated Moiré pattern, as described by Eq. (5), will exhibit a spatially dependent
distribution of periods. To evaluate the inclination angle between the planes of two gratings, one
recorded Moiré pattern is analyzed when the gratings are aligned and the inter-grating distance is
set at 1.954 mm, according to the results in Table 1. Firstly, this recorded Moiré pattern is divided
into various sub-areas, with each one comprising 100× 100 pixels. Then, the intensity oscillation
of the first row within each sub-area is fitted by a cosine function, and the resulting period from
the fit is regarded as the fringe period for that specific area. Therefore, a distribution of fringe
periods is obtained, allowing for the calculation of a spatial distribution of the inter-grating
distance according to Eq. (5). The corresponding results are shown in Fig. 8(b), in which the
inter-grating distance distribution is relatively uniform along the y-axis and increases from 1.9
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Parameter Unit Mean value Standard deviation

𝑅1 m 0.5036 0.0015

𝑅2 m 0.5001 0.0025

𝑅g mm 1.9541 0.0050

𝐴1
degree 1.8047 0.0815

rad 0.0315 0.0014

𝐴2
degree −0.5916 0.0835

rad −0.0103 0.0015

𝐴1 − 𝐴2
degree 2.3962 0.0037

rad 0.0418 0.0001

Table 1. Mean values and standard deviations of the six parameters that the algorithm
can retrieve when the dataset size is 220.

Fig. 7. Relationship between the angular deviations and averaged visibility among
2000 × 3000 pixels. With G1 remaining at the aligned angle, G2 is rotated with a
relative deviation (Δ𝛼2) from its aligned angle within the range of −0.4◦ to 0.4◦, with
the inter-grating distance at 3.74 mm.

a higher signal-to-noise ratio in the dark-field images [22,23]. The proposed parameter space253

determination process provides foundations for meeting both requirements.254

Firstly, we can attain a minimum inter-grating distance of 1.5 mm in our set-up. If the255

inter-grating distance is measured by a ruler-based approach, the absolute error can be easily256

higher than 1 mm, since the exact positions of two gratings are blocked by grating holders.257

Consequently, more than 60% relative error is introduced when estimating the closest inter-grating258

distance, leading to the same relative error in estimating the minimum correlation length (see259

Eq. (1)). In comparison, lower than 0.5% relative errors are achievable by using the method260

presented in this work when determining three distances (𝑅1, 𝑅2 and 𝑅g), as illustrated in Table261

Fig. 7. Relationship between the angular deviations and averaged visibility among 2000 ×
3000 pixels. With G1 remaining at the aligned angle, G2 is rotated with a relative deviation
(∆α2) from its aligned angle within the range of −0.4◦ to 0.4◦, with the inter-grating distance
at 3.74 mm.

Fig. 8. (a) illustrates the situation when two gratings are not perpendicular to the z-axis
after the alignment process. The inclination angle between the planes of two gratings is
represented as 𝜃. Due to the non-uniformity of the inter-grating distance across the
field of view, the generated Moiré fringe exhibits a spatially dependent distribution of
periods. (b) shows a spatial distribution of the inter-grating distance across the field of
view, indicating an inclination angle around 0.48◦.

1. This guarantees a much higher precision in estimating the correlation length.262

A good alignment is required to guarantee high-contrast interference patterns formed in the263

grating interferometry [24]. To evaluate how the contrast of the patterns is influenced by the264

misalignment of two gratings in DPGI, with G1 remaining at the aligned angle 𝐴1, as given in265

Table 1, G2 is rotated with a relative deviation (Δ𝛼2) from its aligned angle 𝐴2 within the range266

of −0.4◦ to 0.4◦. The inter-grating distance is maintained at 3.74 mm. At each deviated angle267

Δ𝛼2, the Moiré pattern is recorded and the corresponding visibility is extracted based on Eq.268

(9). Fig. 7 plots the relationship between the deviated angle Δ𝛼2 and the averaged visibility269

among 2000 × 3000 pixels. It indicates that the highest contrast is achieved when two gratings270

are aligned (Δ𝛼2 = 0). Moreover, with a larger angular deviation between two gratings, the271

visibility reduces. If the angular deviation |Δ𝛼2 | is smaller than 0.05◦, the reduction of the272

visibility is lower than 0.5%, which is negligible. Since our algorithm can determine the angular273

deviation (𝐴1 − 𝐴2) between two gratings with a precision better than 0.005◦, as shown in Table274

