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ABSTRACT 

As semiconductor industry transitions to EUV lithography in advanced technology nodes, EUV stochastic defects 

play a significant role in chip yield degradation. Present yield models do not account for the stochastic-driven defects that 

changes by both pitches and critical dimensions (CD) in EUV lithography. In this study, a novel approach that incorporates 

EUV stochastics into the yield modeling, using calibrated stochastic defects from wafer data is introduced. Then a 

comparative analysis of yield for various EUV insertion scenarios is meticulously performed. Additionally, strategies to 

enhance yield in EUV lithography, including CD retargeting are proposed. 
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1. INTRODUCTION  

As the semiconductor industry progresses, there is a notable shift towards adopting Extreme Ultraviolet (EUV) 

lithography as the primary technology in the production of semiconductor devices, especially in advanced technology 

nodes. EUV lithography is a cutting-edge lithography technique that utilizes extremely short wavelengths of light, allowing 

for more precise printing of the critical features on wafer. This transition to EUV lithography in advanced technology 

nodes signifies a move towards more advanced and challenged processes in the semiconductor manufacturing industry [1].  

As EUV lithography is inserted into the production process, there could be some unpredictable variations. It is well 

known that stochastics can cause variations in printing patterns. Hence, it’s believed that EUV Stochastic effects can lead 

to higher failure probability. Figure 1 (a) shows the CD distribution in different CDs for Pitch of 36nm. When the feature 

size becomes smaller and smaller, there are more defects that could be found out of certain sigma [2]. Figure 1 (b) further 

illustrates the CD distribution of Pitch of 36nm and CD of 16nm. When it comes to smaller CD, we can find that the 

Gaussian distribution starts to have a tail and becomes asymmetric towards the smaller CDs. Stochastics can describe some 

random variables. 

 

                                                  (a)                                                                                                       (b)  

Figure 1 (a) suggests more defects are found with small CD due to EUV stochastics. (b) illustrates CD distribution of 

P36CD16, showing Gaussian distribution with a tail on the smaller CD side. 
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In this study, we consider stochastic defects in reality as the dimensions scale. In addition, with stochastic, defect 

density varies with Pitch and CD. We consider stochastic effect into our previous yield model [3][4]. Thus, the yield model 

has been improved in this study. To achieve better yield, we propose a strategy which is retargeting CD to reduce defect 

density. In the future, by optimizing exposure conditions such as dose, exposure time and focus, it can also help to enhance 

yield in semiconductor industry.  

 

2. METHODOLOGY – DEFECT DENSITY CONVERSION 

In this section, first, we compare the program flow of the conventional yield model and the proposed yield model, 

considering wafer-data-calibrated defect density. Then, with the Stochastic Compact Model (STCM), the methodology of 

defect density conversion is further introduced. 

2.1 Comparison of conventional yield model and proposed yield model 

In the conventional yield model, we use the constant defect density for all the patterned layers. In this proposed yield 

model, we consider stochastic effect, then with the wafer data calibrated model, we can get the failure number to convert 

to defect density. By comparing the output of the defectivity simulation using calibrated model and the wafer data from 

the defect inspection tool, it can further improve the accuracy of the stochastic defects model. With the more accurate 

model, wafer data defectivity can be updated. Therefore, we not only take into account the stochastic effect and embed the 

latent defects induced by Stochastic (STC) within the formula parameters, but also combine wafer calibrated data into the 

yield model, as illustrated in Figure 2. 

 

Figure 2. The yield model proposed in this study takes the stochastic effect into account and combines a wafer data-

calibrated model with the yield model. 

 

2.2 Methodology by Stochastic Compact Model (STCM) 

The methodology by Stochastic Compact Model (STCM) is based on Calibre nmModelflow [5]. In this model, users 

can specify the pixel size, the number of inspected pixels, and subsequently, the count of failed pixels (pixels that contain 

defects). As shown in Figure 3, for instance, with commands “num_pix = 10” and “num_fail = 1”, signifying 10 gauges 

to inspect, if the tool identifies a gauge as either nonexistent or smaller than the specified pixel size, it is marked as 'failed,' 

resulting in Pix_NOK being equal to 1. 
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Figure 3. The methodology by stochastic compact model is based on pixel-based modeling tool. 

 

This simulation tool is calibrated with wafer data. With the simulation tool, we can convert the number of the failures, 

denoted as “Pix_NOK” to defect density.  

