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Abstract: Recent advancements in high dynamic range (HDR) display technology have significantly
enhanced the contrast ratios and peak brightness of modern displays. In the coming years, it is
expected that HDR televisions capable of delivering significantly higher brightness and, therefore,
contrast levels than today’s models will become increasingly accessible and affordable to consumers.
While HDR technology has gained prominence over the past few years, low dynamic range (LDR)
content is still consumed due to a substantial volume of historical multimedia content being recorded
and preserved in LDR. Although the amount of HDR content will continue to increase as HDR
becomes more prevalent, a large portion of multimedia content currently remains in LDR. In addition,
it is worth noting that although the HDR standard supports multimedia content with luminance
levels up to 10,000 cd/m2 (a standard measure of brightness), most HDR content is typically limited
to a maximum brightness of around 1000 cd/m2. This limitation aligns with the current capabilities
of consumer HDR TVs but is a factor approximately five times brighter than current LDR TVs. To
accurately present LDR content on a HDR display, it is processed through a dynamic range expansion
process known as inverse tone mapping (iTM). This LDR to HDR conversion faces many challenges,
including the inducement of noise artifacts, false contours, loss of details, desaturated colors, and
temporal inconsistencies. This paper introduces complete inverse tone mapping, artifact suppression,
and a highlight enhancement pipeline for video sequences designed to address these challenges. Our
LDR-to-HDR technique is capable of adapting to the peak brightness of different displays, creating
HDR video sequences with a peak luminance of up to 6000 cd/m2. Furthermore, this paper presents
the results of comprehensive objective and subjective experiments to evaluate the effectiveness of the
proposed pipeline, focusing on two primary aspects: real-time operation capability and the quality of
the HDR video output. Our findings indicate that our pipeline enables real-time processing of Full
HD (FHD) video (1920 × 1080 pixels), even on hardware that has not been optimized for this task.
Furthermore, we found that when applied to existing HDR content, typically capped at a brightness
of 1000 cd/m2, our pipeline notably enhances its perceived quality when displayed on a screen that
can reach higher peak luminances.

Keywords: high dynamic range; inverse tone mapping; single-image HDR reconstruction; tone
mapping; display re-targeting

1. Introduction

High dynamic range (HDR) imaging is a technology that has revolutionized how we
capture, display, and perceive visual content. Unlike conventional imaging techniques,
which struggle to faithfully reproduce the full range of brightness levels present in the real
world, HDR technology empowers us to capture and showcase the incredible diversity of
luminance values, from the deepest shadows to the most brilliant highlights.
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Luminance, a measure of emitted light intensity, is quantified in candelas per square
meter (cd/m2), often referred to as “nits”. One nit equals a luminance value of 1 cd/m2. In
the real world, scenes can vary widely in brightness, ranging from extremely bright, such
as sunlight that exceeds 10,000 cd/m2, to very dark shadows with near-zero luminance.

The contrast ratio, a key aspect of display performance, is the ratio of the brightest and
darkest luminances a display can reach. Contrast ratio, also known as “dynamic range”, is
measured in exposure value (EV) differences, also known as “stops”, which is the logarithm
base-2 of the contrast ratio. Therefore, one unit increase in one EV, or one-stop, means that
the screen’s brightness has doubled [1].

While conventional display technology typically achieves brightness levels ranging
from 1 cd/m2 to 300 cd/m2 and encompasses a limited dynamic range of up to eight stops,
it pales in comparison to the luminance variations encountered in real-world scenes. This
stark contrast becomes even more pronounced when considering that the human eye dis-
cerns a dynamic range of up to 14 stops within a single visual field. Evidently, conventional
display technology falls short in faithfully reproducing the nuanced luminance realism
inherent to our visual experiences.

Recent advancements in display technology have ushered in a new era of HDR
displays, offering a remarkable boost in dynamic range and brightness. HDR prototype
displays utilizing arrays of independent high-power light emission diodes (LEDs) as
backlight units have achieved extraordinary milestones, boasting a peak brightness of
10,000 cd/m2 and an impressive 17 stops of dynamic range [2,3]. Similarly, organic light-
emitting diode (OLED) technology has started taking a significant market share in the
production of HDR consumer televisions.

Figure 1 illustrates the fundamental differences between LED and OLED display
technologies. As illustrated, LED displays utilize high-power LED backlights to illuminate
liquid crystal pixels. In contrast, the LEDs in OLED technology independently emit
light without the need for a backlight, thereby dramatically improving contrast ratio and
energy efficiency [4]. Recently, at the Consumer Electronics Show (CES) in 2023, the
company LG presented its new OLED META technology. This technology incorporates
two major components into LG’s current OLED platform: a MLA (micro lens array), which
significantly enhances the light emission efficiency of OLED displays, and a META booster,
which is an advanced algorithm that dynamically analyzes and adjusts scene brightness in
real-time. This innovation allows for improved brightness, contrast, and energy efficiency
of OLED displays, allowing them to achieve a peak brightness of 2100 cd/m2.

OLED

Color	filter	RGB

White	LED	
Backlight	Unit	(BLU)

Liquid	crystal	(LCD)

LED

Figure 1. Comparison between LED and OLED display technology.

Emerging technologies such as mini-LEDs (mLEDs) and micro-LEDs (µLEDs) are also
making significant contributions to enhancing the dynamic range in modern displays [5,6].
It is expected that, in the coming years, HDR displays for the consumer market will
reach higher peak brightness than today’s standards, enhancing their ability to mimic the
luminance of real-world scenes more accurately.

HDR content, associated with cutting-edge HDR display technologies, features media
with dynamic ranges surpassing 14 stops [7]. This capability allows HDR content to
showcase a much wider spectrum of luminance and colors compared to traditional low dy-
namic range (LDR) content, also known as standard dynamic range (SDR). While LDR is a
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general term for media with limited dynamic range, SDR specifically refers to conventional
broadcast standards. The terms LDR and SDR are often used interchangeably, which can
lead to confusion. However, for the purposes of this article, they are synonymous and refer
to content characterized by a lower dynamic range.

While HDR content is gaining popularity, it remains a relatively recent advancement
in both video acquisition and display technology. Therefore, not only is historical media
content only available in LDR, a large amount of legacy LDR content is still consumed. As
HDR becomes more prevalent, the proportion of HDR content will increase, but for now,
the vast bulk of media archives worldwide remain in LDR.

To display LDR content accurately on HDR screens, it must undergo a process known
as inverse tone mapping (iTM), which converts LDR content to HDR (up-conversion) [1].
Traditionally, iTM methods have been designed to create HDR images with the best subjec-
tive quality when viewed on HDR screens. These methods vary in complexity and approach,
ranging from simple techniques that retain key attributes of the LDR content such as con-
trast and color [8–14], to more complex machine learning-based techniques [15–21]. In
addition, other LDR-to-HDR conversion methods, known as single-image HDR reconstruc-
tion (SI-HDR) methods, have recently emerged. Unlike conventional inverse tone mapping
methods, SI-HDR methods work on estimating physical light quantities and reconstruct-
ing missing details in overexposed or saturated regions [22–30]. Despite advancements,
LDR-to-HDR conversion encounters the following challenges:

• Noise artifact boosting: Noise artifacts are ubiquitous in almost all LDR content.
However, due to the low contrast and luminance levels of LDR displays, these are
often imperceptible to the human eye. However, when this content is expanded to the
HDR domain and displayed on an HDR screen, these artifacts can become noticeable.

• False contouring: This issue refers to the creation or emphasis of artifacts known as
false contours. In HDR images, these contours emerge due to the coarse quantization
of smooth regions into finite codewords, where a significant number of codewords are
required to achieve a gradual color transition in the HDR domain [31].

• Lack of detail in under/overexposed regions: When a scene is captured in LDR, it
may not fully represent areas with extremely bright or dark elements, leading to a
loss of intricate detail. This issue can stem from two distinct causes: the technological
limitations of the camera sensor in capturing the full spectrum of luminance values
and intentional artistic grading choices that aim to suppress certain parts of the
dynamic range for aesthetic purposes. For instance, in a high-contrast scene, details in
very bright regions (overexposed) or very dark regions (underexposed) might not be
fully captured due to the sensor’s dynamic range limitation. Simultaneously, during
the grading process, deliberate enhancement or reduction of these details occurs,
aligning with the artistic vision within the constraints of a limited dynamic range.
The challenge for inverse tone mapping methods lies in reconstructing the lost details
in these regions, details such as subtle textures, shadow gradients, or highlights not
captured in the original LDR image.

• Desaturated color appearance: Saturation in images refers to the intensity or purity
of colors. Highly saturated colors appear vivid and intense, while desaturated colors
appear muted and dull. In the context of inverse tone mapping, the problem arises
when the color intensity of certain elements in the resulting inverse tone mapped
HDR image appears less vibrant or vivid compared to the original LDR content. It
has been observed that desaturation not only depends on the expansion function
used in inverse tone mapping methods but also on the colorfulness of the input LDR
content [12].

