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CHIT1 at diagnosis predicts faster disability
progression and reflects early microglial
activation in multiple sclerosis

Jarne Beliën 1,7, Stijn Swinnen 1,2,7, Robbe D’hondt 3,4, Laia Verdú de Juan5,
Nina Dedoncker1, Patrick Matthys 6, Jan Bauer 5, Celine Vens 3,4,
Sinéad Moylett1,8 & Bénédicte Dubois 1,2,8

Multiple sclerosis (MS) is characterized by heterogeneity in disease course and
prediction of long-term outcome remains a major challenge. Here, we inves-
tigate five myeloid markers – CHIT1, CHI3L1, sTREM2, GPNMB and CCL18 – in
the cerebrospinal fluid (CSF) at diagnostic lumbar puncture in a longitudinal
cohort of 192 MS patients. Through mixed-effects and machine learning
models, we show that CHIT1 is a robust predictor for faster disability pro-
gression. Integrative analysis of 11 CSF and 26 central nervous system (CNS)
parenchyma single-cell/nucleus RNA sequencing samples reveals CHIT1 to be
predominantly expressed by microglia located in active MS lesions and enri-
ched for lipidmetabolismpathways. Furthermore, we findCHIT1 expression to
accompany the transition from a homeostatic towards a more activated, MS-
associated cell state inmicroglia. Neuropathological evaluation in post-mortem
tissue from 12 MS patients confirms CHIT1 production by lipid-laden phago-
cytes in actively demyelinating lesions, already in early disease stages. Alto-
gether, we provide a rationale for CHIT1 as an early biomarker for faster
disability progression in MS.

Multiple sclerosis (MS) is a chronic autoimmunedisorder of the central
nervous system (CNS) characterized by considerable interindividual
heterogeneity in terms of disease onset and severity1. Despite con-
tinuous scientific advancement, accurately predicting long-term out-
comes and effectively stratifying treatment regimens based on
uncertain prognosis remain major challenges in MS care. Clinicians
thus face an unmet need for disease activity measures with proven
prognostic value. In particular, very few blood and cerebrospinal fluid
(CSF) biomarkers have yet found translation into clinical practice2.

Over the past few years, the role of innate immune cells such as
CNS-resident microglia and monocyte-derived macrophages in MS
pathogenesis has gained increased attention3–5. Microglia are

anticipated to provide novel strategies in the development of bio-
markers for MS disease activity6. Previous work from our group
showed that among several myeloid markers, CSF concentrations of
chitotriosidase or chitinase 1 (CHIT1) at diagnostic lumbar puncture
best reflected disability status at a median of five years later7. Only few
other studies have evaluated CHIT1 concentrations in relation to MS
prognosis8,9. However, these studies – as our previous work – were
limited to single-time-point disability assessments. In addition, CHIT1
has been found to be upregulated in chronic active MS lesions at the
bulk RNA level, whereas its expression was largely undetectable in
chronic inactive lesions and in brain tissue from non-neurological
controls7,10. Nevertheless, since variations in biomarker concentrations
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must ultimately be coupled to disease processes to be clinically rele-
vant, unraveling cell-type specificity of CHIT1 and the functional state
of CHIT1-expressing cells in MS remains a prerequisite11. This is
emphasized by the functional diversity and cellular heterogeneity of
microglia and CNS-associated macrophages uncovered in recent
work12–14.

In this work, we investigate five microglia/macrophage-related
proteins –CHIT1, chitinase-3-like protein 1 (CHI3L1, also known as YKL-
40), soluble triggering receptor expressed on myeloid cells 2
(sTREM2), glycoprotein non-metastatic melanoma protein B (GPNMB)
and C-C motif chemokine ligand 18 (CCL18) in the CSF at diagnostic
lumbar puncture in a large cohort of 192MS patients. Our longitudinal
study design allows for multi-time-point disability assessments. Using
mixed-effects models and machine learning algorithms, we identify
CHIT1 at diagnosis as a strong predictor for faster disability progres-
sion. We consequently perform single-cell RNA sequencing (scRNA-
seq) on theCSFof 11MSpatients and integrate this datawith single-cell
profiles from four published datasets ofMSCNS tissue to elucidate the
phenotype and localization of CHIT1-expressing cells. Lastly, we vali-
date our results at the protein level using immunohistochemistry on
post-mortem MS brain tissue in early as well as late disease stages.

Results
Study population for biomarker analysis
We investigated the association between five microglia/macrophage
biomarkers in the CSF at diagnostic lumbar puncture and clinical dis-
ease activity in our longitudinalMS cohort. These five biomarkerswere
selected based on their role in myeloid activation and their potential
diagnostic or prognostic value, as indicated in prior research on MS
and other neurological disorders10,15–17. In this study, we included ret-
rospective data of 196MS patients. In contrast to our previous work in
whichwe correlated CHIT1 concentrations in a subset of thesepatients
(n = 143) with single-time-point disability assessments7, we now
examined additional biomarkers and included multi-time-point long-
itudinal disability outcomes in the extendedMS cohort. None of these
patients were on disease-modifying therapy at the time of CSF sample
collection. After quality control of the CSF protein measurements,
samples from 192 MS patients remained for analysis (Table 1, Supple-
mentary Table 1, Supplementary Data 1). Of these 192 MS patients, we
haddisability assessments for 178patients and information on relapses
for 181 patients. Our study cohortwas representative of the generalMS
patient population; 60.9% of patients were female, 80.7% of patients

presented with relapsing-remitting MS (RRMS) and the median age at
onset was 33.9 years. The median disease duration at diagnostic lum-
bar puncture was 0.9 years.

