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Compliant Robust Control for Robotic Insertion of
Soft Bodies

Yi Liu1, Andreas Verleysen1, Francis wyffels1

Abstract— This paper proposes a novel framework for
insertion-type tasks with soft bodies, such as cleaning a bottle
with a soft brush. First, a multimodal model based on vision and
force perception is trained. Domain randomization is used for the
soft body’s properties to overcome the simulation-to- reality gap.
Second, we propose a dynamic safety lock method based on force
perception, which is embedded in the training model to make sure
that the tool explores and traverses the hole’s path in a compliant
way. This result in a higher success rate without damaging the
tools/holes. Finally, we perform experiments in simulation and
the real world, and the success rate of our proposed method
reaches 85.14% in simulation and 83.45% in the real world.
Ablation experiments in the real world demonstrate that our
method is effective for complex paths and soft bodies with
varying deformation intensities. Videos and code are supplied
in https://0707yiliu.github.io/SoftBodyInsertion/.

Index Terms—Robot Safety, Reinforcement Learning

I. INTRODUCTION

DAILY insertion-type tasks, particularly, soft body inser-
tion tasks where a flexible rod is inserted into the hole,

such as cleaning a bottle with a soft brush, are non-trivial for
humans because the unknown internal structure of the target
and the difficulty of soft body manipulation. The robots can be
endowed with precise force and visual perception capabilities
for completing the task.

A vision-based model can be used on robots, utilizing
cameras to identify the positions of tools and holes [1], [2].
Nevertheless, this model lacks the ability to determine the
necessary force for soft bodies. Utilizing force sensing to
offer localized feedback during collision or contact facilitates
precise and secure control of the insertion process [3], [4], but
purely force perception lacks global observability, leading to
frequent collisions during exploration. Integrating vision, force
perception, and other information to construct a multimodal
model allows the robot to capture comprehensive environmen-
tal details [5]. Compared with the manipulation of rigid bodies,
manipulating soft bodies requires a robot to dynamically adjust
its trajectory based on the real-time soft body characteristics
perception [6]–[8]. Model-based approaches have utilized the
physical stiffness of soft structures to control the directionality
of forces shared with the environment for insertion tasks [9].
However, the non-uniform deformability of most soft bod-
ies, dependent on material and internal structure, presents a
challenge for model-based control systems. Opting for rein-
forcement learning (RL) methods with strong generalization
capabilities, as suggested by [10], is advisable for generating
policies that enable robots to complete the task [11]–[14].
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Fig. 1. The overview of the robotics soft bodies insertion policy. The proposed
method Dynamic Safety Lock (DSL) changes the force information through
motion compensation (III-D). Then, the generated policy by the domain
randomized agent is transferred to the real robot (Sim2Real) (IV-A), which
can adapt to different tools and holes (IV-B).

The challenge with the policy lies in the fact that different
deformation intensities impact the model. The policy needs
to be generalized to empower the robot to adapt to various
soft bodies with differing deformation intensities. Furthermore,
exploring RL causes the robot to collide with the environment,
minimum contact force would be desirable because the large
contact force makes large deformation of the object, resulting
in task failure. We consider the force as “safety” in this paper.
Therefore, the safety of robot interaction [15]–[17] deserves
consideration.

To solve the safety issue in soft body insertion tasks. We
propose a policy that exploits multiple types of sensors as
shown in Fig. 1. The RL policy π requires low environmental
refinement and remains robust to external disturbances. The
policy learns the joint representation of the force/torque (F/T)
sensor and vision information to obtain the motion trajectory.
The force sensor is mounted on the wrist to measure the torque
and feedback force returned by the hand. Moreover, as a result
of the training, the representation of the high-dimensional data
generated by the model is utilized as a policy input to the
task. Finally, the proposed policy is used on a real robot in
combination with domain randomization. We summarize the
key contributions as follows:

1) A methodology to learn the soft body insertion tasks
with RL based on multimodal information.

2) Insights on how to set physical parameters in the envi-
ronment to achieve transfer-ability for different soft tools
and contexts in both simulation and the real world.

3) We introduce DSL to compensate the robot’s motion
trajectory to ensure safety and enhance robustness during
the insertion process.

4) Demonstrating effective use of the F/T sensor and visual
feedback for hole search and insertion. An ablation study
is set up to compare the effects of different modalities
on task performance.
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II. RELATED WORK

A. Multimodal Model for the Insertion-type Task
The policy for insertion-type tasks [6], [18], [19] typically

relies on visual feedback or force control. Previous vision-
based research [1] has been applied to the insertion task.
A vision-based model was used to estimate the insertion
error and improve the insertion accuracy, making the model
suitable for the insertion of cylinders [2]. A model based
on high-speed motion strategy and high-speed camera was
used for robotic needle-threading tasks [7]. They used visual
servoing to determine and match the holes, but they could not
make the robot interact with the environment smoothly. Some
studies accomplished the task through force perception, such
as blind search alignment based on spiral force [3], alignment
based on controllers with 6-degree-of-freedom (DoF) F/T
sensors [4], using a recurrent neural network with long short-
term memory cells to predict contact force to complete soft
body insertion [8]. These force-based methods were adapted to
specially shaped tools but are inefficient and require precise
settings of environment and model parameters. Others build
multimodal models with rich environmental information for
rigid objects [11], for instance, fusing multi-sensor data for
noisy observations and using Bayesian estimation to complete
the assembly of the plug [5]. These multimodal models
combined the advantages of different physical information and
enabled the robot to interact smoothly with the environment
under the premise of quickly obtaining the overall information
of the environment.

