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ABSTRACT

Laser powder bed fusion is at the forefront of manufacturing metallic objects, particularly those with complex
geometries or those produced in limited quantities. However, this 3D printing method is susceptible to several
printing defects due to the complexities of using a high-power laser with ultra-fast actuation. Accurate online
print defect detection is therefore in high demand, and this defect detection must maintain a low computational
profile to enable low-latency process intervention. In this work, we propose a low-latency LPBF defect detection
algorithm based on fusion of images from high-speed cameras in the visible and short-wave infrared (SWIR)
spectrum ranges. First, we design an experiment to print an object while both imposing porosity defects on the
print, and recording the laser’s melt pool with the high-speed cameras. We then train variational autoencoders
on images from both cameras to extract and fuse two sets of corresponding features. The melt pool recordings
are then annotated with pore densities extracted from the printed object’s CT scan. These annotations are then
used to train and evaluate the ability of a fast neural network model to predict the occurrence of porosity from the
fused features. We compare the prediction performance of our sensor fused model with models trained on image
features from each camera separately. We observe that the SWIR imaging is sensitive to keyhole porosity while
the visible-range optical camera is sensitive to lack-of-fusion porosity. By fusing features from both cameras, we
are able to accurately predict both pore types, thus outperforming both single camera systems.

Keywords: LPBF, In-situ Monitoring, Lack-of-Fusion, Keyhole Porosity, Additive Manufacturing, SWIR, Vari-
ational Autoencoder, Sensor Fusion

1. INTRODUCTION

Additive manufacturing (AM) is a term that encompasses various technologies that create physical objects from
digital models by adding material layer by layer.1 AM offers several advantages over conventional manufacturing
methods, such as design flexibility, reduced material waste, and customized production.2 Among the different
AM techniques, laser powder bed fusion (LPBF) is one of the most widely used and studied.3 LPBF involves
melting and solidifying metal powder particles with a laser beam to form solid parts with complex geometries.4

LPBF can produce high-quality parts with high mechanical strength, dimensional accuracy, and surface finish,
thus making them desirable for applications in aerospace, biomedical, and automotive industries.5

However, LPBF also faces several challenges that limit its industrial application, such as high residual stresses,
distortion, cracking, and lack of repeatability.6 One of the main factors that affect the quality and reliability
of LPBF parts is the presence of printing defects, such as porosity, balling, and spatter. These defects can
compromise the mechanical performance, fatigue life, and corrosion resistance of the parts, as well as increase
the post-processing costs and time.7 Therefore, understanding the formation mechanisms and influencing factors
of these defects is crucial for improving the LPBF process and achieving defect-free parts.

Porosity in LPBF can be classified into two types: lack-of-fusion porosity and keyhole porosity. Lack-of-fusion
porosity occurs when the laser energy input is insufficient to completely melt the powder particles, resulting in
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gaps or voids between them.8 This type of porosity can be reduced by increasing the laser power, decreasing the
scanning speed, or decreasing the hatch spacing, thereby enhancing the melting and coalescence of the powder
particles. However, excessive energy input can also lead to another type of porosity: keyhole porosity. Keyhole
porosity occurs when the laser energy input is so high that it creates a deep and narrow cavity in the molten pool,
a cavity known as and shaped like a keyhole.9 The keyhole is filled with vaporized metal and gas, which can be
trapped inside it when the molten metal solidifies rapidly. Keyhole porosity can be influenced by various process
parameters, such as laser power, scanning speed, hatch spacing, layer thickness, and powder size.10 Keyhole
porosity can also be affected by the material properties, such as melting temperature, thermal conductivity,
surface tension, and vapor pressure.