• Temporal artifacts: This problem refers to visual inconsistencies or irregularities that
occur over time when applying inverse tone mapping methods to video sequences.
These issues stem from the fact that each frame is processed independently, without
any reference to the previous frame’s state. This can lead to noticeable disruptions
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in the appearance of the video. Common examples of temporal artifacts include
flickering, object incoherence, and brightness incoherence.

In this paper, we present comprehensive inverse tone mapping, artifact suppres-
sion, and a highlight enhancement pipeline for video sequences designed to address the
challenges described above. This work significantly advances our earlier contributions,
strategically extending our inverse tone mapping approach for LDR images, initially intro-
duced in [13,32], and seamlessly integrating it with our decontouring algorithm detailed
in [31] to formulate a comprehensive LDR-to-HDR conversion pipeline optimized for video
content. Furthermore, we introduce new steps for artifact suppression and a novel step for
highlight enhancement, with the explicit aim of elevating the quality of the resultant HDR
video sequence. Furthermore, we introduce an innovative application of our pipeline that
increases the brightness of existing HDR content in a careful way. Typically, HDR content
is limited to a peak brightness of around 1000 cd/m2. Our approach enables an increase in
peak brightness up to 6000 cd/m2, markedly improving its visual quality.

The main contributions of our research are as follows:

1. We developed a comprehensive LDR-to-HDR conversion pipeline for video sequences
capable of adapting to the peak brightness of different displays. Our pipeline can cre-
ate HDR video sequences that significantly exceed the peak brightness capabilities of
current state-of-the-art iTM techniques. This capability is particularly significant given
that future television technologies are expected to support even greater brightness
levels than those currently available.

2. We propose a novel method to detect and enhance highlights in HDR content. Our
method is designed to identify and boost highlights while staying within the technical
limits of the display device. This simultaneously maximizes the dynamic range and
enhances the visual impact of the HDR video.

3. We present an innovative application of our pipeline to significantly increase the over-
all brightness of existing HDR content acquired at lower luminance levels. This results
in HDR video sequences with peak brightness exceeding current HDR standards,
thereby delivering a considerable improvement in visual quality.

4. We present the results of comprehensive objective and subjective experiments evaluat-
ing the effectiveness of our proposed LDR-to-HDR conversion pipeline. We focused
on two primary aspects: real-time operation capability and the quality of the HDR
video output. HDR video quality was assessed via three experiments: (1) objective
evaluation of LDR-to-HDR converted videos obtained from our pipeline and two
state-of-the-art methods, (2) subjective evaluation of LDR to HDR converted videos
obtained from our pipeline versus original LDR content, and (3) subjective evaluation
of HDR to xHDR converted videos using an alternative application of our pipeline.

The structure of this paper is organized as follows: Section 2 provides an overview of
prior works in the field. In Section 3, we delve into the details of our proposed LDR-to-HDR
pipeline. The experimental setup and outcomes are presented in Section 4, including an
evaluation of our pipeline for enhancing the perceived quality of existing HDR content.
Finally, Section 5 presents our concluding remarks and future research directions.

2. Related Work

While several methods for inverse tone mapping have been developed, many are
optimized for images. Extending these techniques to video sequences introduces distinct
challenges, often resulting in troublesome temporal artifacts. In particular, learning-based
methods have been found to produce noticeable artifacts, especially in overexposed ar-
eas. Moreover, the appearance of these artifacts varies significantly between consecutive
frames within a video sequence [23]. In this section, we explore more recent LDR-to-HDR
approaches specifically tailored to video sequences.

In [11], one of the first inverse tone mapping methods for video sequences is pre-
sented. This approach is oriented to managing situations where input images contain
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extensive overexposed regions, allowing for the creation of high-quality HDR images and
videos across various exposure conditions. The method involves the computation of an
“expand map” derived from the input LDR image. This map identifies areas where image
information may have been lost. These regions are meticulously filled using a smooth
function to avoid the creation of artifacts. Notably, the authors propose a cross-bilateral
filtering technique as a smooth function; the results demonstrate its ability to generate
smooth gradients while preserving intricate details from the original image.

In [15], an inverse tone mapping method based on deep convolutional networks
(CNN) known as deep SR-ITM (super-resolution inverse tone mapping) is introduced. Un-
like other CNN-based methods [22,23], what sets this method apart is its ability to restore
lost details across the entire image, not just within overexposed regions. Significantly, deep
SR-ITM is trained using 4K-PQ-encoded videos in the Rec.2020 (BT.2020) color space. This
training allows it to produce HDR video frames directly encoded in PQ-OETF, making this
method practical for HDR TV applications. Moreover, deep SR-ITM can upscale the resolu-
tion of an input LDR image to 4K-UHD (3840 × 2160 pixels resolution) while concurrently
expanding its dynamic range. This method uses a so-called “Joint Convolutional Neural
Network” designed to both enhance the dynamic range (through inverse tone mapping)
and retrieve lost fine details (via super-resolution).

In [16], JSI-GAN, a method based on generative adversarial networks (GAN), is
presented. Similar to SR-ITM, it can increase the resolution of the LDR input image/frame
during the inverse tone mapping operation. JSI-GAN is trained on the same data as deep
SR-ITM, and it also produces HDR images/frames directly encoded in PQ-OETF in the
Rec.2020 color space. JSI-GAN comprises three task-specific sub-nets, each serving a unique
purpose: (i) a detail restoration sub-net, (ii) a local contrast enhancement sub-net, and (iii)
an image reconstruction sub-net.

HDRTVNet, a pipeline to create HDR content from LDR content for TV, is presented
in [17]. This three-step pipeline solution includes adaptive global color mapping, local
enhancement, and highlight generation. The adaptive global color mapping converts the
input LDR content into the HDR domain. Local enhancement acts as a refining process,
increasing the local contrast of the resulting HDR image using local information. Highlight
generation focuses on the overexposed areas of the image to restore any information that
may have been lost. Each step in the pipeline is performed using CNNs, and as in previous
methods, the resulting HDR image is encoded with PQ-OETF in the Rec.2020 color space.
A refined iteration, HDRTVNet++, is presented in [33], offering enhanced restoration accuracy.

In [20], a novel approach for converting LDR to HDR conversion is presented by intro-
ducing the frequency-aware modulation network (FMNet). Traditional CNN techniques
often face challenges with artifacts appearing in low-frequency regions. FMNet addresses
this limitation by including a frequency-aware modulation block (FMBlock). Instead of
treating all features equally, the FMBlock smartly modulates features by discerning their
frequency-domain characteristics. To achieve this, it harnesses the power of the discrete
cosine transform (DCT), a tool known to capture frequency-based details. FMNet is trained
on the same dataset used to train the previously described HDRTVNet, creating HDR
images directly encoded with PQ-OETF and in the Rec.2020 color space.

In [34], a CNN-based joint SR-ITM (super-resolution and inverse tone mapping)
framework is presented. As with [20], this method focuses on avoiding color discrepancy
and preserving long-range structural similarity in the image. This method proposes using
a global priors-guided modulation network (GPGMNet). The main components of this
network are the joint modulated residual modules (JMRMs), the global priors extraction
module (GPEM), and the upsampling module. The GPEM extracts color conformity and
structural similarity priors that are equally beneficial for SDRTV-to-HDRTV and SR tasks.
The JMRM includes a spatial pyramid convolution block (SPCB) and a global priors-guided
spatial-wise modulation block (GSMB). The SPCB provides multi-scale spatial features to
the GSMB, which then modulates these using global priors and spatial information. Using
a simplified global priors vector and consolidated spatial feature map, GPGMNet achieves
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effective feature modulation with fewer computational needs than other methods. The
final 4K HDR (PQ/BT.2020) image is created by adding the residual from the predicted
image to an up-scaled image.

In a recent study presented in [35], the authors introduce an SDR-to-HDRTV up-
conversion technique. While most methods yield dim and desaturated outputs, this
approach aims to produce HDR images that are not only accurate in reconstruction but
also perceptually vibrant, enhancing the viewer’s experience. To achieve this, the authors
created a unique training set and new evaluation criteria grounded in perceptual quality
estimation. The new dataset is used to train a luminance-segmented network (LSN)
consisting of a global mapping trunk and two transformer branches on bright and dark
luminance ranges.

These works share a common goal with our research: to increase the dynamic range of
LDR video sequences. However, because they often focus on individual frame processing,
these techniques may induce temporal artifacts when the frames are stitched together into
a video sequence. Additionally, they tend to introduce artifacts in oversaturated regions.
Furthermore, they are generally limited to producing HDR content with peak brightness
levels that match current HDR screens, typically around 1000 cd/m2.

Our study extends the existing research on inverse tone mapping of video sequences
by introducing a complete LDR-to-HDR conversion pipeline specifically designed for this
context. Our pipeline addresses the key limitations observed in previous works: it prevents
the occurrence of artifacts using a simple expansion global operator, minimizes temporal
artifacts by incorporating mechanisms for improved frame-to-frame stability, and supports
peak brightness of up to 6000 cd/m2, exceeding the typical 1000 cd/m2 peak brightness of
most approaches. In addition, its streamlined design facilitates real-time processing , a
critical requirement for many practical applications.