B. Reinforcement Learning for Insertion
RL uses simulations to generate the required interaction

data [14]. The RL setting consists of an agent interacting with
the environment, which is built as a Markov decision process
with a state space S and an action set A. At each time step,
the agent obtains the observation st , then takes the action at ,
and obtains the reward rt .

Previous work [12], [13], [20] used RL algorithms to adjust
the gain matrix of the controller for insertion. [21] learned
robot skill parameters through simulation based on different
types of algorithms so that both simulated and real robots
have insertion skills. [22] deployed the robot with multimodal
representation and built up encoders to control the robot
based on the Trust Region Policy Optimization (TRPO) [23]
algorithm. The trajectory generated by the model was not
constrained and allowed the robot’s end-effector (EEF) to
perform exploration on the surface of holes. [24] learned to
aggregate source dynamics models adaptively to better fit the
state-transition dynamics of target environments and execute
optimal actions there. [25] used the gradient-based Proximal
Policy Optimization (PPO) [26] algorithm on robot in automo-
tive insertion tasks. These works had good robustness and used
a variety of sensors. RL skillfully integrated multiple pieces of
information, enabling the robot to effectively handle insertions
in diverse situations.

C. Domain Randomization for Simulation to Reality
Domain randomization (DR) is an approach to overcome the

reality gap by optimizing the parameter distributions [27]. It
achieved a good simulation-to-reality (Sim2Real) performance
by covering a range of parameters distribution in the simu-
lation containing the real values during RL training. These
efforts, while effective, had the same drawback, this method
required significant engineering effort in tuning the random
range, which was difficult and non-intuitive [28].

In addition to the fundamental approach, some works ap-
plied the approach in the context of existing soft bodies. Some
employed finite element methods (FEM) to build simulation
environments [29], and evaluate the performance of the soft
body by observing the feedback of the F/T sensor. DR had a
good performance in cooperating with observable devices like
F/T sensors, which improved the analysis value of simulation
for soft bodies. However, it’s not practical to use refined FEM
in the environment of RL because FEM consumes a lot of
computing resources in the simulation. [30] designed a local
Graph Neural Network with DR to speed up the training
speed and increase the simulation accuracy. [31] constructed a
platform with RL, which optionally used non-FEM to speed up
the training process, but the simulator had poor compatibility
with RL algorithms, and the interaction information between
the rigid body and the soft body was not accurate, which
increased the difficulty of Sim2Real.

III. METHODOLOGY

In this section, we describe the environment setup for the RL
model and soft body simulation. We utilize DR for Sim2Real,
and introduce the DSL method, which adjusts the robot’s
motion based on force feedback.

A. Insertion Task Setting in Simulation
In Fig. 1, the simulation training environment consists of

holes, tools, and a 6-DoF manipulator with a gripper. Since
our focus is on the insertion action, the initial EEF position
is fixed, and the tool is fixed on the EEF. The target (hole)
location is randomized within a defined domain that the EEF
can reach.

Then, the designed hole has requirements, focusing on
inserting complex pipeline paths. The designed holes’ internal
paths, shown in Fig. 1, are not straight, the slope of the
designed holes is used to simulate the complex path.

Lastly, the tools used in this task are soft bodies, and we
employ a non-FEM approach to design them, simplifying the
complexity of deformation calculation. Illustrated in Fig. 3(a),
we utilize a continuum-like spring-damper model to simulate
the soft bodies, granting elasticity in all directions and reduc-
ing computational overhead during simulation. To reduce the
Sim2Real gap, we set the DR for soft bodies in the simulation
as shown in Fig. 1. In particular, the prime characteristic of
a soft body is deformability. We randomize the damping and
stiffness parameters of the soft body within a specified range in
the simulation (IV-A1), where the range is obtained by testing
the deformation performance of the soft body. As shown in
Fig. 3(b), we adjust the stiffness and damping parameters to
ensure that the tool does not embed in the obstacle as much
as possible to obtain its maximum value. We ensure that the
tool does not move away immediately after contact to obtain
its minimum value.