CHIT1 at diagnosis correlates with disability years later: single-
time-point analysis
We observed some significant correlations between the five selected
CSF biomarkers (CHIT1, CHI3L1, sTREM2, GPNMB and CCL18) (Sup-
plementary Table 2), which is not unexpected since these are all
implicated in microglia/macrophage biology. However, as not every
correlation was significant, nor very strong, these biomarkers might
reflect different aspects of microglia/macrophage biology and thus
capture slightly distinct aspects of the disease processes in MS. Fur-
thermore, CHIT1, CHI3L1 and GPNMB were associated with two of the
CSF hallmarks currently used in MS clinical practice: immunoglobulin
G (IgG) index and oligoclonal bands (OCBs; Supplementary Table 3).
Notably, only CHIT1 correlated significantly with CSF neurofilament
light chain (NfL; r = 0.31, P < 0.0001; Fig. 1A), an established marker of
neuronal damage in MS18.

Next, we examined how these microglia/macrophage CSF bio-
markers measured at diagnosis correlated with single-time-point clin-
ical disease activity parameters at follow-up years later. Disease
parameters were assessed at a median of 5.4 years for disability and a
median of 2 years for relapse activity before treatment. After correc-
tion formultiple testing, onlyCSFCHIT1 atdiagnostic lumbarpuncture
showed a significant association with disability as measured by Age-
Related Multiple Sclerosis Severity (ARMSS), Multiple Sclerosis
Severity Score (MSSS) and Expanded Disability Status Scale (EDSS) 5.4
years later (Bonferroni-corrected P ≤0.0025; Supplementary Table 4).
Correlation of CHIT1 with disability was shown to be independent of
CHI3L1 and NfL in our previous work7. Given the significant correla-
tions found here between CHIT1, GPNMB and CCL18 (Supplementary
Table 2), multiple linear regression analyses including these bio-
markers were conducted for the disease activity outcomes. After
Bonferroni correction for multiple testing, CHIT1 correlated with
future disability independently of GPNMB and CCL18 (Supplementary
Table 5). CSF CHIT1 concentrations explained 9.6% – and with known
clinical covariates of disability (age at onset, sex and disease course)
included 30.3% – of variance in ARMSS scores across MS patients.
Analogous to our previous work, CHIT1 concentrations were sig-
nificantly different between MS patients with high and low disability
accumulation (ARMSS ≥ 5 and ARMSS < 5; logistic regression analysis,

Table 1 | Characteristics of study population for biomarker analysis

Subcohorts with measures of disease activity

Characteristics Total cohort
n = 192

Disability
n = 178

Relapse
n = 181

Sex: female/male (% female) 117/75 (60.9%) 111/67 (62.4%) 113/68 (62.4%)

Disease course: RRMS/PPMS/unknown (% RRMS) 155/31/6 (80.7%) 145/28/5 (81.5%) 149/27/5 (82.3%)

Age at onset, years, median (IQR) 33.9 (25.3–43.3) 33.9 (25.1–43.1) 33.8 (25.2–43.2)

Disease duration at LP, years, median (IQR) 0.9 (0.1–5.1) 0.8 (0.1–5.2) 0.8 (0.1–5.1)

OCB status, positive/negative/unknown (% positive) 168/22/2 (87.5%) 155/21/2 (87.1%) 158/21/2 (87.3%)

IgG index, median (IQR) 0.9 (0.7 − 1.3) 0.9 (0.7–1.3) 0.9 (0.7–1.3)

Time from diagnosis to most recent EDSS, years, median (IQR) – 5.4 (2.6–8.7) –

EDSS most recent, median (IQR) – 1.5 (1.0–3.5) –

MSSS most recent, median (IQR) – 2.3 (0.9–4.7) –

ARMSS most recent, median (IQR) – 2.2 (0.9–5.0) –

Relapses from onset to treatment, median (IQR) – – 2 (1–3)

ARR before treatment, median (IQR) – – 0.6 (0.2–1.6)

ARMSS Age-Related Multiple Sclerosis Severity, ARR annualized relapse rate, EDSS Expanded Disability Status Scale, IgG immunoglobulin G, IQR interquartile range, LP lumbar puncture, MSSS
Multiple Sclerosis Severity Score, OCB oligoclonal bands, PPMS primary progressive MS, RRMS relapsing-remitting MS.
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P =0.00026; Fig. 1B) and the area under the curve (AUC) reached 70.1%
(95% confidence interval [CI] = 59.4–80.7%) and 79.3% (95%
CI = 69.8–88.7%) without and with known clinical covariates, respec-
tively (Fig. 1C).