To predict and control for keyhole porosity in LPBF, several analytical and numerical models have been
developed in the literature. For example, Wang et al.11 proposed an analytical model, with a closed-form
solution, to calculate the keyhole porosity based on a two-dimensional model that considers the keyhole pores
formation and trapping. Kan et al.12 conducted a critical review on the effects of process-induced porosity on
the mechanical properties of four alloys commonly fabricated by LPBF: Ti-6Al-4 V, Inconel 718, AISI 316L, and
AlSi10Mg. They summarized the existing literature on the tensile properties, fatigue life, impact and fracture
toughness, creep response, and wear behavior of these alloys with different levels of porosity. While these models
have helped the field understand pore formation, it remains a challenge to translate this knowledge into accurate
in-process LPBF monitoring systems.

In-process monitoring of the LPBF process is essential to ensure quality and reliability. One of the most
promising approaches is to use high-speed cameras that capture the thermal radiation emitted by the molten
pool and the surrounding powder bed.13 These cameras can operate in different spectral ranges, such as visible
or short-wave infrared (SWIR), and provide rich information about the temperature, shape, size, and dynamics
of the molten pool, as well as the spatter, porosity, and surface roughness of the solidified part.14 However, the
raw images from the cameras are often noisy, distorted, and complex. They therefore require advanced feature
extraction and machine learning techniques in order to collect meaningful and relevant information that can
be used for quality assessment and control.15 There are also many challenges and open questions that need to
be addressed, such as: how to select the optimal spectral range and camera settings; how to deal with noise
and distortion in the images; how to choose the best features and algorithms for different applications; how to
handle large amounts of data and computational resources; how to validate and interpret the results; and how
to integrate the information from multiple cameras and sensors and finally how to leverage extracted sensory
features to make fast and accurate predictions of defects, e.g., porosity, while printing an object. These are some
of the topics that will be discussed in this research.

In particular our main contributions are:

• We utilize unsupervised variational autoencoders (VAEs) to automatically learn and fuse melt pool features
at high speeds up to (20 kHz) from videos recorded by each one of our high-speed camera sensors (i.e., the
SWIR and visible wavelength range cameras).

• We demonstrate a physical interpretation for the VAE generated features.

• We train an agile prediction model to utilize features from each sensor independently, as well as their fused
feature sets, and predict the occurrence of porosity.

• A prediction performance comparison between these models is provided to highlight the differences of the
information provided by each sensor for the pore prediction task.

2. MATERIALS AND METHODS

2.1 Specimen description

A test specimen was 3D printed on a 3D Systems ProX DMP320 laser powder bed fusion (LPBF) machine in
316L stainless steel. This machine employed a 500 W power-adjustable IPG fiber laser to melt metal powder
layers with configurable thickness between 30 and 60 µm. Each of these print layers were created by several
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(a) printed specimen (b) Position of the installed cameras

Figure 1: (a) An image of the specimen after printing, before detachment from the print bed. (b) Top view of
the printer with off-axis visual and SWIR cameras installed in the left and right positions respectively to record
the melt pool

laser scan lines. For our specimen, layer thickness was set at 30 µm, with a laser focal spot of 75 µm and
hatching distance 100 µm. The powder particle size distribution was between 20-50 µm. The build chamber is
vacuum-cycled and filled with an argon over-pressure before commencing the LPBF process.

The specimen (see Figure 1a) consists of a main cylinder (diameter 5 mm and height 16 mm) with several
smaller cylinders protruding at angles of 45 degrees. These smaller cylinders allow easy alignment with CT
reconstructions, taking into account possible shrinking. The main cylinder was printed on a squared non-
symmetrical base plate that also allows for easy orientation of the object. The base plate itself was printed above
1.8 mm offsets which were removed mechanically with a cutting disk after completion.

The machine is equipped with the Materialise Control Platform (MCP), which allows us to alter the print
parameters for every line. The bulk of the material is printed with nominal settings, i.e., laser power P = 215W
and laser speed V = 900mm/s. Hatching rotates with 67 degrees between layers.