B. Observation, Action, and Reward
The RL state st consists of the robot state sr

t , and the inser-
tion task state sa

t . This model needs to search the path of the
hole by rotating the EEF, therefore, the robot state sr

t contains
the robotic EEF position pee

t = [xee
t ,yee

t ,zee
t ] and Euler’s rotation

ree
t = [rxee

t ,ryee
t ,rzee

t ], and the force and torque obtained with
the F/T sensor fee

t = [Fxt ,Fyt ,Fzt ,τxt ,τyt ,τzt ] in EEF. The task
state sa

t contains the hole position ph
t = [xh

t ,y
h
t ,z

h
t ]. In particular,

this model does not observe the rotation of the hole, but the
Euler angles of the holes are randomized in the simulation
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(IV-A1) to improve the generalization ability of the model. In
addition, in combination with III-A, the initial value of pee

t
is constant in the state sequence st = [sr

t ,s
a
t ], which does not

cause any difficulties while in Sim2Real. The hole position
ph

t is endowed with domain randomization and is randomized
at each episode and the rotation of the hole is randomized
to simulate paths with varying degrees of inclination. Thus,
the relative position pee

h and ph
t = [xh

t ,y
h
t ,z

h
t ] are obtained and

calculated by the camera so that the model can be applied in
the real world to any position reachable by the robot.

The action at consists of the 3-dimension displacement
increment of the robot EEF [∆x,∆y,∆z] and the 3-dimension
rotation increment [∆θx,∆θy,∆θz], the latter being the Euler
angles of the EEF for the intuitive explanation.

Reward shaping is an important part of RL, which affects
the quality of the model obtained through RL. The purpose
of the discussed task is to let the tool pass through the hole
to reach the target, hence, for the reward function rt required
for the RL model, we choose Euclidean distance as the basic
function, i.e., the distance between the hole and the tool. The
observation st does not include the position of the tool but
fixes the tool to the EEF (III-A) because of the difficulty
of observing soft bodies. Therefore, the Euclidean distance
between the hole and the EEF de

h is calculated. Furthermore,
the maximum number of steps nm in each episode is given
in RL, and there should be higher rewards for success with a
small number of steps. Finally, after successfully reaching the
goal, it should stop instead of gliding and continue forward.
Therefore, we add an integral term to the reward function to
accumulate the number of consecutive successes. The overall
structure is as follows:

rt =−α1(xee
t − xh

t )−α2(yee
t − yh

t )−α3(zee
t − zh

t )

−α4(tanh∑1d<δ1

√∣∣pee
t −ph

t
∣∣2 −1)

− (tanh(nm −nc)−1),

(1)

where [α1,α2,α3] represents the weights associated with dif-
ferent directions, α4 denotes the weight assigned to the integral
term; nc represents the current step number; d represents the
Euclidean distance between pee

t and ph
t , 1d<δ1 is the indicator

function of d < δ1. The last two items use the arctangent
function to increase the rate of change.

C. Training
From the RL algorithm mentioned in II-B, it can be seen

that PPO is an algorithm that directly updates the agent policy
π : S → A. Since the trajectory of the robot in this work is
continuous, this paper is considered to use this algorithm.

The corresponding network architecture is shown in Fig. 2
(the part of Dynamic Safety Lock is described in III-D, the
details of the network are described in this section). The agent
network contains three fully connected layers. The output of
the task’s observation is merged with the observation of the
robot. The concatenated data vector is processed through the
fully connected layers and the activation function arc-tangent
function. The final output is the displacement increment at of
the EEF. The goal of the PPO algorithm is to learn a policy
π that maximizes the reward. Particularly, in order to ensure
the value network and policy network have the same structure,
our embedded DSL does not change the network structure.

D. Dynamic Safety Lock
To avoid severe collisions on the robot that cause system

crashes, object damage, etc., we suggest a DSL method. As
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Fig. 2. Network structure of robot insertion models. The entire network is
divided into three parts, the environment, the agent network (III-C), and the
dynamic safety lock (III-D).

(a) (b)

Fig. 3. Tests on soft tools with varying stiffness and damping. (a) is the
theoretical diagram of the soft body in simulation, and each spherical joint is a
spring-damper system. (b) is the comparison of the soft body in simulation, the
left is a representation with reasonable stiffness and damping, and conversely,
the right is irrational.

shown in Fig. 2, initially, the 6-DoF force signals for collision
detection are generated by the F/T sensor installed on the
EEF. These signals serve as input for the DSL. The DSL’s
objective is to enable the EEF to perform the insertion action
compliantly. Due to the uncertainty in the desired force for
various soft bodies, we use force changes iteratively to test
the required force for the soft bodies. The DSL employs these
force changes to generate dynamic weights [βx,βy,βz] and
[βrx,βry,βrz],

[βx,βy,βz] = [Fx(t),Fy(t),Fy(t)]− [Fx(t−1),Fy(t−1),Fy(t−1)]

[βrx,βry,βrz] = [τx(t),τy(t),τy(t)]− [τx(t−1),τy(t−1),τy(t−1)],
(2)

which are used as the gain to calculate the force compensation
value a

′
t = [δ px,δ py,δ pz,δ rx,δ ry,δ rz] with the element-wise

product operator:

[δ px,δ py,δ pz] = [βx,βy,βz]⊙ [Fx(t),Fy(t),Fy(t)]