𝑃𝑖𝑥_𝑁𝑂𝐾 ≡ #𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛 𝑁 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

By considering the number of failures and the inspection area, the defect density can be calculated. The inspection 

area includes pixel size, number of pixel to detect in one measuremnet, and the pitch of the simulation pattern as illustrated 

in Figure 4. The total inspection area also takes acount the number of  simulation iterations.  

The defect density conversion formula is presented below. 

𝐷𝑒𝑓𝑒𝑐𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≡  
𝑃𝑖𝑥_𝑁𝑂𝐾

𝑁  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 × 𝐼𝑛𝑠𝑝𝑒𝑐𝑡 𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒
 

With the inclusion of the inspection area, the formula can be modified as follows. 

𝐷𝑒𝑓𝑒𝑐𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≡  
𝑃𝑖𝑥_𝑁𝑂𝐾

𝑁  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 × (𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 × 𝑛𝑢𝑚_𝑝𝑖𝑥 × 𝑃𝑖𝑡𝑐ℎ)
 

 

Figure 4. Convert number of failures to Defect density (unit: cm-2) by taking into account the inspection area. 

 

Hence, with the calibrated model, the stochastic defects probability can be simulated and further converted into defect 

density. This calibrated simulation result can then be incorporated into the proposed yield model with the Stochastic 

Compact Model (STCM), presenting a more accurate yield model and corresponding results. 
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3. RESULT – EUV STOCHASTIC DEFECT DENSITY FOR YIELD MODEL 

In this section, the defect density with STCM for different pitches is shown in 3.1. Then, a comparison of the yield 

model with and without STCM, applied to two cases— one representing a single BEOL level and the other involving EUV 

nodes— is presented with this updated yield model. 

3.1 Defect density with STCM for Different Pitches 

Figure 5 shows the EUV defect density resulting from EUV direct printing at various pitches— P39, P36, and P32, 

with each point representing the pitch and its CD equal to half-pitch. This EUV defect density is benchmarked to Deep 

Ultraviolet (DUV) specifications defined in our previous studies [3][4]. It reveals that a higher defect density is observed 

in smaller pitches, indicating the impact of the stochastic effect. 

 

Figure 5 EUV defect density for P39, P36, P32 in EUV direct printing reveals higher defect density is observed in smaller pitches/CD. 

 

3.2 Comparison of Yield Model w/ and w/o STCM 

The yield model comprises two parameters: Systematic-limited yield (YS) and Random yield loss (YR), the latter being 

associated with latent defects and consequently referred to as defect-limited yield. Further details on Yield Model 

parameters can be found in previous works [3][4]. In this study, Poisson model will be used.  

The formula for wafer yield with Random yield loss (YR), according to the Poisson Model, is presented as follows. 

𝑊𝑎𝑓𝑒𝑟 𝑦𝑖𝑒𝑙𝑑 = 𝑌𝑆  × 𝑌𝑅 = 𝑌𝑆 × 𝑒−𝐴𝐷0 = 𝑌𝑆 × 𝑒−𝐴𝐷0,𝑚×#𝑚𝑎𝑠𝑘 

The parameters defect density (D0) and mean defect density (D0,m) exhibit variability as a consequence of stochastic 

effects within the yield model incorporating EUV Stochastic Compact Model (STCM). 

 

Table 1. Mean defect density (D0,m) and defect density (D0) are varied in the proposed yield model with STCM  
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In the conventional yield model, stochastic effects are not considered, leading to a constant mean defect density value. 

Hence, when the defect density is identical, the predicted yield remains constant, leading to weaker yield predictions. In 

contrast, the proposed yield model, as illustrated in Figure 6, takes into account stochastic effects, causing the mean defect 

density (D0,m) to vary across different pitches, consequently resulting in different total defect density (D0). As a 

consequence, the yield model becomes more reliable as it is influenced by varying defect density levels at different pitches. 

 

 

Figure 6 The proposed yield model is more reliable as it is influenced by varying defect density levels at different pitches, 

resulting in more realistic yield result. 

 

3.3 Yield w/ STCM in Single BEOL Level 

Two cases of patterning process assumptions are applied to the yield model with Stochastic effect, showing the results 

influenced by Stochastic effects. The first case involves process assumptions for a single BEOL level, encompassing one 

metal and one via, as illustrated in Figure 7. This figure shows the patterning process assumption for different pitches and 

for different lithography options (193i and EUV) as well as the number of masks needed for each of these options. 