Error layers (i.e. layers printed with off-nominal laser speed and power) are introduced in the object with at
least 30 nominal layers (i.e. layers printed with nominal print settings) in between. The interline distance is the
hatching distance, 100 µm. This spacing between error lines in two dimensions in our experimental setup allows
us to identify each introduced porosity with the error line that caused it, with the assumption that nominal
settings do not introduce porosity in the bulk of the object. The details about the induced error layers including
layer number and laser power and speed can be seen in Table 1. A more detailed description of the specimen is
available in Vandecasteele et al.16

2.2 Printing process monitoring setup

The melt pool was monitored during the printing extending a custom setup explained in Ahar et al.17 Here we
utilized two off-axis high-speed cameras both placed with an inclination angle of about 25° with respect to the
normal of the build plate (See Figure 1b). The first camera was an industrial prototype recording in the visible
spectrum and its specs can be found in Nourazar et al.18 The second camera was the Xenics Cheetah 640 TE1
recording in the SWIR range.19 This off-axis monitoring setup is particularly advantageous for recording the
spatter signature in the vertical direction and being in a stationary position independent from the movements
in optical path of the laser beam. The video stream is recorded for both cameras at nominal sampling rate of
20,000 frames per second with each frame having 96 × 96 pixels and 170 x 170 pixels for the visual and SWIR
cameras respectively. To protect the sensors from the excessive brightness of laser, a short-wavelength pass filter
with a cut-off value of 975 nm was placed before the visual camera, and a high-wavelength pass filter with a
cut-off value of 1100 nm was placed before the SWIR camera. The exposure time of the cameras were set at
30 µs. The aperture and shutter time are set manually to optimize the visibility of the spatters while recording
the melt pool. Figure 2, demonstrates a sample image frame recorded by each one of the cameras with an 8-bit
linear color mapping.
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Table 1: Error layers with off-nominal laser settings. The lack-of-fusion and keyhole densities (computed from
the CT scan) for each error layer are included as well.

Starting layer
Laser Power (W)
Nominal=215

Laser Speed (m/s)
Nominal=900

LoF density Keyhole density

1 97 215 720 0 0.1913
2 130 215 600 0 0.4747
3 163 215 450 0 2.2515
4 220 215 360 0 3.9637
5 253 215 300 0 4.9502
6 286 215 225 0 5.3807
7 319 322.5 900 0 0
8 376 430 900 0 0
9 409 500 837 0 0.5180
10 442 215 1200 0 0
11 475 215 1800 1.9354 0
12 532 161.25 900 0 0

The video recording was accompanied with the metadata provided by the MCP which was collected at 100
kHz. The metadata included the x, y coordinates of the laser on the build area, the laser on/off signal, the laser
power, the laser speed, and timestamps. The high-speed cameras were connected via Camera Link to NI PXI.
Data was stored to an NI SSD drive with a high-speed data transfer rate of around 1.5 GB/s.

2.3 Structure of the input data

The proposed methods consist of three machine learning models: two variational autoencoders (VAE) to perform
image feature extraction (one VAE per camera), and one regression model for porosity prediction. These models
will be trained of the training data described below.

To prepare the training data for the unsupervised VAE learning of image features, we synchronize and
annotate each one of the captured images of both cameras with the corresponding metadata collected from the
MCP controller. Then, we randomize their capture order and two separate subsets of images for training and
inference are selected from the total image pools. The training subset includes a total of 622,592 images. To
further increase variability of the training set, print recording from two additional printed objects were also added
to the pool. Though since those two objects were not CT scanned, we did not include their data for training and
analyzing the final porosity prediction model. During training and inference, the images undergo preprocessing.
The unprocessed images are cropped to a 40x40 pixel region centered around the melt pool’s center.13 Cropping
and centering aim to eliminate extraneous data and speed up processing.