[δ rx,δ ry,δ rz] = [βrx,βry,βrz]⊙ [τx(t),τy(t),τy(t)].
(3)

The force change value and the force compensation value are
positively related. The unit of a

′
t is Newton (N). we obtain

the action compensation value through Newton’s second law
F = ma. The mass of the object and the time step can be set
in the simulation and are fixed values. Additionally, we apply
a compensation weight to modify the displacement change’s
intensity. This adjustment aims to ensure that the tools attempt
collision rather than mere rubbing after contact. Hence, the
above parameters (fixed value and weight) can be integrated
into hyper-parameter α5, whose unit is s2/kg. Its physical
meaning is compliance, which represents the displacement
generated by unit force at the contact point. To allow it to be
embedded in the RL network without affecting its distribution
of the on-policy. We make a

′
t equivalent to the output layer

of the RL network and use the activation function to scale to
obtain displacement compensation value a

′′
t = tanh(α5a

′
t).

Finally, to more concretely represent the function of the
DSL, we list the pseudo-algorithm as shown in Algorithm 1,
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Algorithm 1: Dynamic Safety Lock.
Input:
• Ft=[Fx(t),Fy(t),Fy(t),τx(t),τy(t),τz(t)]
• Ft−1=[Fx(t−1),Fy(t−1),Fy(t−1),τx(t−1),τy(t−1),τz(t−1)]
• at=[δx,δy,δ z,δθx,δθy,δθz]

Output: Compensation value ȧt for the EEF.
// the observation can be provided for this algorithm.
Define the six-dimensional force threshold δ f
Normalized the F/T sensor data
if −δ f < Ft < δ f then

ȧt = at
else

Get the sequence difference of the F/T sensor
Ft−1 −Ft

Obtain the agent action compensation value a
′
t

through the difference weight of Equation 3
Copy the activation function of the output layer of

the policy network, and regularize the
compensation value a

′
t to obtain a

′′
t .

ȧt = at +a
′′
t

where we set a threshold δ f for the F/T sensor, which functions
as a clipping filter to clear low-level noise of Ft.

Last but not least, compared to the common model that
sliding exploration on the target surface, this model with DSL
is characterized by frequent presses and touching the target.
When the edge of the hole is not explored, because of the
bending of the soft body, the former hardly rebounds and
continues to press, while the latter can compensate for the
displacement and reduce the degree of pressing, making it
easier for the soft body to move and search for the hole.
When exploring the edge of the hole or the path inside the
hole, the former can only determine the next action of the
agent based on the observation state without compensation,
while the latter has a compensation gain to obtain the more
obvious observation.

IV. EXPERIMENTS AND DISCUSSION

We aimed to build a policy for inserting soft bodies into
complex paths. The experiments were divided into two parts:
first, an ablation study in simulation to assess the DSL-
based model’s contributions, and second, applying the RL-
based model on a real robot for the insertion task. Finally, all
experimental results were thoroughly discussed.

A. Simulation Experiments
All training and testing in the simulation part were on

the Intel(R) Core(TM) i7-1265U CPU. We tuned the hyper-
parameters manually to obtain the configuration. In particular,
since many factors such as friction, quality, and other settings
in simulation affect the performance of the agent, the hyper-
parameters we provided serve as reference values. For the
reward function (Equation (1)), α1 = α2 = 0.7, α3 = 0.6,
α4 = 0.9, δ1=1e-4. We explain their importance next. Because
the insertion task needed to first explore the location of the
hole, the weight for the X-axis and Y-axis was greater than
the Z-axis. α4 was the weight of the cumulative number of
successes, which took effect when the tool was close to the
required target, indicating that the task had been completed
at this step, hence, its value was greater than the first three.
The last item in Equation (1) was the step counter, its purpose

was to allow the agent to quickly obtain the optimal trajectory,
therefore, its weight was the highest. For the DSL, α5 = 130,
which was determined by the degree of force feedback and
compensation. As shown in III-D, the DSL set the final contact
force based on α5 and the dynamic weights [βx,βy,βz] and
[βrx,βry,βrz]. The latter was the change in force. When the
value of the latter was small, the compensation value was
small, causing the tool to rub on the target surface. The
function of the former was to adjust the compensation intensity
so that the tool could repeatedly contact the target. Therefore,
α5 was determined based on the deformation strength of
the researcher’s tool, which needed to be adjusted by the
researcher. The recommended value we give allowed our
softest tool to make repeated contact with the target. For
the observation, to make the simulation environment robust,
the Gaussian noise G(·) was added to the observations of
the holes for the experiments. The observation of the robot
sr

t had the noise of the simulator, therefore no additional
noise was added. For the training model configurations, the
total number of training steps was 3e06, and the maximum
number of steps per episode was nm = 350. For the task,
we randomized the configuration of the hole position and
orientation at the beginning of each episode to enhance the
robustness and generalization of the model. All models were
set with checkpoints and estimated models were generated
every 1e04 steps. The estimated models were set up to test the
success rate of the trained models. The simulation environment
was built by Mujoco.