1, which is one magnitude higher than 0.05◦, the highest-contrast interference patterns can be275

well guaranteed by the parameter space determination process.276

The proposed algorithm is based on Eq. (4) and (5), which assume that two gratings are277

perpendicular to the optical axis (z-axis). However, in real-world scenarios, both gratings can278

deviate from perfectly perpendicular positions. As shown in Fig. 8 (a), though the lamellas of279

both gratings are aligned by the alignment process, there is an inclination angle 𝜃 between the280

planes of two gratings. Due to the non-uniformity of the inter-grating distance across the field of281

view, the generated Moiré pattern, as described by Eq. (5), will exhibit a spatially dependent282

distribution of periods. To evaluate the inclination angle between the planes of two gratings,283

one recorded Moiré pattern is analyzed when the gratings are aligned and the inter-grating284

distance is set at 1.954 mm, according to the results in Table 1. Firstly, this recorded Moiré285

pattern is divided into various sub-areas, with each one comprising 100 × 100 pixels. Then, the286

intensity oscillation of the first row within each sub-area is fitted by a cosine function, and the287

resulting period from the fit is regarded as the fringe period for that specific area. Therefore, a288

distribution of fringe periods is obtained, allowing for the calculation of a spatial distribution289

of the inter-grating distance according to Eq. (5). The corresponding results are shown in290

Fig. 8. (a) illustrates the situation when two gratings are not perpendicular to the z-axis
after the alignment process. The inclination angle between the planes of two gratings is
represented as θ. Due to the non-uniformity of the inter-grating distance across the field of
view, the generated Moiré fringe exhibits a spatially dependent distribution of periods. (b)
shows a spatial distribution of the inter-grating distance across the field of view, indicating
an inclination angle around 0.48◦.

mm to 2.07 mm along the x-axis. This indicates an inclination angle θ between the two grating
planes of approximately 0.48◦. The average inter-grating distance in Fig. 8(b) is 1.951 mm,
closely matching the result determined by the parameter space determination process (1.954 mm).
This indicates that the inter-grating distance determined by the parameter space determination
process represents the average distance between two gratings. This is reasonable since the
Fourier transform (see Fig. 3) contains all information across the full field of view. While a
detailed discussion on how the inclination angle influences the parameter space determination
process is beyond the scope of this work, when the inclination angle is small (eg. 0.48◦), the
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algorithm demonstrates accuracy and robustness in determining geometrical parameters (see
Fig. 6). Nevertheless, even with a small inclination angle, its impact should be considered when
calculating the pixel-wise correlation length.

5. Conclusion

DPGI provides a promising tool in material science and medical imaging since it can provide
three complementary signals from samples. Especially, its tunable correlation length offers a
more straightforward approach to obtaining quantitative structural information from small-angle
scattering signals. For accurate correlation length estimation and optimal grating alignment,
the complete geometrical information of the set-up should be determined with high precision.
To achieve this accuracy, an algorithm is developed based on the properties of Moiré patterns,
to extract five geometrical parameters, including three distances and two angles. The accuracy
achieved meets stringent requirements. For example, the inter-grating distance can be determined
with a precision better than 10 µ, which guarantees an accurate estimation of the correlation
length. Moreover, with accurate information about the angles of both gratings, the alignment of
the interferometry can be automatically executed with high precision.

Appendix

As illustrated by Gabrielyan et al. [20], when two layers with periodically repeating parallel lines
are superposed, the angle of the Moiré pattern is formulated as:

tanαm =
T1 sinα2 − T2 sinα1
T1 cosα2 − T2 cosα1

, (10)

where T1 and T2 represent the period for each layer, while α1 and α2 denote the corresponding
inclined angles. To avoid the infinite value yielded by the tangent function, Eq. (10) can be
reformulated as:

sinαm =
T1 sinα2 − T2 sinα1√︂

T2
1 + T2

2 − 2T1T2 cos (α2 − α1)
, (11)

based on trigonometry sinα = tanα√
1+tan2 α

. Meanwhile, The period of the Moiré pattern is given as
[20]:

pm =
T1T2√︂

T2
1 + T2

2 − 2T1T2 cos (α2 − α1)
. (12)

According to Eqs. (2) and (3), in DPGI the Moiré fringe for the diffraction order l is formed by
two basic patterns with periods T1 =

M1pg
l and T2 =

M2pg
l , respectively. Moreover, as the basic

pattern rotates congruently with the grating, α1 and α2 in Eqs. (11) and (12) are equal to the
rotated angles of the gratings, respectively. Therefore, the angle of the Moiré pattern formed in
DPGI is deduced as:

sinαm =
(R1 + Rg) sinα2 − R1 sinα1√︂

(R1 + Rg)2 + R2
1 − 2R1(R1 + Rg) cos (α2 − α1)

, (13)

and the period of the Moiré pattern for the diffraction order l is obtained as:

pm =
(R1 + R2)pg

l
√︂
(R1 + Rg)2 + R2

1 − 2R1(R1 + Rg) cos (α2 − α1)
. (14)
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