In order to create training and test sets for the final porosity prediction model, all extracted image features are
associated to the extracted pore densities from the CT scan data. Here we create our model dataset by choosing a
subset of features selected only from the 12 error layers (print layers with imposed off-nominal settings) and then
add features from 3 layers with nominal laser settings. This way we created a better balance in the quantity of
defective and non-defective values, with an emphasis to be more sensitive on detecting defective print conditions.
Our initial experiments utilizing data from all print layers which included many more print layers with nominal
settings (+500 layers) revealed that model loss-function optimization would be biased toward better predicting
target values for non-defective data points and consequently reduced sensitivity for predicting target values for
porosity. The order of the training data was then randomized. For each experiment, a subset of 70% of the
training samples where used to train the porosity prediction model, while the remaining 30% comprised the
validation set. The test set then comprised of the remaining data from all print layers, including those layers not
ever shown to the model during training phase. To aid model training, all features were centered by dividing to
their average values.
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(a) Visual camera image (b) SWIR camera image

Figure 2: (a) A sample frame captured with visible spectrum range camera, and (b) A sample frame captured
with SWIR camera. The SWIR image has been cropped and resampled to show a similar field of view as the
visual camera image.

2.4 Image Feature Extraction and Fusion

Leveraging a subset of the data, we train two fully-connected VAEs to extract meaningful features from both
input modalities. As depicted in Fig 3, the neural network architecture comprises a probabilistic encoder, eϕ(x),
which compresses the input image x into a lower-dimensional probabilistic representation Z (feature space). This
representation is modeled as a multivariate Gaussian probability distribution, characterized by a mean vector µ
and covariance matrix Σ: Z = eϕ(x) = N (µ,Σ). Subsequently, the decoder dθ(z) reconstructs the output image
x̂ from the features, z sampled from the multivariate Gaussian distribution Z.

Each layer of the VAE employs a fully-connected architecture, with the exception of the connections between
the multivariate Gaussian, with its mean vector µ and variance vector σ, and a feature vector z. This connection
utilizes a sampling procedure. Following each fully-connected layer, batch normalization and a rectified linear
activation function (ReLU) are applied, except for the encoder’s final layer. The layer dimensions are specified
at the top of Fig. 3. The VAE is optimized using a loss function (Eq. 1) that balances reconstruction accuracy
and feature space smoothness:

L(x, x̂) = ||x− dθ(eϕ(x))||22 + β KL(eϕ(x) || N (0, I)) (1)

where KL(·) denotes the KL-divergence loss which is used to enforce smoothness in the feature space. In-
spired by the β-VAE,20 we introduce an extra scalar β that dynamically adjusts the KL-divergence loss using a
ControlVAE21 framework that steers the KL-divergence loss towards a specific set value using a non-linear PI-
controller. This approach has been shown to improve reconstruction performance while maintaining comparable
KL-divergence values.

The VAE models were optimized using the Adam optimizer22 with a learning rate of 0.0005, a batch size of
64, and a training duration of 30 epochs. Following each epoch, the learning rate was dynamically adjusted using
an exponential decay factor of γ = 0.99. The KL-divergence loss target was set to 40, and the PID controller
was updated after each epoch.

During training, the target output is set to match the input, encouraging the network to learn a probabilistic
lower-dimensional representation z that effectively summarizes the input image. The mean vector of the lower-
dimensional representation then serves as a set of features that capture the essential characteristics of the input
datum. The incorporation of a probabilistic encoder and the KL-divergence term distinguishes a VAE from
a regular autoencoder (AE). The probabilistic encoding promotes smooth variations in reconstructed images.
Simultaneously, the KL-divergence regularizer drives the encodings to organize themselves in the feature space,
leading to several benefits:
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Figure 3: The architecture of the VAE.

• Enhanced Semantic Interpretation: Neighboring encodings correspond closely in the input space, facilitat-
ing meaningful interpretation of the acquired features.

• Improved Disentanglement: Each dimension in the feature space is strongly correlated with a single factor
of variation in the input space, enabling disentanglement of the underlying factors of variation.