1) DR in Simulation: Before training the agent, we needed
to configure the physical parameters of the simulation environ-
ment so that it matches the real world as much as possible. As
mentioned above (III-A), part of the observed data had added
noise G(·) to simulate the state of the real world. Filtering
resulted in cleaner data, but there was bias in the real world,
therefore, we set DR for part of the observation data to reduce
the impact of bias when the environment was reset. In the
simulation environment, DR needed to be used in the hole’s
position pee

t . As shown in Fig. 1, we used DR to make the
center position offset to the surrounding encirclement. In order
that the hole would not always be vertical in the simulation,
we randomized the Euler angle of the hole. In addition, we
normalized the observation space to make it easy to map in
the real environment (II-C). The EEF’s normalization range
was three times that of the hole, while the F/T sensor data’s
normalization range was determined through pressing testing.

Finally, DR was set for the physical parameters of non-
FEM soft bodies (III-A). We estimated the range of stiffness
and damping by observing the contact between soft bodies and
rigid bodies by minimizing collision detection in Mujoco. As
shown in Fig. 3(b), using unreasonable stiffness and damping
parameters could make soft bodies embedded in the rigid body
in simulation. Using the method mentioned in III-A, when we
set the stiffness to be greater than 0.1 and the damping to
be greater than 0.05, the tool was embedded in the obstacle.
When the stiffness we set was less than 0.01 and the damping
was less than 0.003, the tool left as soon as it contacted the
obstacle. After testing, the stiffness setting range was rs =
[0.01,0.1], the damping setting range was rd = [0.003,0.05].

2) DSL-based Model: The simulation experiment primarily
aimed to analyze the effects of the proposed method. Since
the proposed method resembled the admittance controller, an
RL model with the admittance controller was included as a
baseline. Additionally, force penalty, a factor in the reward
function, was considered as another baseline.

We named the basic model as the visual-force model (VF).
To analyze the effectiveness of the proposed model (VFDSL),
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Fig. 4. Training method’s performance (DSL vs. admittance controller)

TABLE I
REWARD (R), REWARD VARIANCE (σ (R)) AND SUCCESS RATE (S) IN

SIMULATION TESTING.

VF VFadm VFDSL VF-f VFadm-f VFDSL-f
R -44.12 -28.95 -23.36 -39.57 -37.23 -29.34

σ (R) 1.67 0.72 0.41 4.29 3.77 3.08
S 19.29% 55.86% 85.14% 41.63% 53.17% 79.55%

we added an RL model with an admittance controller (VFadm)
as a comparison [20], which followed the control law

Fext −Fd = md ẍ+bd ẋ+ kdx, (4)

where md , bd , and kd represented the desired inertia, damp-
ing, and stiffness matrices respectively. Fext represented the
actual contact force vector. Fd represented the desired force.
We allowed tools to touch targets because touching enables
exploration. x, ẋ, ẍ were the displacement of the EEF, its
velocity, and acceleration respectively. Referring to [20], we
set the parameter md to be the identity matrix, set the damping
ratios to fixed value 100 and added the 6-dimensional kd of
EEF to the mapped action space as the controllable variable,
whose range was [500,700]. In order not to affect the results
of the ablation experiment, we used the same reward function.
In [20], Fd was set to zero as the path was straight, and the tool
was a rigid body. However, in our approach, we set Fd = 0.1
(normalized), a value close to zero, to encourage the agent to
explore complex paths without exerting a substantial influence
on actions. Moreover, the RL algorithm was replaced with the
same algorithm used in this paper.

Secondly, a force penalty term was added to the reward
function to construct a new reward function as another base-
line. Due to the different reward functions, based on the orig-
inal proposed DSL-based model (VFDSL), three additional
models were added (VF-f, VFadm-f and VFDSL-f). The new
reward function r2 added a force penalty term based on r1.

r2 =−
√
(Fd −Fext)2 + r1, (5)

where the Fd referred to the setting of VFadm. The weight
of the force penalty term was 1, indicating that the force was
important in this task, other hyper-parameters were adjusted
based on their importance. We trained each model 500 times
to get TABLE I. The performance of the trained agent was
summarized as shown in Fig. 4, VFDSL had the highest
reward, followed by VFadm and VF the lowest.

B. Insertion in Real World Environments
We tested the methods in real-world environments, where

the hole position was recognized by a ZED2i camera, and
all experiments were completed on the device UR3e with a
Robotiq-2F85 gripper. We first demonstrated the effectiveness
of the DR used (IV-A1) through ablation experiments (IV-B1),

(a) original hole (b) offset hole

Fig. 5. The offset of the hole. (a) is the original hole, and (b) is one case
of the offset hole defined in IV-B1. The right side of each sub-figure is the
cross-section inside the hole, and the cross-section in (b) is one of the cases.