3. Materials and Methods: A Pipeline for Dynamic Range Expansion of Video Sequences

In the previous section, we explored various methods to convert LDR video sequences
into HDR. These methods can produce high-quality HDR content characterized by sharp
contrasts and luminous highlights, and have the capacity to restore missing details in
overexposed regions. However, these methods also exhibit several of the limitations
commonly present in LDR-to-HDR conversion methods. These include, but are not limited
to, the manifestation of temporal and spatial artifacts. Furthermore, these methods are
constrained to producing HDR content with lower peak luminance levels, which becomes
an important drawback as television technology evolves to support higher brightness levels.
Moreover, the complexity inherent to some of these techniques and their resource-intensive
nature makes them less viable for practical implementations. This includes scenarios like
real-time LDR to HDR conversion and integration into devices with limited computational
capabilities, thus restricting their applicability in everyday technologies such as smart TVs
and decoders.

Given these factors, our research has produced a novel pipeline designed for efficient
conversion of LDR video sequences into HDR. The primary aim of our method extends
beyond the simple reversal of existing tone mapping, comprising both artistic nuances
and technological constraints inherent to LDR content. Instead, our approach is designed
to execute a comprehensive LDR-to-HDR conversion process. This meticulously crafted
process seamlessly converts the original LDR footage into HDR, ensuring alignment with
the enhanced artistic vision often associated with HDR imagery. Such a vision encompasses
the achievement of deeper blacks, more luminous highlights, and vivid colors, all while
preserving the scene’s inherent naturalism.

The focus on video sequences in LDR-to-HDR conversion is important for several
reasons. Video sequences represent a significant portion of content production, from
television and film to online streaming and gaming. In addition, with a vast amount of
existing LDR content and the expectation that HDR screens will become standard in the
near future, there is a growing demand for innovative techniques to convert LDR video
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sequences to HDR and, therefore, to take advantage of the enhanced contrast and brightness
of upcoming HDR displays. Furthermore, new optimized algorithms capable of real-time
processing on display devices will be essential to meet this demand. These algorithms must
be designed to work efficiently within the limited resources typical of consumer displays
while ensuring frame-to-frame consistency to maintain visual coherence and prevent
temporal artifacts. Such consistency is particularly important in video sequences, where
even minor discrepancies between frames can negatively affect the viewing experience.

Our proposed pipeline extends the dynamic range of an LDR video sequence to be
suitable for reproduction on an HDR display with highlights that can reach a maximum
peak luminance of 6000 cd/m2, far surpassing most existing techniques. Our pipeline
enables a nuanced enhancement of the visual experience, faithfully reflecting the creators’
artistic intentions within the technological framework of HDR display capabilities. The
flowchart in Figure 2 illustrates our proposed pipeline, consisting of five key stages:

• Artifact suppression: Prior to dynamic range expansion, artifacts (e.g., arising from
compression) and noise in the LDR input image are effectively reduced.

• Dynamic range expansion: The luminance from the filtered LDR image undergoes
dynamic range expansion into HDR using a global operator. In this step, the maximum
luminance intensity is expanded to 4000 cd/m2, while the remaining 2000 cd/m2 are
allocated for additional highlight boosting.

• Dequantization: This stage addresses false contours that might emerge in areas
with smooth gradients following dynamic range expansion, effectively suppressing
these artifacts.

• Highlight boosting: By analyzing the luminance of the LDR image, overexposed/saturated
regions are identified. This information guides the boosting of highlights in the
expanded HDR luminance, increasing them to 6000 cd/m2 for enhanced visual impact.

• Saturation enhancement: The final HDR image is computed, and saturation is aug-
mented at the pixel level without compromising the overall luminance. This adjust-
ment compensates for the potential loss of colorfulness in the output. Each color
channel of the resulting HDR image is stored in a 16-bit floating-point format to ensure
accurate representation.

• Temporal consistency: We integrate a simple temporal coherence technique into our
pipeline to minimize temporal artifacts.

LDR
frame

Highlights
boosting

Saturation
enhancement

HDR
frame

Artifact�
supression

Dynamic�
range�

expansion

Luminance�data RGB�data

Dequantization

LDR HDR

Figure 2. Flowchart of the proposed pipeline for inverse tone mapping. The dynamic range of an
8-bit LDR frame is expanded into a 16-bit HDR frame with a peak luminance of 6000 cd/m2.

3.1. Artifact Suppression

LDR content inherently contains noise and artifacts, a characteristic often subtly
masked when displayed on devices with limited brightness and dynamic range [36,37].
However, it is important to note that the presence of such artifacts, especially those originat-
ing from compression, is by design. Compression algorithms are optimized for efficiency,
trading off imperceptible artifacts at lower dynamic ranges for reduced data sizes. Before
expanding the dynamic range, it is crucial to filter the LDR input to reduce the visibility of
these artifacts and noise, regardless of whether they stem from compression techniques or
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the camera sensor. This pre-emptive measure prevents the exacerbation of artifacts during
the dynamic range enhancement process. To achieve this, we employ a time-efficient imple-
mentation of the guided filter, specifically the “fast guided-filter” [38]. The guided filter,
renowned for its edge-aware image filtering capabilities, has demonstrated good perfor-
mance across various computer vision applications, including image denoising [39,40]. It is
able to remove/reduce noise and artifacts while preserving fine details and textures within
the image [41,42]. The fast-guided filter, an accelerated version of the original, maintains
nearly identical performance while significantly enhancing processing speed, outpacing its
predecessor by over ten times.

We utilize the fast-guided filter’s edge-preserving smoothing function to quickly and
effectively remove artifacts from an input LDR frame. For this, the filter uses the same
LDR input frame as the guidance image. The fast-guided filter has three parameters for
artifact denoising control and processing speed. These parameters are as follows: the local
window radius (r), the regularization parameter (ϵ) to manage the degree of smoothness,
and the subsampling ratio (s), which allows us to speed up the filtering process. The careful
adjustment of the first two parameters enables precise management of the filter’s intensity,
tailoring the final appearance of the processed frame to our desired specifications.

An outcome of this artifact denoising step is depicted in Figure 3, showcasing the
results obtained from an input frame measuring 1920 × 1080 pixels using the following
parameters: r = 32, ϵ = 0.12, and s = 4. This figure visually demonstrates the performance
of the fast-guided filter, effectively eliminating noticeable artifacts while preserving fine
details and textures within the image.

3.2. Dynamic Range Expansion

The core of our proposed inverse tone mapping pipeline is the dynamic range expan-
sion step. For this, we use our fully automatic inverse tone mapping method based on the
dynamic mid-level tone mapping proposed in [13,32].

Our dynamic range expansion method employs a global function initially devised
for adjusting game display settings and optimizing tone-mapping for HDR content. This
function, proposed in the context of enhancing gaming visuals, effectively maintains peak
brightness while adjusting middle-gray value in-game luminance, the overall perceived
brightness, to comfortable levels [43]. The middle-gray value, often referred to simply
as “middle gray”, represents a tone that sits perceptually midway between the extremes
of black and white on a lightness scale. The expansion function based on middle-gray
mapping is expressed as follows:

f (L(x, y)) = Lw(x, y) =
L(x, y)a

L(x, y)adb + c
s.t. L(x, y) ∈ [0, 1], (1)

where L(x, y) and Lw(x, y) represent the luminance of the filtered input LDR frame and
the corresponding luminance in the HDR output, respectively, at a given pixel (x, y).
Lw(x, y) ∈ [0, Lw,max], where Lw,max is the maximum luminance in Lw. This maximum
luminance value is determined based on either the desired peak brightness for the output
HDR video sequences or the peak brightness capability of the HDR display screen.

The shape of the curve is controlled by parameters a and d, which allow for contrast
adjustment and highlight expansion, respectively. If we define the following two condi-
tions: (i) for any value mi, f (mi) = mo and (ii) f (1) = Lw,max, and substitute the specific
values provided by the conditions into the expansion function defined in Equation (1),
parameters b and c that satisfy both conditions simultaneously can be computed by solving
the following equations:

mi
a

miadb + c
= mo, (2)

1
b + c

= Lw,max, (3)
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where the solutions for parameters b and c are as follows:

b =
mi

aLw,max − mo

mo(miad − 1)Lw,max
, c =

mi
admo − mi

aLw,max

mo(miad − 1)Lw,max
,

s.t. mi, mo ∈ (0, 1) Lw,max, a, d > 0.

Image with artifacts
 

Filtered image 
 

Figure 3. Example of artifact suppression using the fast-guided filter on an image with visible artifacts.
The parameters used were r = 32, ϵ = 0.12, and s = 4. In the zoomed region, artifacts in the lapel are
suppressed while fine details such as seams and wrinkles in the actor’s face are largely preserved.
(Image from the movie trailer “Dawn of the Planet of the Apes”: WETA/Twentieth Century Fox
Film Corporation).