• Enhanced Interpolation Capabilities: The smooth transitions in the feature space allow for effective inter-
polation between data points.

These advantages collectively contribute to greater interpretability of the acquired features, facilitating compre-
hensive analysis and furthering our understanding of the underlying data.

During defect detection, only the encoder parts of the VAEs are used to process the image. At that point the
encoders serve merely as feature extractors. The corresponding two sets of features, one for each modality, are
then input into the defect detection model. The combination, or fusion, of these features is a simple concatenation.

Leveraging the inherent smoothness of the VAE’s feature space, we can randomly sample from the feature
space, decode the samples, and generate corresponding samples in the image space. This enables us to analyze
the role of each feature by systematically varying its value while keeping other features constant, and then
observing the resulting image-space variations. Preferably, the sequence of images generated per feature should
exhibit a meaningful relationship with physical properties of the melt pool, facilitating interpretation.

To validate this concept, we generated and decoded a sequence of samples for each feature in the feature
space. For each sample in the sequence corresponding to a feature dimension, we constructed a vector where
each dimension value is set to 0 except for the element of that dimension, which was set to a specific value. This
was ranged from −3 to 3 standard deviations in increments of 0.5. The corresponding decoded images were then
visualized. This was done for both imaging modalities.

2.5 Prediction model

In these experiments, complex models and deep neural networks are categorically ignored mainly due to strict
run-time limitations of the problem.18 Instead we utilize a compact model which was previously demonstrated
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to make reliable predictions.13 The model is a 2 layer perceptron consisting of 2 fully connected dense layers
with 164 neurons in the hidden layer, a sigmoid activation function in the hidden layer, and a rectified linear
unit (ReLu) activation function in the output. The model is implemented in python language using Keras neural
network library.23 To facilitate better comparison conditions, the model is trained with 100 epochs with the
Adam optimizer and the mean absolute error loss function. These settings remain constant for separate training
sessions conducted for each camera sensor and their combinations, which hereafter we refer to them as VIS,
SWIR, and SWIRVIS for those models trained with features from the visible wavelength range camera, SWIR
camera, and both together respectively.

3. EXPERIMENTAL RESULTS

In this section first we explain the results of post-print scanning of the test object and analysis of the created
pores in response to the tested laser settings. This analysis effectively generates the ground-truth data for
evaluation of prediction model. Next, extracted VAE features are demonstrated and analyzed. Finally, porosity
prediction results are then presented and analyzed.

3.1 CT segmentation

Figure 4: Left side: Illustration of Vertical slice of the cylinder CT scan aligned to the CAD model. The overlaid
green horizontal lines represent the position of print layers with off-nominal laser power and speed, while red
and blue regions represent those print layers with nominal setting in the cylinder bulk. Top right: A sample
horizontal slice of layer 410 printed with 2x nominal laser speed which created the lack of fusion. Bottom right:
A sample horizontal slice below layer 186 printed with 1/3x nominal laser speed which created keyhole porosity.

After printing, detachment from the printer bed, and grinding and polishing to remove the supports, the
3D printed cylindrical object was CT scanned resulting in a CT reconstruction with isotropic 10 µm voxel
resolution. The CT scan was denoised with a total variation denoising method24 and thresholded to create a
pore segmentation.
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(a) VIS features only (b) SWIR features only (c) SWIR and VIS features together

Figure 5: Final porosity prediction results averaged over each print layer in our test set. Ground truth pore
density values for each error layer are indicated with circle markers as well. (a) Prediction results based on
model trained with only VIS features. (b) Prediction results based on model trained with only SWIR features.
(c) Prediction results based on model trained with both SWIR and VIS sensor fused features.