TABLE II
THE RESULT OF SUCCESS RATE, Z-FORCE (ZF) AND ITS VARIANCE

(σ (ZF)) IN REAL-WORLD ENVIRONMENTS.

VF VFadm VFDSL VF-f VFadm-f VFDSL-f
Zf 0.769 0.685 0.527 0.604 0.573 0.551

σ (Zf) 0.035 0.018 0.112 0.079 0.091 0.140
S 11.79% 49.49% 83.45% 31.07% 43.21% 71.79%

which include experiments on the holes’ position and soft body
parameters. Moreover, the position of the hole was obtained
through the AprilTag marker [32] instead of identifying the
hole. The second experiment (IV-B2) was to demonstrate the
effect of our proposed method.

1) Validity Test for Sim2Real: The purpose of this exper-
iment was to prove the effectiveness of DR for Sim2Real,
which only used the proposed VFDSL.

We added the DR for the position of holes to reduce the
Sim2Real gap. We made a gap between the position in the
observation space and the real position as the offset hole,
which we call l2hole. As shown in Fig. 5, the camera obtained
the location of the original hole, but did not know where the
offset hole is. Similarly, the path of the l2hole had a slope so
that the entire path became a complex path, such as an S-shape
or a protruding blocking surface. The l2hole was utilized in the
whole real world experiment for comparison. Then, we tested
the hole in the middle, and fixed the hole position, manually
changing the position of the upper hole each time. We tested
50 times, the success rates of searching for holes using the
DR-based method and the method without DR were 78% and
26% respectively. The success rate for searching was defined
when a hole was successfully located and entered, without the
need to explore paths. As shown in the part of position DR
by the human in Fig. 6, it showed 12 positions, all offset from
the original hole position, as we focused on DR’s impact on
position. More detailed comparisons with the model without
offset setting can be found on the GitHub page mentioned in
the abstract. The curve on the right showed the EEF’s motion
in the z-axis direction, which was most representative as it
reflected the largest change after searching for the hole.

For the soft body, as shown in Fig. 1, we used tools with
varying deformation intensities, which were the cable, the
3D printed stick based on the thermoplastic polyurethanes
flexible material (TPUm), and 3D printed stick based on the
poly lactic acid material (PLAm). As shown in Fig. 6, for
comparison, we trained a model without DR for soft body
parameters (the DR model vs. the non-DR model). For the
tool, the cable was a 3mm diameter enamel-insulated wire,
and both TPUm and PLAm were 6mm diameter rods with
10% filled, the length of all tools was set to 11cm. We tested
each of the three tools at the same hole 20 times. The success
rate for insertion was 78.33% for the DR model and 31.67%
for the model without DR. Specifically, unlike the success
rate for searching, the insertion success rate was defined as
when the tool appeared at the bottom after passing through
the hole. The determination of whether the tool appeared
at the bottom was judged manually, and the manipulator
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soft body 
with DR

soft body 
with non-DR

position DR 
by humans

A B C D E F

LKJIHG

A B C D E F

LKJIHG

Fig. 6. Offset experiment for the hole position and DR experiment for the soft body (refer to the video from the link in abstract). The former experiment
only utilizes the cable as the tool, while the latter one employs three types of tools. The colors below the 12 subgraphs correspond to different colors in the
curves, with A to L used as their aliases in discussions. These graphs mainly show the state of the EEF in the z-axis direction, which has been normalized.

hole1-PLAm hole2-PLAm hole3-PLAm

hole1-TPUm hole2-TPUm hole3-TPUm

hole1-cable hole2-cable hole3-cable

l2hole2-PLAm l2hole3-PLAm l2hole2-TPUm

l2hole3-TPUm l2hole1-cable l2hole2-cable

l2hole3-cable
l2hole3-TPUm-

VFadm
l2hole3-PLAm-

VFadm

l2hole3-cable-
VFadm l2hole3-PLAm-VF

C2

A5 C4 C5

A1 A2 A3

B1 B2 B3

C1 C3

A4 A5 B4

C6 D2D1

D3 E

Fig. 7. Performance of insertion experiments. It encompasses all cases related
to VFDSL (from series A to series C) as well as partial cases of VFadm
(series D) and VF (E) on the left part. The curve on the right represents
the performance of each model exploring hole2 using the TPUm-based tool,
where for example VF 0 indicates that the task failed and VF 1 indicates
that the task succeeded.

automatically stopped when EEF was below the surface of the
hole. All the holes we designed were square with 9mm side
length. The inclination angle of the paths ranges randomly
between 55 and 65 degrees, and the paths feature irregular
protrusions, the vertical thickness of the hole was 3cm.