Figure 4 illustrates the shape of our proposed expansion function. Parameter a deter-
mines the lower end of the curve, influencing the output’s contrast. On the other hand,
parameter d defines the curve’s upper shape, influencing the expansion of highlights. Typi-
cally, a d value greater than 1 is necessary in inverse tone mapping to adequately stretch
the highlights. Similarly, a a value close to 1 maintains the shadows, while a significantly
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larger a (a >> 1) compresses them in the output. We recommend a slightly higher value
of a to strike a balance between enhancing and preserving the shadows from the input
LDR frame in the resulting HDR output. Parameters mi (mid-level in) and mo (mid-level
out) define the anchor point of the expansion curve and represent the middle-gray value
defined for L and the expected middle-gray value in the output Lw, respectively.

Lw(x,y)

Lw,max

mo

mi

L(x,y)0
0 1

Lw,max

mo

mi

L(x,y)0
0 1

L

Lw Lw

Lw(x,y)

LDR luminance

HDR luminance

 Brightness decrease Brightness increase

d<1

d>1

a>1a<1

Figure 4. Dynamic range expansion based on mid-level tone mapping. The overall perception of
brightness of the expanded luminance (Lw) can be modified by fixing the mid-level in parameter
(mi) and varying the mid-level out (mo). Higher values of mo (right side of the image) will make Lw

brighter, and lower values (left part of the image) will make it darker. Parameters d and a can be used
to fine-tune the results, increasing the overall contrast and appearance of the highlights, respectively.

In our approach, parameter mi is set to the middle-gray value for the specific LDR con-
tent under processing. For instance, a value of 0.214 is assigned for an LDR content encoded
in the sRGB linear color space. Meanwhile, parameter mo determines the middle-gray value
intended for the resulting HDR frame, which essentially governs its overall brightness.

The mid-level output value is computed using basic features derived from the filtered
LDR input frame. In our previous research described in [13,32], we conducted a subjective
experiment where a group of LDR images were expanded into HDR using our proposed
expansion operator. For each image, the participants were asked to set the value of the
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middle-gray output that generated an HDR image closer to the corresponding HDR ground
truth, i.e., an HDR image with similar overall brightness. In this experiment, we collected
data on the middle-gray levels in the output used for inverse tone mapping a wide variety
of scenes. We then applied a multi-linear regression approach to model the relationship
between the middle-gray value in the output (as the dependent variable) and various
first-order statistical features (as independent variables).

From this analysis, our resulting regression model revealed that the estimation of mo
could be achieved by employing simple image statistics extracted from the LDR input
as follows:

mo = 0.017254 + 0.097477Lh + 0.008453C − 0.028491Pov, (4)

where Lh is the geometric mean, C is the contrast, and Pov is the percentage of over-exposed
pixels in the filtered LDR input frame. These parameters are computed as follows:

Lh = exp
(

1
N

N

∑
i=1

log(Li + ε)

)

C =

√√√√ 1
N

N

∑
i=1

(log(Li + ε)− log(Lavg + ε))2

Pov =
Nov

N
,

where Lavg is the average luminance value, Lmin is the minimum, and Lmax is the maximum
luminance value in the filtered LDR input frame. N is the total number of pixels, ε is a
small constant to avoid undefined values (here ε = 0.0001), and Nov is the total number
of overexposed pixels. The overexposed pixels refer to those pixels with at least one
color channel greater than or equal to 0.996 = 254/255. These values are computed after
excluding 5% of the pixels on the dark and bright sides, considered outliers.

As described in our previous research detailed in [32], and as reflected in Equation (4),
the geometric mean (Lh), which is the parameter that represents the perceptual overall
brightness of the input image, had the highest positive relation with the middle-gray
value in the output. This finding underscores the influence of perceived brightness on the
middle-gray adjustment in dynamic range expansion processes.

To prevent the resulting inverse tone-mapped HDR video sequences from flickering as
a result of abrupt changes between frames in the estimated mid-level values, the mid-level
output value used to expand the dynamic range of the current frame (mo,i) is adjusted
using a weighted average as follows:

mo,i = pmo,i−1 + (1 − p)mo s.t. p ∈ [0, 1], (5)

where mo,i−1 denotes the mid-level out value used to expand the dynamic range of the
previous frame, mo is the mid-level out value determined using Equation (4), and p is the
weight value.

In Equation (5), parameter p serves as a “damping” factor. A larger p dampens abrupt
changes in the mid-level output, thus preventing flickering artifacts in the resulting HDR
video sequence. However, an increased p also introduces a “delay” in the expansion
operator’s responsiveness to subtle scene shifts, which might be perceptible to an observer.
For 24 fps video sequences, we determined an optimal p value range between 0.1 and 0.3,
effectively mitigating flickering artifacts without introducing noticeable delays.

3.3. Dequantization

This step focuses on removing “false contours” or “banding artifacts”, commonly
observed in smooth transition areas within an LDR frame. To achieve this, we employ our
fast iterative false-contour removal method, which we previously introduced in [31]. Our
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proposed “decontouring” method is specifically tailored to mitigate the emergence of false
contours arising from the dynamic range expansion process. It considers the false-contour
removal operation as a signal reconstruction problem that can be solved using an iterative
projection onto convex sets (POCS)-based minimization algorithm.

The decontouring method operates jointly with the dynamic range expansion func-
tion. That is, both false-contour removal and dynamic range expansion are performed
simultaneously in an iterative manner until converging to an acceptable solution, i.e., an
inverse tone-mapped LDR frame without visible false contours. An illustrative example
of this iterative convergence using cascaded projection operators is shown in Figure 5.
In this example, the pixel value in xi is filtered using a low-pass filter (first operator),
and the resulting value is clamped (second operator) to keep it between the quantization
boundaries. The low-pass filter is a two-dimensional average filter with a radius equal to b.

Low pass filter

Column index

Expansion operator .

Quantization
boundaries

Match the
quantized input

Low-pass filtering

Figure 5. False-contour removal method based on iterative projection onto convex sets (POCS). In
this example, the pixel value in Xi is filtered using a low-pass filter (first projection operator) and
clamped between the quantization boundaries (second projection operator) iteratively.

As presented in [31], our decontouring method is characterized by three key parame-
ters: the difference between two consecutive pixels within a smooth region (q), the radius
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of the average filter (b), and the number of iterations (i). The difference between two
consecutive pixels in an image to be perceived as a smooth transition depends on multiple
factors. For a standard 8-bit LDR image, a typical difference threshold ranges from 1 to
5 units. However, this is merely a general guideline. The optimal threshold can vary based
on specific contexts and applications. Within our specific context, we determined that a
range between 3 and 11 units effectively filters out the majority of false contours.

3.4. Highlight Boosting

The main goal of the highlight boosting step is to restore high-brightness areas to a
substantially higher output brightness (relative to the mid-level point) within the display
system’s capabilities, e.g., 6000 cd/m2 for the SIM2 HDR display used in our experiments.

In the dynamic range expansion operation, we initially constrained the maximum
luminance intensity of the expanded luminance (Lw) to 4000 cd/m2. Considering the
capabilities of the SIM2 HDR display, this leaves a margin of 2000 cd/m2 for additional
highlight boosting. This approach ensures that highlights are enhanced in a way that
maximizes the dynamic range and visual impact of the resulting HDR content, staying
within the technical limits of the display device.

The highlight boosting step specifically targets the identification and enhancement
of highlights, aiming to intensify them up to a luminance of 6000 cd/m2. To accomplish
this, we proposed a novel method to identify and boost highlights. Our method utilizes
an “expansion map”, which identifies the positions of highlights in the current LDR frame
under consideration and specifies the extent of boosting required at each pixel.

The process begins by analyzing the artifact-free LDR input frame and its luminance
channel to detect highlights and generate the expansion map. Initially, a “binary map” is
created by selecting pixels from the artifact-free LDR input frame that are identified as
highlights. In this binary map, a pixel value is set to 1 if it is determined to be a highlight
and set to 0 if it is not. Given that the maximum pixel value for an LDR frame is 255, the
decision to label a pixel as a highlight is guided by the following criteria:

1. Pixels with a luminance value greater than 222. This threshold, as proposed in [44], is
used to detect clipped areas considered highlights, which result from the constrained
dynamic range of LDR content. Such clipped regions indicate areas where the detail
might be lost due to brightness levels exceeding the display’s capability.

2. Pixels in which any of the RGB channels exceed a value of 230. This criterion aids
in pinpointing highlights characterized by color saturation. The utilization of this
threshold, as suggested in the works detailed in [11,44,45], facilitates the identification
of pixels associated with specular highlights and light sources demonstrating color
saturation. This method leverages the presence of high intensity in at least one
color channel to delineate highlights, a technique previously explored for highlight
enhancement [46,47].

To compute the expansion map, we take advantage of the structure-transferring
filtering property of the fast-guided filter, i.e., its capability to transfer structure information
from the guidance image to the target image [38,48]. In our method, the binary map, which
indicates the highlights, is filtered using the LDR luminance extracted from the artifact-free
input LDR frame as the guidance image. This step ensures that the fine details and subtle
gradients present in the original LDR luminance are effectively incorporated into the binary
map, enhancing its accuracy and detail.