Registration of the CT reconstruction with the experiment’s coordinate system was performed by minimizing
the deviation of several features from their theoretical values with respect to translation and rotation degrees of
freedom. A side view of the aligned CT scan with the CAD model is shown in Figure 4. The error lines that
created porosity are indicated as overlaid green lines. When keyhole pores are created, significant differences can
be observed on the number and depth of the pores. This is to be expected: the penetration depth of the laser
and the subsequent keyhole pore creation processes show a complex dependence on the laser parameters.25

Table 1, summarizes main characteristics of the error layers and presents the extracted target pore densities
for the lack of fusion and keyhole porosity. Note that not all the off nominal laser settings resulted in inducing
porosity on the printed object. This is particularly important for the porosity prediction task because the
prediction model has to learn the real transitions from conduction mode to the pore creation modes instead
of learning to merely react on any detection of variation in laser parameters and corresponding melt pool
characteristics.

3.2 Porosity prediction results

After separately training the prediction model with VIS, SWIR and SWIRVIS features, the trained models are
tested over the test set mentioned in section 2.3. Figure 5 shows the test results for each set of sensor features
averaged per layer. This way, the average of the predictions is depicted per layer for the density of the LoF or
Keyhole pores, densities whose ground truth values were extracted from the CT scan analysis.

It is immediately clear from the VIS-only prediction results that while the model been able to accurately
predict the density of both LoF (shown in red color plot) and keyhole (shown in green color) for the layers of
which they are generated, the keyhole predictions in the non-defective layers (essentially containing no pore)
appear to be highly noisy including lots of false positive cases. Initially, we expected that this over sensitivity
issue of the VIS model was due to sub-optimal performance of the VAE in generating features which encode the
melt pool information. However, our multiple attempts to regenerate VIS features (not reported in this paper)
while fine tuning the VAE parameters, revealed that this issue is mainly inherent to the quality of the image data
and potentially can be improved by better camera sensor calibration. Nonetheless, we did not further investigate
hardware related solutions which will remain for future work.

Figure 5b shows the prediction result for the model trained with the SWIR features. Two important dif-
ferences can be observed when compared with the VIS-only case of Figure 5a: First, the SWIR model fails to
react to the lack of fusion layer while more accurately predicting the pore densities in layers generating keyhole
pores. This demonstrates that rise of the laser energy density when transitioning from the conduction mode to
the keyhole generation mode is accurately captured via its thermal signatures (e.g., visible increase in size of the
melt pool thermal emission, spatters, cool down rate of the melt pool trail, etc.), while the drop in laser thermal
footprints when transitioning to the LoF generation mode seems not to be as evident, and thus not being picked
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Figure 6: Importance Analysis of the VAE features based on their contribution to the final porosity predictions

up by the VAE encoded features. Second, compared to the VIS-only predictions, keyhole density predictions in
non-defective layers are significantly less noisy and more stable. This again demonstrates the clear distinction the
prediction model can make between thermal signatures of melt pool when transitioning to the keyhole regime.
Further investigation on the VAE features is required to verify our reasoning, investigations which we plan to
pursue later.

Arguably the best prediction results can be observed when the model is trained on fusion of both SWIR and
VIS features. Figure 5c, demonstrates the SWIRVIS model results. It is interesting to see that the prediction
model has been able to capture the positive aspects of each feature set and provide not only accurate predictions
for both lack of fusion and keyhole layers but also correctly identify the non-defective layers with very low noise.

3.3 Analysis of the results

After successful demonstration of prediction results from sensor-fused VAE features, we would like to further
investigate the individual contribution of each feature to the final prediction performance. To do so, we conduct a
permutation importance analysis.26 Permutation importance is a model inspection technique that can be used for
any fitted estimator when the data is tabular. It is a method that shuffles the values of each feature and measures
its impact on the model’s final performance. The more the performance drops, the more important the feature
is. Permutation importance is model-agnostic and can be calculated many times with different permutations
of each feature. For our case, we conduct the analysis with 10 different permutations for each SWIR and VIS
feature on the SWIRVIS trained model over the test set. Figure 6 shows the final calculated importance scores
averaged over the 10 trials. The standard deviation of the calculated scores for all features is 0.04± 0.02 which
represents good reliability of the assigned scores. Features in Figure 6 are sorted and color coded based on their
mean importance scores for improved readability. Looking at the top 10 important features, it is clear that SWIR
sensor features are dominant (7 out of 10) and have more significant role in accurate porosity predictions overall,
with feature ”SWIR 3” by a large margin being chosen as the most important feature, followed by ”SWIR 2”
and ”SWIR 14”.