2) Soft Bodies Insertion: The main feature of the proposed
method was to solve the problem of soft body insertion. The
insertion experiment designed in this section included the
attempt of unexplored hole paths, the verification of the use of
DR for soft bodies set in the simulation (IV-A1), and the com-
parison of agents trained with different methods (TABLE II).
Initially, we designed hole paths with varying complexity, as
shown in Fig. 1, in the real world. All three paths differed
from the path simulated. Next, to confirm the applicability

of the proposed model with different soft bodies, we utilized
three tools with varying stiffness for comparison. Then, we
complicated the hole path by adding l2hole to reflect the
ability of the proposed model to explore the hole paths. Finally,
as shown in Fig. 7, the main focus was on demonstrating the
performance of the proposed VFDSL for different hole paths
and tools with varying stiffnesses. We showed a portion of the
force curves on the right, which included both successful and
failed cases of inserting the TPUm-based tool into hole2 in
the z-axis direction for all models we mentioned. As shown
in TABLE II, Z f represented the normalized force in the z-axis
direction in the observation space, which objectively reflected
the strength of the manipulator pressing, including searching
for holes and paths in holes. We tested each method and path
20 times, however, hole1 was ineffective for the PLAm-based
tool and the TPUm-based tool because the diameter was larger
than the diameter of the path during inclination. Therefore,
we tested 280 times for each method, which included hole1,
hole2, hole3 as shown in Fig. 1 and their l2hole as the example
shown in Fig. 5(b), where the interface inside l2hole offered
irregular shapes.

C. Discussion
1) Simulation Results: We first analyzed and discussed the

simulation results. For the simulation experiment IV-A2, as
shown in Fig. 4 and TABLE I, the reward and success rate
of the VFDSL was the highest. The r1 expressed that the
shorter the trajectory in an episode, the higher the reward,
which shows that the VFDSL was the most efficient when
searching for the hole and the path in the hole. VF had a low
success rate (19.29%), implying ineffective path exploration,
while VFadm showed a significant improvement (55.86%),
highlighting the importance of force feedback in task perfor-
mance, which was reflected in the comparison between VF
and VF-f (41.63%). VFDSL surpassed VFadm in performance
(85.14% vs. 55.86%), thanks to its dynamic desired force that
converged to feasible contact between the soft body and the
environment. In contrast, VFadm, employing a fixed desired
force, exhibited a lower success rate. For the model with
different reward functions, we did not compare the reward due
to different calculation methods of reward, but obviously, as
shown in Fig. 4, due to the force penalty term, r1 was higher
than r2. In VF-f, VFadm, and VFadm-f, the latter two shared
a similar (55.86% and 53.17%), higher success rate compared
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to the former. This implies that both the force feedback from
the admittance controller and the force penalty in the reward
function had similar effects. In VFDSL and VFDSL-f, the
success rate of the former was slightly higher than the latter
one (85.14% vs. 79.55%). This discrepancy arose because the
fixed Fd in the force penalty was not accurate for all tools,
resulting in a negative impact. In short, the force feedback
played a vital role in this task, however, because the soft
body’s desired force was uncertain, a fixed force could not
be applied to all tools and might even have negative effects.
The dynamic desired force obtained by interacting with the
environment worked better.

2) Performance of DR: We discussed the results of
Sim2Real experiment IV-B1, which included whether the
model utilized DR regarding hole positioning and the proper-
ties of the soft body. On the one hand, as shown the position
DR by humans in Fig. 6, we could see that some curves (F ,
H, K, L) drop directly below the hole position, indicating that
it directly searched for the hole, some curves (A, B, C, D, E,
J) stagnated in an area and then descended, indicating that
they searched for the hole position after trying to search on
the surface of the hole, and other curves (G, I) stuck in an
area, indicating that it’s trying to search, but it’s unsuccessful.
Moreover, each hole was offset, and after 50 independent
experiments, the success rate of the method based on DR was
higher than that without DR (78% vs. 26%). This indicates
that DR has stronger resistance to interference in position
information and can more efficiently locate the hole position.
Hence, using DR for the hole position in the simulation could
reduce the Sim2Real gap of position detection. On the other
hand, regarding the impact of DR on soft body parameters,
quantitatively, under identical conditions, the success rate of
the method based on DR was higher than that without DR
(78.33% vs. 31.67%), indicating that DR was helpful for
Sim2Real of soft bodies in this work. Qualitatively, as shown
the soft body part in Fig. 6, it could be seen that both models
can search for the hole when clamping the PLAm-based tool
(A, B vs. E, H), and the curve on the right also corresponds
to it, which is because the PLAm-based tool was the most
rigid among the three tools. However, when switching to the
softer TPUm-based tool (C, D vs. I, J), the non-DR model
moved away from the hole after contact, while the DR model
still searched near the hole. Particularly, the dip of some curves
like J curve was caused by the wrong search, which meant that
not all descending curves indicate success. When switching to
the cable tool (E, F vs. K, L), the non-DR model deformed
the cable directly before searching, while the DR model only
slightly deformed the cable. From the curve perspective, it
could be observed that the curve of the DR model gradually
descends, whereas the curve of the non-DR model directly
descends, but it is not successful. To sum up, when transferring
the model from simulation to the real world, the DR for hole
position helps improve the model’s robustness, and the DR for
soft body parameters enables the agent to adapt to tools with
varying deformation intensities.