It is important to note that transferring details using the fast-guided filter requires
different parameter settings compared to its use for denoising purposes. Through experi-
mentation, we determined the optimal ranges for these parameters, specifically for frames
with a resolution of 1920 × 1080 pixels. Our results indicate that a local window radius
(r) ranging between 100 and 200, combined with a regularization parameter (ϵ) between
10−3 and 10−2, produces expansion maps that successfully balance smoothness with detail
retention. This balance is crucial for achieving a natural and visually pleasing enhancement
of the highlights in the resulting HDR content.
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The resulting expansion map yields values within the range of 0 to 1. A value of
0 indicates that the expanded luminance (Lw) at the current pixel location will remain
unchanged, whereas a value of 1 indicates that it will be boosted up to 6000 cd/m2.
Examples of binary maps and their corresponding expansion maps derived from two
distinct LDR frames can be seen in Figure 6. As observed, fine details and smooth gradients
in highlights found in the original image have been incorporated into the expansion map.
Finally, the expansion map (M) is used to enhance the highlights present on the expanded
luminance as follows:

Lwe(x, y) = Lw(x, y) + rM(x, y)α

s.t. x ∈ 0, . . . , w − 1 y ∈ 0, . . . , h − 1 α > 0,

where Lwe(x, y) is the value of the HDR expanded luminance with “enhanced” highlights
at (x, y), M(x, y) is the value in expansion map at (x, y), r is the peak luminance value
added to the highlights (2000 cd/m2), and α is a parameter to control how highlights will be
boosted. An α value greater than one (α > 1) will make strong highlights more pronounced
in the output, while values smaller than one (α < 1) will make diffuse highlights more
pronounced. The w and h values are the width and the height of Lw.
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Figure 6. Binary and expansion maps obtained from two different LDR images. The expansion map
is used to enhance the highlights of the HDR expanded luminance (Lw). (The image on the right was
obtained from the movie “Star Wars: Episode III Revenge of the Sith”, property of Lucasfilm).

Figure 7 shows the results of highlight boosting. False-color images in a logarithmic
scale have been included to facilitate the visualization of the results. We found that an α
value around 2.0 (α ≈ 2.0) is a good trade-off between giving more priority to boosting the
strong highlights and suppressing the enhancement of diffuse lights.
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Expanded HDR luminance (Lw)
Expanded HDR luminance 
after highlights boosting (Le)

0.004 0.8 16 310 6000

nits (cd/m2)

Figure 7. Example of how highlights from the expanded luminance have been enhanced using ex-
pansion maps. False-color images are shown below each image for better visualization of the results.

3.5. Saturation Enhancement

The last step in our LDR-to-HDR conversion pipeline corresponds to the computa-
tion of the output HDR frame in color (tristimulus HDR RGB frame). For this purpose,
Mantiuk’s formulation, as proposed in [49], was used as follows:

cout,i(x, y) =
((

cin,i(x, y)
Ld(x, y)

− 1
)

s + 1
)

Lwe(x, y) s.t. i ∈ r, g, b, (6)

where Lwe(x, y) and Ld(x, y) are the HDR expanded luminance with enhanced highlights
obtained from the highlight boosting step and the luminance of the filtered LDR input
frame at (x, y), respectively; cin,i(x, y) is the color component of the filtered LDR input
frame at (x, y) and cout,i(x, y) is the color component of the output HDR frame; r, g, and
b are the red, green, and blue channels, respectively. Parameter s, the color saturation
enhancement parameter, should be set to a value greater than 1 to increase color saturation
in the output HDR frame.

The choice of Mantiuk’s formulation to compute the HDR RGB frame offers distinct
benefits over alternatives like YUV color space-based approaches. It provides a robust
method for adjusting the luminance of an image/frame in a manner that preserves the
original color’s hue and saturation, which is critical for maintaining visual consistency
in HDR imaging. Moreover, Mantiuk’s formulation incorporates a color saturation en-
hancement parameter, s, which offers additional control over the final image’s vibrancy,
mitigating the common issue of desaturated colors that occurs when the luminance of an
image is increased.

Following the methodology presented in [12], we conducted a subjective study to
obtain the best subjective value for s across various scenes, each possessing distinct contrast
and color characteristics. We aimed to investigate the correlation between the mid-level out
parameter (mo) used for the dynamic range expansion, considered as the scene-adaptive
parameter, and the optimal saturation enhancement parameter (s).

We employed a dataset of 178 LDR images. The dynamic range of each LDR image was
expanded using our proposed dynamic range expansion function, and the subsequent HDR
color images were derived from Mantiuk’s formulation. In the experiment, a domain expert
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was tasked with identifying the optimal value for the saturation enhancement parameter s
that generates an HDR color image that most faithfully captures the color characteristics of
the original LDR image. The results of this experiment are summarized in Figure 8.
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Figure 8. Results of the experiment to investigate the most adequate color saturation enhancement
parameter value (s) used in Mantiuk’s formulation. Each dot represents a particular scene. The
horizontal axis shows the mid-level out parameter (mo) decided by our proposed dynamic range
expansion function for that scene. The vertical axis shows the color saturation value (s) an expert
user selected as most desirable. Green dots indicate scenes where the expert deemed it unnecessary
to increase saturation, while black dots are those where the expert preferred increased saturation.

Results revealed a weak correlation between the scene-specific mid-level out parame-
ter (essentially, the nature of the scene) and the expert-chosen optimal value for s. Further
statistical analysis and hands-on experimentation were conducted to corroborate this find-
ing. Notably, in numerous instances, the expert deemed it unnecessary to increase the
saturation (indicated by green dots in Figure 8). Conversely, in scenarios where the ex-
pert considers increasing the saturation (indicated by black dots), values between 1.2 and
2.3 were typically used. These results differ from that reported in [12], where the authors
found that saturation values between 1.2 and 1.8 are commonly used. This can be ex-
plained mainly because our resulting HDR images have a peak brightness much higher
(6000 cd/m2) than those in their experiments (1000 cd/m2). As a result, our HDR images
tend to appear more desaturated, necessitating a higher increase in saturation to achieve a
similar perceptual impact.

Our analysis determined that while the value of parameter s varies based on the nature
of the input image, it cannot be reliably estimated using the mid-level out parameter. Thus,
within our framework, a value ranging from 1.25 to 2.3 yielded satisfactory outcomes for
most images across the datasets we evaluated.

4. Results and Evaluation

In this section, we evaluate the pipeline in terms of real-time operation capability
and the quality of the HDR video output. First, we explain the implementation details
of the pipeline and discuss the results from our real-time performance assessment. Then,
we discuss the three experiments conducted to assess HDR video quality: (1) objective
evaluation of LDR-to-HDR converted videos obtained from our pipeline and two state-of-
the-art methods, (2) subjective evaluation of LDR-to-HDR converted videos obtained from
our pipeline versus original LDR content, and (3) subjective evaluation of HDR-to-xHDR
converted videos using an alternative application of our pipeline.
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We implemented our entire pipeline in Quasar, a development environment designed
to facilitate heterogeneous programming across both CPUs and GPUs [50,51]. Utilizing
this environment enabled us to harness the GPU’s inherent parallel processing capabilities,
resulting in a substantial acceleration of our processing speed, optimizing performance,
and demonstrating the real-time capabilities of our approach.

We meticulously chose parameter values to optimize the time efficiency of our pipeline.
Each pipeline step was fine-tuned with a dual objective in mind: achieving high-quality
results while ensuring time efficiency. For instance, rather than processing the entire frame,
we computed the image features used to estimate the middle-gray tone value for the
dynamic range expansion operation (mo) from a smaller region of interest (ROI). This
approach not only sped up our pipeline but also avoided complications that might arise
from video sequences containing vertical/horizontal stripes, advertisements, or captions.
Likewise, we limited the number of iterations in the dequantization step to five and set the
sub-sampling ratio for the fast-guided filters to four. The specific parameter values used in
the experiments are detailed in Table 1.

Table 1. Parameters values used in our testing.

Pipeline Step Parameters Values

Artifact suppression
r = 32 (Local window radius)
ϵ = 0.124 (Regularization parameter)
s = 4 (Subsampling ratio)

Dynamic range expansion

Lw,max = 4000/6000 (4000 cd/m2 peak luminance)
mi = 0.214 (Mid-level in)
a = 1.15 (Contrast settings)
d = 2 (Highlights settings)
p = 0.2 (Dampening factor)

Dequantization
q = 5 (Difference between two consecutive pixels)
b = 4 (Radius of the average filter)
i = 5 (Number of iterations)

Highlights boosting

Parameters of the fast guided-filter to transfer details on the
binary mask:
r = 20 (Local window radius)
ϵ = 10−2 (Regularization parameter)
s = 4 (Subsampling ratio)
Parameters to apply the expansion mask:
M = 2000/6000 (2000 cd/m2 for highlights boosting)
α = 4.16 (Highlight boosting control)

Saturation enhancement s = 1.3 (Saturation level)

4.1. Real-Time Capabilities

We conducted a series of experiments designed to assess the performance of our newly
developed pipeline, specifically its ability to process video sequences in real-time. These
evaluations were carried out on a desktop computer; its specifications are provided in
Table 2. We analyzed three video sequences for this purpose, each with a duration of
approximately 15 s, a resolution of 1920 × 1080 pixels, and a frame rate of 25 fps. The
focus of our investigation was on the processing times associated with various stages of
our pipeline (EO: expansion operation, AS: artifact suppression, DQ: dequantization, and
HB: highlight boosting), examining the impact of both activating and deactivating certain
steps. Throughout these experiments, a total of 1175 frames were processed, and the timing
outcomes are presented in Table 3. It is worth noting that these results do not account for
the time taken to retrieve individual frames from the video file because this aspect is heavily
influenced by I/O operations, storage medium speed, and other system-specific variables.
These factors can vary significantly depending on the system setup and are not directly
related to the performance of our processing pipeline. Therefore, to provide a clearer and
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more focused assessment of our pipeline’s efficiency, we isolated the computation time
required by our algorithm from the overall I/O retrieval time. With an average processing
time of 15.93 ms per frame, our approach theoretically has the capability to process video
sequences with a resolution of 1920 × 1080 pixels at a rate of up to 60 frames per second.