Fig 7 shows some example images that were sampled from the top five most important VAE features using
the earlier described method. From top to bottom, these represent the 3rd SWIR feature, 2nd SWIR feature,
14th SWIR feature, 10th VIS feature, 13th VIS feature. Seemingly, the 3rd SWIR feature is highly correlated to
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Figure 7: Resulting sequence of images (horizontally) of 5 features after decoding specifically created feature
samples. Top to bottom: 3rd SWIR feature, 2nd SWIR feature, 14th SWIR feature, 10th VIS feature, 13th VIS
feature.

the size of the melt pool. It is thus not unsurprising that ”SWIR 3” is significant in predicting porosity. Melt
pool size is in turn heavily correlated to energy density and thus keyhole, nominal and LoF printing modes.9

Meanwhile, the 2nd SWIR also seems to be somewhat related to the size as well as to the size and direction
of the melt pool wake. The 14th SWIR feature shares some similarities to the 3th SWIR feature although it
appears that the melt pool size remains constant and the streaks appear to be longer and more straight. This
could be more correlated to large vapor plumes, mostly associated with high energy densities. Similarly, large
melt pool wakes are associated with large energy densities (keyhole), while the lack thereof could indicate low
energy densities (LoF).9

Finally, the 10th VIS feature looks to be both correlated to the size of the melt pool as well as the occurrence
of spatter particles. Similarly, the 13th VIS feature is also correlated to spatter particles, but in addition, to the
size and direction of the spatter particles. These results also make sense as the occurrence, size, and direction of
spatter particles have been shown27 to be strong indicators for melt pool stability.

These results show that the VAE is capable of producing features that are correlated to the physical phe-
nomena that we expect to occur during printing. However, it is necessary to note that this is not the case for
every produced feature. We noticed that some of the less important features appear to be more abstract or noisy,
whilst other appear to show no changes at all in the image space. These results may indicate that a more com-
pact representation exists. Although the features show some disentanglement, it is clear that there is still some
semantic overlap between features. This can be improved by putting more weight on the KL-divergence, but it
should be noted that this weighting may lead to a decreased reconstruction quality since these two properties
are in a direct trade-off.

In addition to this feature analysis, we investigated the possibility of reducing the number of fused features
based on the importance analysis results. We aim for training our pore prediction model while dropping 25%(8
features), 50% (16 features) and 75% (24 features) of least important features from the model input. However, our
initial experiments showed that dropping 75% least important features already causes the model to completely
miss on picking up the lack of fusion layer. This was due to the fact that not enough VIS features were kept (only
2 out of 8). We were able to resolve this issue by keeping two more features (the top 10 features in total) which
included one more VIS feature as well. Figure 8 demonstrates the prediction performance of these redacted
feature sets tested on the test set. Comparing the results with those in Figure 5c as our reference, it is clear that
even by dropping 60% of the least important features in case of Figure 8a, we can achieve a close performance
both in detecting LoF and keyhole layers as well as stable predictions in the case of non-defective layers. This
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(a) SWIRVIS Top10 (b) SWIRVIS Top16 (c) SWIRVIS Top24

Figure 8: Final porosity prediction results averaged over each print layer in the test set. Ground truth pore
density values for each error layer are indicated with circle markers. (a) Prediction results based on model
trained with the top 10 important VIS and SWIR features. (b) Prediction results based on model trained with
the top 16 important VIS and SWIR features. (c) Prediction results based on model trained with the top 24
important VIS and SWIR features.

accuracy continues to improve by keeping 50% of the most important features in case of Figure 8b to the point
that for the case of keeping top 75% most important features shown in Figure 8c, we observe that dropping
those 25% least important features actually makes some improvements over the case of using all the features.
For example, a false positive Lof detection in layer 75 of Figure 5c no longer shows up in Figure 8c. The keyhole
pore density predictions are also equally accurate and stable.