3) Performance of Insertion: We discussed the results of
soft body insertion in the real world. The partial performance
was shown in Fig. 7, it could be seen that for the PLAm-
based tool, the VFDSL did not deform it (series A), the VFadm
bent it slightly (D2), which meant that when the desired force
setting of the latter was inappropriate, it would damage the tool
due to the tool’s excessive stiffness, this kind of damage was
more pronounced in the model (E) without force feedback.
For the softer TPUm tool, both models show more pronounced
distortion of the tool (series B vs. D1). For the softest tool,
the cable, VFadm caused deformation even before locating the

hole, whereas VFDSL repeatedly made contact attempting to
locate the hole’s position (series C vs. D3). Next, we discussed
the force-containing models. From the curve in Fig. 7, it
could be seen that compared to VF, whether it was due to
the failure of searching the hole (VF 0 vs. VF-f 0) or the
successful exploration of the path (VF 1 vs. VF-f 1), the
force of VF-f was smaller. This was the advantage of the force
penalty term. Comparing the curves of VFadm and VFadm-
f, it could be observed that in the failure cases (VFadm 0
vs. VFadm-f 0), the force stayed within a similar range, and
in the successful cases (VFadm 1 vs. VFadm-f 1), the force
during path exploration was similar. This indicated that the
effect of the force penalty term was reduced. Specifically,
when the force penalty term was assigned an unsuitable
value Fd for the tool, VFDSL-f exhibited failure, with its
value exceeding VFDSL (VFDSL 0 vs. VFDSL-f 0). After
locating the hole, significant fluctuations occurred during path
exploration (VFDSL 1 vs. VFDSL-f 1).

Quantitatively, we could see that the VFDSL completed
the task with a small force (0.527± 0.112), and the success
rate (83.45%) was the highest among the three models in
TABLE II. This was because it had a large compensation
after contact, and it searched for the hole by leaving the
surface of the hole and pressing frequently. Compared with
the VF, the VFadm had a higher success rate (11.79% vs.
49.49%) because it had a certain position compensation, but
it still made tools rub against the surface of the hole. For VF
and VF-f, the latter exhibited a markedly enhanced success
rate at 31.07%, underscoring the substantial impact of force
feedback on task performance. Nevertheless, the success rate
of VFadm-f closely paralleled that of VFadm, suggesting a
comparable influence between the force penalty term and the
admittance controller. The success rate of VFDSL-f was lower
than VFDSL one, which meant that the force penalty term in
the reward function did not improve the model performance
of VFDSL. This was because we encouraged the soft body
to contact the target during the exploration phase. However,
soft bodies with different stiffnesses required different desired
forces, and the fixed Fd in the force penalty term could not of-
fer suitable force feedback. In particular, the force penalty term
constrained the movement of the EEF, resulting in a slightly
reduced Z f in models incorporating this term compared to
those without it. VFDSL-f stood out as an exception mainly
due to its higher frequency of failures than the VFDSL one,
leading to more instances where the soft object remained at
the target and underwent compression.

Then, to obtain a more comprehensive discussion, we ana-
lyzed the results of real and simulated. Since the inconsistent
running time of real-world experiments and simulation exper-
iments, we compared the success rate for insertion, the values
of all models were lower in the real world. One of the con-
tributing factors was the limited quantity of samples available
for analysis. The second reason was that the real world model
was derived from a simulated model transfer, so the lower
success rate was expected. The final reason was the persistent
Sim2Real gap, which could not be fully eliminated. Moreover,
we analyzed the characteristics of VFDSL to discuss its scope
of application, Its ability to adapt to soft bodies and explore
complex paths makes it suitable for tasks like clamping soft
brushes for cleaning items, laying wires, and more. However,
the repeated touching action made it unsuitable for work that
requires efficiency such as assembly lines. In summary, the
VFDSL performed search and insertion tasks more smoothly,
and the proposed model was applicable to tools with varying
stiffnesses.
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V. CONCLUSION AND FUTURE WORK

This paper proposes a novel framework for insertion-type
tasks that can generate dynamic compensation with the DSL
method and adapt to soft bodies with varying deformation
intensities and the complex hole’s path. First, we propose
a multimodal model to search the hole and insert the soft
bodies. Then, using visual and force perception information,
we train a policy with PPO algorithm for the insertion task,
which embeds the DSL method. Finally, the DR is used
for the soft bodies’ parameters to reduce the difficulty of
Sim2Real. We validate our approach by implementing it on a
real robot system and achieve comparable performance results.
The results show that our method outperforms the admittance
controller for searching and insertion.

However, this work is a preliminary exploration of the DSL-
based insertion task. There are limitations to this work. For
instance, the hyper-parameters of DSL are manually specified.
It would be interesting to use optimization methods to auto-
matically adjust hyper-parameters or set the range and add the
hyper-parameters to the action space; for hole identification,
more tasks can not use the markers; the fingers of the gripper
have no perceptual information, and tactile information can be
added to the fingers to enrich the model.
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