Table 2. Specifications of the computer used for testing.

Component Specification

Computer model Dell Precision 3660
Processor 13th Gen Intel(R) Core(TM) i7-13700K 3.40 GHz
Graphic card NVIDIA GeForce RTX 4600 Ti 16 GB
Operating System Windows 11
RAM 64 GB
HDD 2 TB NVMe SSD

Table 3. Frame timings of the different steps in our proposed processing pipeline.

Steps 1/Timings (ms) EO EO + AS EO + AS + DQ EO + AS + DQ + HB

Mean 3.36 10.84 12.96 15.93
Standard deviation 0.65 1.00 1.98 2.39
Median 3.10 10.65 12.18 14.97

1 EO: Dynamic range expansion, AS: artifact suppression, DQ: dequantization, and HB: highlight boosting.

4.2. LDR-to-HDR Conversion: Objective Evaluation

In our previous research presented in [13,31,32], we individually evaluated the two
major components of our proposed pipeline: (i) the dynamic expansion method based
on mid-level mapping and (ii) the false-contour removal method based on POCS. These
assessments were conducted on static images. In this section, we shift our focus from static
images to evaluating our inverse tone mapping pipeline on video sequences.

For this objective evaluation, we used video content from our in-house dataset called
the “xDR Dataset”, which includes video sequences professionally captured and graded
in HDR and LDR by the National Public-Service Broadcaster for the Flemish Region and
Community of Belgium (VRT-Vlaamse Radio-en Televisieomroeporganisatie).

The xDR Dataset includes ten video sequences with a resolution of 1920 × 1080 at
25 frames per second. All sequences are color-graded in LDR and HDR. In particular, the
HDR video sequences were natively color-graded using the SIM2 HDR47ES6MB display,
which has a dynamic range of 17.5 stops and can reach a peak brightness of 6000 cd/m2.
HDR video sequences were stored in absolute luminance format with peak values reaching
up to 6000 cd/m2, making this dataset ideal for testing our pipeline. Figure 9 shows
a preview of the video sequences in our test dataset, illustrating the variety of lighting
conditions and contrast, ranging from deep shadows to extremely bright scenes. The
xDR Dataset is publicly available at http://telin.ugent.be/~gluzardo/hdr-sdr-dataset/
(accessed on 19 April 2024).

The LDR sequences in the test dataset were used as input to compute the HDR
video sequences. We compared the HDR videos obtained from our proposed pipeline
against the HDR videos obtained from deep SR-ITM (joint learning of super-resolution and
inverse tone-mapping for 4K UHD HDR applications) [15] and FMNet (frequency-aware
modulation network for SDR-to-HDR translation) [20].

To assess the quality of the HDR videos produced by each method, we employed the
high dynamic range video quality metric (HDRVQM) [52], which estimates the quality of
an input video sequence from 0 to 1, with higher values indicating better quality. One score
is generated per sequence based on a video sequence used as reference. HDRVQM involves
spatio-temporal analysis, which looks at both the spatial (how things appear in each frame)
and temporal (how things change over time) aspects of a video. HDRVQM also considers

http://telin.ugent.be/~gluzardo/hdr-sdr-dataset/
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the human eye’s fixation behavior, considering where and how people tend to focus when
watching videos and allowing this metric to better align with actual human perception.

Video�1 Video�2 Video�3 Video�4

Video�5 Video�6 Video�7 Video�8

Video�9 Video�10

Figure 9. A preview of video sequences utilized in the objective evaluation, obtained from the xDR
Dataset.

We used HDRVQM to compare the HDR videos generated by each method (the
“distorted” videos) against the ground truth HDR videos provided in the test dataset (the
“reference” videos). HDRVQM was configured to match the format of the HDR files we
were testing. Display parameters were set according to the specifications of the SIM2 HDR
HDR47ES6MB display. Figure 10 shows the results from our objective assessment.
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Figure 10. Objective quality scores for HDR video sequences produced by our proposed pipeline and
two state-of-the-art methods. Quality scores were obtained from the dynamic range video quality
metric (HDRVQM) using the HDR ground truth from the test dataset as a reference. HDRVQM
computes one quality score for the entire sequence. Higher values indicate better quality.

The results from the objective assessment indicate that our proposed pipeline generally
outperforms other methods, with the exception of Video 4 and Video 7. In several cases,
the performance of the other methods was comparable to our pipeline; we conducted a
detailed analysis of Video 9 and Video 10 to better understand these two exceptions. Figure
11 illustrates a sample frame from these video sequences. We observed that the SR-ITM
and FMNet methods tended to produce artifacts in highly saturated areas, reducing the
overall quality of the video sequences. These artifacts became more pronounced when
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displayed on an HDR screen. However, as shown in the objective results, these issues are
not reflected in the quality scores estimated by HDRVQM.

SR-ITM FMNet Proposed

Figure 11. Sample frames illustrating artifacts in highly saturated regions, with visible distortions
generated by the SR-ITM and FMNet methods. These artifacts become more noticeable when the video
sequences are displayed on the SIM2 HDR screen. Images have been tone-mapped for presentation.

4.3. LDR-to-HDR Conversion: Subjective Evaluation

As described in Section 2, many of the existing techniques in the literature for LDR-
to-HDR conversion of video sequences do not reach the peak luminance reached by our
pipeline. Moreover, as observed in our objective evaluation, these techniques often in-
troduce temporal artifacts that affect the quality of their results, which is not accurately
reflected in the objective quality score estimated by HDRVQM.

Therefore, we determined that an objective comparison of our proposed LDR-to-HDR
pipeline against other inverse tone mapping techniques for video sequences would not
yield accurate results. In addition, given that most other techniques do not produce HDR
video sequences with the same peak brightness as ours, a side-by-side subjective evaluation
may be biased and provide inconclusive results. Considering the subjectivity of brightness
preferences, it is expected that an average observer would favor an artifact-free and high-
contrast HDR video in a pairwise comparison experiment [53]. This assumption was
supported by a preliminary experiment we conducted using the HDR images produced
by SR-ITM and FMNet. Therefore, we decided to conduct a subjective evaluation study
aimed at discerning whether our inverse tone mapping pipeline can enhance HDR video
sequences beyond the quality of their LDR inputs.

In our previous work, as detailed in [54], we explored the benefits of employing
inverse tone mapping versus a straightforward linear expansion of the dynamic range of
LDR content when displayed on an HDR display. In this present study, we shift our focus
to comparing the perceived quality of HDR video sequences generated from our proposed
LDR-to-HDR pipeline to original LDR video sequences , which are also used as input to
the LDR-to-HDR pipeline. Our primary objective was to evaluate whether there exists
a clear improvement in quality when expanding the dynamic range of LDR content into
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HDR using our proposed LDR-to-HDR pipeline. To assess this, we employed a pairwise
comparison method (PWC) in a subjective experiment to discern user preferences. In this
evaluation approach, we simultaneously presented the original LDR video sequence along-
side the HDR version produced by our pipeline, enabling observers to directly compare
and select the one that most closely resembled a natural scene while exhibiting the least
distortions, thereby indicating superior quality. This direct comparison methodology mini-
mizes subjective variances among participants by simplifying the evaluation process. The
evaluation task is simple and intuitive, making it more suitable for participants unfamiliar
with image quality assessment tasks (non-expert observers) [55,56].

The experiment setup is shown in Figure 12. The experiment was conducted in a
dimly lit room, maintaining ambient lighting of around 40 lux and viewing conditions
according to the ITU-R BT.500-14 recommendation [57]. Both the LDR video sequence and
its inverse tone-mapped HDR version were simultaneously presented side by side on the
SIM2 HDR47ES6MB display. This 47-inch 1920 × 1080 resolution display supports a peak
luminance of up to 6000 cd/m2 and 17.5 stops of dynamic range. Due to the display’s
resolution constraints, videos were cropped to fit half of the display, i.e., 960 × 1080 pixels,
ensuring that salient objects remained centrally positioned. Furthermore, for enhanced
visual separation of the two videos, a 30-pixel wide gray line was inserted between them.