To further quantify our qualitative analysis, we calculate the Pearson Correlation Coefficient (PCC), Spear-
man Rank order Correlation (SROC) and the Mean Squared Error (MSE) between the set of all predicted pore
density values and the target values over the validation set. We also present a layer-wise comparison over the test
set where we averaged prediction results per print layer separately for each porosity, and then averaged across
porosity types. We also calculated the MSE and normalized it over the maximum ground truth values such that
resulted prediction error values are comparable across differently trained models. These results are summarized
in Table 2 We observe that all of these quality measures verify our qualitative analysis as well by giving highest
correlation scores and lowest prediction errors to the case of SWIRVIS with all 33 features or with selected top
24 important features.

Table 2: Porosity prediction performance of the tested model using different combinations of the VAE features.
Pairwise comparisons are performed for all single prediction values over the testset-1. Layer wise comparisons
are performed over average of single predictions per print layer in testset-2.

SWIR all16 VIS all16 SWIRVIS all33 SWIRVIS top24 SWIRVIS top16 SWIRVIS top10

Pairwise comparison
PCC 0.9741 0.9457 0.9839 0.9827 0.9729 0.9493
SROC 0.8916 0.8862 0.9173 0.9095 0.8981 0.8787
MSE 0.2204 0.4394 0.135 0.1462 0.2253 0.411

Layerwise comparison
NMSEAll 0.0045 0.06 0.0021 0.0024 0.004 0.008
NMSElof 0.0124 0.003 0.0025 0.0022 0.0041 0.0108
NMSEkeyhole 0.0045 0.1189 0.0033 0.004 0.0064 0.0121

4. CONCLUSIONS

In this work, we propose a low-latency LPBF defect detection algorithm based on fusion of images from high-
speed cameras in the visible and short-wave infrared (SWIR) spectrum ranges. First, we designed an experiment
to print an object while imposing lack of fusion and keyhole porosity defects on certain print layers by changing
the laser power and speed parameters. During the print, the laser’s melt pool was recorded with the two high-
speed cameras at nominal sampling rates of 20 kHz. We utilized a variational autoencoder to automatically
extract two sets of meaningful features from the corresponding raw sensor images. The melt pool image features
are then annotated with each layer pore densities extracted from the CT scan of the printed object. These
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annotations are further utilized as ground truth for supervised training and evaluation of a compact neural
network model to predict the occurrence of porosity from the fused features. We compared the prediction
performance of our sensor fused model with models trained on image features from each camera separately. We
observe that the SWIR imaging is sensitive to keyhole porosity while the visible-range optical camera better
characterizes lack-of-fusion porosity. By fusing features from both cameras, we are able to accurately predict
both pore types, thus outperforming both single camera systems. We also conducted a feature importance
analysis and demonstrate that by redacting 25% of the fused features based on their importance scores, we can
achieve comparable performance thus further reduce the computational load of the proposed monitoring pipeline.
It should be noted that after completing the training phase both for the unsupervised training of the VAE model
as feature extractor, and the supervised training of the prediction model, our proposed setup can achieve in-situ
monitoring with a similar amount of computations as an existing real-time monitoring system,18 suggesting that
the defect prediction latency of this monitoring system is comparable to the state-of-the-art. This brings us one
step closer to create a closed-loop control to automatically steer the laser settings for optimal defect-free LPBF
printing.
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