 

Figure 7 The patterning process assumption and the corresponding number of masks needed for single BEOL level (M1-V1) 
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Figure 8 (a) illustrates the total number of masks needed at different pitches and various patterning options, while 

Figure 8 (b) presents the corresponding yield results. Comparing the 193i to the EUV options at P39 reveals that EUV 

insertion can help to decrease the number of masks, resulting in an improved yield. For pitches from P36 to P32, 

considering EUV single patterning option, the number of masks remains constant; however, the yield drops dramatically, 

indicating a significant impact of the stochastic effect on the yield. Even at P32, where EUV insertion reduces the number 

of masks, the higher defect density in P32 due to the stochastic effect still results in a decline in yield for the EUV option. 

  

                                                  (a)                                                                                                       (b)  

Figure 8 (a) illustrates the number of masks, while Figure 8 (b) presents the corresponding yield results for different pitches and 

lithography options in a single metal/via layer level. 

3.4 Yield w/ STCM in EUV Nodes BEOL level 

Furthermore, the patterning process assumptions for N7 and N5 imec logic nodes, incorporating various patterning 

options, are applied to the yield model with stochastic effect taken into account. This study focuses on the yield of Back-

End-of-Line (BEOL) from M1 to M3. N7 EUV option employs P36, while N5 starts to insert P32 for both 193i and EUV 

options. In the updated yield model, different defect densities are applied to different pitches. The yield can be calculated 

based on the corresponding number of masks. 

 

Figure 9 The patterning process assumption for EUV and 193i nodes (N7-N5) 
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In Figure 10, firstly, for N7, from 193i to EUV options shows that EUV insertion reduces the number of masks and 

improves the yield. Additionally, going from N7 EUV to N5 193i increases the number of masks, resulting in a decrease 

in yield. With smaller Pitch/CD, such as P32 in this case, stochastic effects significantly impact the yield and should be 

considered. Subsequently, in N5 P32 with EUV stochastic, although the number of masks can be reduced using EUV 

compared to the 193i, the yield still drops due to the higher defect density caused by the stochastic effect. 

 

                                                  (a)                                                                                                       (b)  

Figure 10 (a) illustrates the number of masks and (b) presents the corresponding yield results for different nodes in different patterning 

options (EUV vs. 193i). 

3.5 Summary for Stochastic Failure 

First, in BEOL single metal level, as shown in Figure 11(a), reveals the influence of stochastic effects on yield at 

various pitches and patterning options. EUV insertion at P39 reduces mask count, enhancing yield, while at P32, despite 

reduced number of masks, stochastic effects lead to a decline in yield. Second, in BEOL levels M1-M3, presented in Figure 

11(b), we have demonstrated the impact of EUV insertion on mask count and yield for N7 and N5 nodes. The study 

emphasizes that stochastic effects significantly impact yield, evident in both cases. It’s important to consider stochastic 

effects, particularly in smaller Pitch scenarios such as P32, in advanced semiconductor yield modeling. 

 

(a)                                                                                                 (b) 

Figure 11. The yield on (a) one BEOL level and (b) yield for N7 and N5 nodes BEOL level (M1-M3). 
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4. PROPOSAL – DEFECTIVITY IMPROVEMENT 

Finally, we propose a strategy to mitigate defectivity. Figure 12 (a) depicts defect density across different wafer critical 

dimensions (CD) at P36, revealing two defect types: 'Broken' for smaller CDs and 'Bridge' for larger CDs. Consequently, 

defect density increases on both sides, with the minimum observed at CD = 19.7 nm, rather than CD that is equal to half-

pitch. This suggests a potential 3.5 times reduction in defect density with a 1.7 nm oversizing of the CD. In Figure 12 (b), 

defect density is presented on a linear scale, showing its correlation with yield. Thus, oversizing proves effective not only 

in reducing defect density but also in improving yield. 

 

(a)                                                                                                 (b) 

Figure 12 (a)(b) illustrate the impact of retargeting strategies, demonstrating CD oversizing contributes to achieving improved yield. 

5. CONCLUSION 

In conclusion, this study presents the significance of incorporating a stochastic model in real-world scenarios, 

emphasizing its importance as dimensions scale and its impact on defect density. The enhancement of the wafer yield 

model is successfully achieved by considering the stochastic effect, resulting in variable defect density with changes in 

Pitch and the CD. This updated yield model with stochastic effects lays the foundation for a proposed strategy to enhance 

yield performance. Through CD retargeting, the reduction of defect density is proposed to improve overall yield results. 
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