1.5�m

SIM2�HDR�screen

Participant

Video�1 Video�2

Which�video�has�the�best�overall�
quality?�Specifically,�look�for�the�

video�that�most�accurately�resembles�
a�natural�scene�and�exhibits�the�

fewest�distortions.�
�

Left Right
Both�have�the�
same�quality

Figure 12. The setup used for the evaluation of the proposed pipeline. The LDR and inverse tone-
mapped HDR video sequences were randomly placed on the left (video 1) and on the right (video 2)
on the HDR screen in each trial. LDR video sequences were linearized and adjusted to simulate the
same appearance when it is displayed on an LDR screen with a limited peak brightness of 250 cd/m2.

The LDR video sequences were linearized and adjusted to emulate how they would
appear on an LDR screen with peak brightness restricted to 250 cd/m2. For each trial
in our experiment, participants were shown a pair of video sequences side by side: one
representing the original LDR version and the other its HDR counterpart computed by our
pipeline. These pairs were randomly arranged on the left half and right half of the screen.

Participants, seated 1.5 m away from the screen, were assigned the task of judging
which video, left (Video 1) or right (Video 2), showed superior quality. The criteria for
“superior quality” were defined by how closely the video resembled a natural scene and
the minimal presence of artifacts. Participants could also indicate if they perceived both
videos to have equal quality. This setup was intended to ensure an unbiased evaluation as
the participants were not informed which video was the LDR version and which was the
HDR version obtained using our pipeline.

Twenty-four short video sequences, each approximately 10 s in duration with a wide
range of contrast and lighting conditions, were used in our subject study. These video
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sequences were obtained from publicly available video documentaries and trailers in LDR
with a resolution of 1920 × 1080 pixels and at 24 fps. We converted all the video sequences
to HDR offline to prevent any delay when displaying the video sequences: delays could
affect the quality of the video; therefore, the reliability of the experiment will be altered.
The HDR frames were encoded and stored in a format that SIM2 uses to display linear HDR
content. Figure 13 shows a preview of some of the video sequences used in our experiments.

Figure 13. Preview of some video sequences employed in our LDR-to-HDR conversion evaluation
experiment sourced from publicly accessible video documentaries and trailers. All video sequences
have a resolution of 1920 × 1080 pixels and 24 fps. (The original producers of the video sequences
retain all rights pertaining to the frames shown in this figure).

Eight non-expert participants, aged between 17 and 42 with normal or corrected vision,
took part in our subjective experiment. None had significant experience in professional
video editing or color grading, ensuring the focus was on a general viewer’s perspective
rather than a technical one. This age range was chosen to encompass a broad spectrum of
perspectives, from younger participants who might be more tech-savvy to older participants
with more traditional viewing habits.

Aware of the potential biases introduced by participant characteristics and experimen-
tal setup, measures were taken to mitigate these effects. The age range of participants was
aimed at encompassing diverse preferences, and the inclusion of non-experts was aimed
at capturing perspectives representative of a wider audience. The experiment enforced
standardized viewing conditions in a dimly lit room for consistent visual environments.
Stimuli were randomized among participants, and scenes were diversified in source and
context. To prevent fatigue, the experiment was divided into two sessions.

The results of our subjective assessment, as illustrated in Figure 14, reveal a noteworthy
trend in participants’ evaluations. Evidently, the HDR video sequences generated with our
pipeline consistently garnered higher quality judgments compared to their corresponding
LDR counterparts. This preference was particularly pronounced in scenes characterized
by vibrant and high-contrast visuals featuring striking bright highlights. Participants
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consistently leaned towards HDR content in these scenarios, highlighting a preference for
its enhanced visual richness and dynamic range.

LD
R

E
qu
iv
al
en
t

H
D
R
-iT

M

0

50

100

150

5

42

145

S
el
ec
ti
o
n
fr
eq

u
en

cy

Figure 14. Results of our subjective experiment, comparing user preferences for HDR images
generated through our proposed pipeline against the LDR input video sequences. The vertical bars
indicate the frequency of participants’ preferences, showing whether they favored one type of video
sequence over the other or found both sequences to be of equal quality.

Conversely, our findings also suggest that participants tended to perceive both HDR
and LDR video sequences as exhibiting similar quality when assessing scenes with lower
light levels and reduced contrast, e.g., instances where dim lighting and a lack of distinct
highlights prevailed. We also noticed that, in a few cases, participants selected the LDR
version as the one with better quality. This observation underscores the idea that the
advantages of HDR technology, such as a large luminance variation, were less apparent or
less impactful in scenarios with limited visual dynamics. These results provide valuable
insights into viewer preferences, showcasing a preference for HDR’s visual enhancements
in specific contexts while highlighting the nuances of quality perception in specific lighting
and contrast conditions.

4.4. HDR-to-xHDR Conversion

Our LDR-to-HDR pipeline distinguishes itself from other methods through its inno-
vative capability to achieve higher peak brightness levels. This forward-thinking feature
ensures that our pipeline remains adaptable to future HDR displays that may surpass
current brightness standards. Leveraging our pipeline presents an opportunity to increase
the brightness and, consequently, the dynamic range of current HDR content, typically
restricted to a peak luminance of around 1000 cd/m2. This process, which effectively
enhances standard HDR content to achieve significantly higher peak brightness, is what
we refer to as “HDR to xHDR conversion” (xHDR: extended high dynamic range). This
up-conversion process is a key technical novelty, enabling standard HDR content to reach
substantially higher peak brightness levels, making it even more visually compelling
and vibrant.

Figure 15 presents our proposed pipeline for the conversion of HDR video sequences
into xHDR. This “modified” pipeline, in contrast to its predecessor, reduces the conversion
process to three steps: dynamic range expansion, highlight boosting, and saturation en-
hancement. Given that HDR content generally exhibits fewer noise and artifacts compared
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to LDR content, we have deemed the denoising/artifact suppression step unnecessary for
our purposes. Similarly, in a pilot test, we found that false contours were not an issue
during our conversion. Therefore, we consider removing the false contours step, which, like
denoising, appeared to be non-essential in HDR-to-xHDR conversion. By eliminating these
unnecessary stages, we can significantly accelerate the processing speed of our pipeline
without reducing the visual quality of the up-converted HDR content.

HDR
frame

(1000�nits)

Highlights
boosting

Saturation
enhancement

xHDR
frame

(6000�nits)
Dynamic�
range�

expansion

Luminance�data RGB data

HDR xHDR

Tone�
mapping

Figure 15. Flowchart of the proposed pipeline for HDR-to-xHDR conversion. A 1000 cd/m2 HDR
image is up-converted to extended high dynamic range (xHDR) with a peak luminance up to
6000 cd/m2.

A key aspect of our pipeline is the dynamic range expansion operation based on
mid-level mapping, initially developed for LDR input frames, that involves two key steps:
(i) fixing the mid-level in value (mi) and (ii) estimating the mid-level out value (mo) using
image features.

In the pipeline’s initial design, mo was derived using image features extracted from
the LDR input frame. However, as illustrated in Figure 15, our revised HDR-to-xHDR
conversion method uses a different approach. We now use a tone-mapped version of the
HDR input to compute these image features rather than computing them directly from
the HDR input. This approach allows us to apply the same estimation formula outlined
in Equation (4), developed through a multi-linear regression method, without requiring
additional experimentation and training.

On the other hand, when setting mo for HDR-to-xHDR conversion, a seemingly obvi-
ous method might be to use the mid-level value typical for the HDR domain. Considering
a maximum range of approximately 1000 cd/m2, this value typically lies between 100 and
200 cd/m2. However, applying a value between this range directly can lead to HDR im-
ages that look too bright. This problem occurs because our expansion operator, originally
intended to increase brightness levels from approximately 250 cd/m2 to 4000 cd/m2, a
significant increase, is now being used in a scenario where a much smaller increase in
brightness is required. Consequently, using the same expansion ratio results in an overly
intense increase in brightness.

To effectively tackle the issue of excessive brightness during the HDR-to-xHDR conver-
sion, we refined our method for calculating mi. Our goal was to establish an equivalence for
mi that is more aligned with the specific requirements of the HDR context. This adjustment
ensures a more controlled and fitting increase in brightness during the conversion process.
Therefore, we propose to compute the value of mi for HDR-to-xHDR conversion through
the following formula:

mi = 0.214 × max_ldr_lum
max_hdr_lum

, (7)

where max_ldr_lum denotes the maximum luminance in an LDR video sequence, and
max_hdr_lum represents the peak luminance value used in mastering the HDR video
sequence being processed.
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Since the highlight regions of HDR content are primarily located near the highest
brightness levels [58,59], most of them are expanded to the highest luminance levels dur-
ing the dynamic range expansion operation. Due to the limitations of peak brightness,
some highlights have been compressed to the boundaries of the peak brightness, near-
ing saturation. Consequently, when converting HDR to xHDR, the highlight detection
thresholds in the boosting step should differ from the original values used in LDR-to-HDR
conversion. Specifically, they should be set closer to the maximum luminance value. This
adjustment ensures the preservation of the original artistic intent regarding highlights,
selectively enhancing the brightness only in those highlights presumed to be compressed
due to peak brightness constraints in the original HDR content. Consequently, the highlight
boosting step was modified in such a way that pixels are considered as highlights if their
luminance value exceeds 0.96 × max_lum or any of their RGB channels has a value higher
than 0.98 × max_hdr_lum, where max_hdr_lum represents the luminance level used in the
HDR mastering obtained from the video metadata. Figure 16 shows examples of HDR
frames alongside their corresponding expansion maps computed using this approach.

HDR�video�frame Expansion�map

Figure 16. HDR-to-xHDR conversion: Frames obtained from our test HDR video sequences and the
expansion maps computed (on the right). The HDR images were tone-mapped for presentation.

4.5. HDR-to-xHDR Conversion: Subjective Evaluation

We conducted a subjective experiment to evaluate the effectiveness of our proposed
HDR-to-xHDR pipeline. For this, we created a test dataset comprising 65 HDR videos.
Each video has a resolution of 1920 × 1080 pixels and a duration of approximately 10 s,
featuring several frame rates ranging from 24 to 120 fps and peak luminance values used
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in mastering, spanning 1000 to 1400 cd/m2. Figure 17 provides previews of some of these
short test video sequences utilized in our subjective evaluation.

Figure 17. Preview of some HDR video sequences employed in our HDR-to-xHDR conversion
evaluation experiment, sourced from publicly available HDR video content. All video sequences
were down-scaled to 1920 × 1080 to fit the resolution of the HDR display used in our experiments.
(The original producers of the video sequences retain all rights pertaining to the frames shown in
this figure).

We extracted the frames from test video sequences and converted them into linear
values within the Rec709 color space. This step ensured compatibility with the color
space specifications of the SIM2 HDR display used in our experiments. Subsequently, we
processed the HDR frames using our HDR-to-xHDR conversion pipeline.

In the dynamic range expansion step, the mo value was determined using Equation (4).
The values of Lh, C, and Pov (image statistics) were computed using a tone-mapped version
of the input HDR frame. For this, we employed the tone-mapping technique outlined
in [60], specifically the photographic tone reproduction method for digital images. The mi
value was set using Equation (7). We derived the max_hdr_lum value from the metadata
in the HDR video sequence, noting that this value can vary across different HDR files.
Regarding max_ldr_lum, typically, 100 cd/m2 is the maximum luminance value used in
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LDR video sequences. However, our expansion operator was trained on a dataset graded in
LDR using a Grade 1 display designed specifically for the broadcast and cinema industries.
These types of displays usually operate within a luminance range of 300 to 500 cd/m2,
matching the specific requirements of the production environment and industry standards.
Our experiments led us to the conclusion that setting the max_ldr_lum (maximum LDR
luminance) values within this range in Equation (7) yielded the best results. Specifically,
for our subjective experiment, we set the max_ldr_lum to 300 cd/m2. Table 4 outlines the
parameters we used for processing the video sequences in our subjective experiment.

Table 4. Parameter values used for HDR-to-xHDR conversion.

Pipeline Step Parameters Values

Dynamic range expansion

Lw,max = 4000/6000 (4000 cd/m2 peak luminance)
mi = 0.214 × 300/max_lum (Mid-level in)
a = 1.2 (Contrast settings)
d = 1.05 (Highlights settings)
p = 0.2 (Dampening factor)

Highlights boosting

Parameters of the fast guided-filter to transfer details on the
binary mask:
r = 20 (Local window radius)
ϵ = 10−2 (Regularization parameter)
s = 4 (Subsampling ratio)
Parameters to apply the expansion mask:
M = 2000/6000 (2000 cd/m2 for highlights boosting)
α = 2.0 (Highlights boosting control)

We replicated the setup and methodology employed in Section 4.3. The HDR and
xHDR video sequences were cropped to 960 × 1080 pixels, keeping the main objects in the
center, and presented side by side on the SIM2 HDR47ES6MB display. To ensure unbiased
assessment, the placement of the video sequences was randomized for each trial. Each
video was alternately positioned on the left half or right half of the screen. This strategy
was employed to eliminate any bias that might arise from consistently positioning either
the HDR or xHDR version in the same location. Additionally, a 30-pixel wide gray line
was introduced between the two videos to provide a clear visual separation, aiding in the
comparative analysis of the sequences.

Participants, seated 1.5 m from the screen, were asked to assess the quality of the
video sequences. They were instructed to determine which one of the two, left or right,
exhibited superior quality or to indicate if they appeared to be of equal quality. The criteria
for superior quality were consistent with our previous subjective experiment presented in
Section 4.3: a video was considered superior if it more closely resembled a natural scene
and exhibited fewer artifacts.

Ten non-expert participants, aged between 21 and 65, were involved in our subjective
experiment. The experiment was conducted in a dimly lit room, adhering to ITU-BT.500-14
recommendations. To minimize participant fatigue, we divided the experiment into three
separate sessions. Figure 18 shows the results of our subjective experiment. To clarify
the data representation in the graph, we assigned numerical values to each possible user
selection: 0 for HDR, 1 for both (indicating no preference), and 2 for xHDR. This numerical
representation was chosen to provide a clearer visualization of user preferences and their
variability across different video sequences. The bars in the graph indicate the interquartile
range to filter outliers in responses, while the diamond symbol (⋄) marks the average
preference for each video sequence. Figure 19 displays the total selections, reflecting the
participants’ overall preference for a video sequence type or their perception of equal
quality in both sequences.
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Figure 18. Results of our subjective experiment with numerical data representation for clarity. User
preferences are indicated as 0 for HDR, 1 for equivalent (no preference), and 2 for xHDR, facilitating an
easier understanding of variability across video sequences. The graph’s bars depict the interquartile
range employed to exclude potential outliers in user responses.
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Figure 19. Results of our subjective experiment, comparing user preferences for xHDR images
generated through our proposed HDR to xHDR pipeline against the original HDR video sequences.
The vertical bars indicate the frequency of participants’ preferences, showing whether they favored
one type of video sequence over the other or found both sequences to be of equal quality.

The subjective assessment results highlight a distinct preference among users for
xHDR video sequences generated through our HDR-to-xHDR conversion pipeline. Our
key findings include the following:

• Among various video sequences tested, participants predominantly favored only
four of the original HDR video sequences over our up-converted xHDR version, as
demonstrated in Figure 18.

• A closer investigation into specific sequences where the HDR version was preferred
revealed that the xHDR versions suffered from temporal artifacts. These artifacts
primarily arose from the highlights boosting step, where the generation of unstable
expansion masks over time led to inconsistent brightness levels in certain frames. This
inconsistency resulted in a flickering effect in the final xHDR video sequences.

• Similar to previous findings (LDR-to-HDR conversion pipeline), we noted that users
perceive similar quality between HDR and xHDR in certain video sequences. Specifi-
cally, in six video sequences, all participants unanimously agreed on the similar quality
of both types of video sequences, i.e., the HDR and its xHDR version.

• Our previous findings contrast with our LDR-to-HDR pipeline, where similar quality
perceptions were mostly confined to dark, low-contrast sequences. However, in the
current assessment, not all sequences perceived as equal in quality were characterized
by being dark and low contrast. In fact, we found that some dark sequences with
high contrast were transformed into xHDR videos of comparable quality to their HDR
counterparts. This outcome is likely due to the expansion operation’s dependence
on features derived from a tone-mapped version of the HDR input, which can be a
darker and lower-contrast version of the original image. Consequently, this results in
an xHDR image with less brightness and contrast than expected, closely resembling
the original HDR input.
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5. Conclusions and Future Work

We have presented a comprehensive LDR-to-HDR pipeline for video sequences that
incorporates several steps that effectively address common challenges in this field. Our
proposed LDR-to-HDR pipeline can create HDR video sequences with 6000 cd/m2 of
peak brightness. It incorporates inverse tone mapping, artifact suppression, and highlight
enhancement while adapting to the peak brightness of different displays. The experimental
results show the real-time capability of our proposed pipeline. In addition, results show its
ability to consistently generate HDR video sequences of superior quality compared to the
original LDR inputs.

Furthermore, our pipeline has the potential to significantly enhance the perceived
quality of existing HDR content when increasing its peak brightness, especially relevant
given that consumer-grade HDR content typically peaks at 1000 cd/m2. This makes our
pipeline a valuable tool for elevating the quality of HDR content beyond the displays it was
originally intended for, enabling the content to be enjoyed on displays capable of higher
brightness levels.

While our pipeline usually results in video sequences perceived as higher quality than
their inputs, further research is required. Future work will focus on refining the expansion
mask estimation and ensuring its temporal stability to avoid temporal artifacts. Relative
to other state-of-the-art methods, our pipeline demonstrates a promising capacity for
brightness enhancement but requires refinement to effectively mitigate temporal artifacts
produced during brightness enhancement.

In our HDR-to-xHDR pipeline, we aimed to explore how different tone-mapping
operators impact output quality and to investigate methods to bypass the use of a tone-
mapped image, directly working with the HDR input by recalibrating the middle-output
value estimation. These questions will be the focus of our ongoing research efforts. In
addition, further comparative studies with existing state-of-the-art methods will be essential
to benchmark our pipeline’s performance, especially in terms of artifact presence and
overall user satisfaction.
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