CHIT1 at diagnosis correlates with disability progression: multi-
time-point analysis
Given the above-mentioned associations between CSF CHIT1 con-
centrations at diagnostic lumbar puncture and single-time-point dis-
ability parameters,we expandedour investigations tomulti-time-point
EDSS assessments up to 15 years (median of 5.4 years) after MS
diagnosis.

Likelihood ratio tests indicated that a mixed-effects model which
accounted for EDSS variance across MS patients and across time –

along with an interaction effect between CHIT1 and time – provided
the best fit (χ2 = 9.94, P = 0.0016; model 3, Supplementary Table 6).
Over 50% of MS patients (n = 104) had at least 2 EDSS assessments
(Supplementary Table 7). In this model, MS patients with higher CSF

CHIT1 concentrations at diagnosis experienced more disability pro-
gression over time (β =0.27, P = 2.63 ×10−5; Fig. 2). As expected, there
was a positive relation between EDSS and time (β =0.20, P = 5.56 ×10−8)
as well as between EDSS and age at diagnosis (β =0.42, P = 1.72 ×10−11).
There was no significant effect for sex, which was consistent across all
models tested. Under random effects, we observed a positive corre-
lation between by-patient random EDSS intercepts and by-time ran-
dom EDSS slopes (r = 0.30). That is, MS patients with a higher EDSS at
diagnosis tended to continue to have higher disability scores over
time. After correction for fixed effects, we noticed that the inter-
individual EDSS differences accounted for a much greater proportion
of the EDSS variance (77.8%) than the intraindividual disability pro-
gression over time (4.8%), as would be expected.

After clinical prognostic factors, CHIT1 at diagnosis shows
highest predictive value for disability progression
Next, we applied the machine learning approach we developed in
D’hondt et al.19 to model EDSS trajectories within our MS cohort. In
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short, we used a regressor chainmodel to analyze the predictive power
of several MS patient characteristics for disability progression, in
particular the CSF biomarkers under study. To this end, we calculated
permutation importance scores20, which identify how much the ran-
dom shuffle of a characteristic or variable affects the model’s perfor-
mance. As expected, we found disease course, baseline EDSS, age at
diagnosis and disease duration at diagnosis to be important variables
for the prediction of disability progression (Fig. 3A). However, after
these, CSF CHIT1 concentrations at diagnosis emerged as the most
important predictor. Our machine learning model thus demonstrated
the prognostic superiority of CHIT1 over the other CSF biomarkers.
This was even more apparent when higher-order CSF biomarker
interactions were considered (Fig. 3B).

CHIT1 is expressed by a distinct microglia subset in active MS
lesions
In order to identify the cellular source of CHIT1 in the CSF of MS
patients, we performed scRNA-seq on the CSF of 11 RRMS patients for
whom we also had CSF CHIT1 measurements at diagnostic lumbar
puncture. As our previous work showed CHIT1 to be expressed in the
brain of MS patients using bulk RNA analysis, we expanded our inves-
tigation by including scRNA-seq and single-nucleus (sn)RNA-seq data-
sets of CNS tissue from four published studies (Fig. 4A). Based on our
earlier findings, we only included samples taken from lesions or peri-
plaque whitematter of MS patients7. With the exception of one patient,

all patients in the published datasets were diagnosed as progressiveMS
(either primary, secondary or undefined). For that one patient, the MS
subtype was not further specified (Fig. 4A, Supplementary Data 2). All
five datasets were subjected to stringent quality control. Ambient RNA
contamination, doublets, genes present in less than five cells, cells with
less than 200 genes detected and cells with a mitochondrial RNA con-
tent higher than 15% (for scRNA-seq data) or 5% (for snRNA-seq data)
were all removed. In total, we retained 179,389 high-quality cells: 22,506
from CSF and 156,883 from CNS tissue (Supplementary Data 2). After
confirming that CHIT1 expression was indeed predominant in myeloid
cells (Supplementary Fig. 1), we isolated a total of 29,676 myeloid cells:
1858 from CSF and 27,818 from CNS tissue. High-quality myeloid cells
from all datasets were subsequently integrated, effectively correcting
for batch effects and dataset-specific artefacts (Supplementary Fig. 2)
prior to downstream analyses (Fig. 4A).

The myeloid cells were subclustered and annotation was per-
formed based on canonical marker genes from the literature (Sup-
plementary Data 3). We identified nine distinct microglia (MG1-9)
clusters, two CNS-associated macrophage (CAM1-2) clusters and one
monocyte (MON) cluster.One cluster portrayed expression ofmarkers
associatedwith bothmyeloid dendritic cells (mDC) aswell asmicroglia
and was termed ‘mixed myeloid cells’ (MMC; Fig. 4B). To confirm our
annotation, we used unbiased module scores of gene sets for micro-
glia, CNS-associated macrophages and monocytes from three recent
referenceworks12,21,22. Mostmicroglia clusters, and in particularMG4-7,
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were enriched for the ‘disease-associated microglia’ (DAM) signature,
which was expected as every sample in the different datasets was
obtained from the disease-specific compartment (CSF and CNS) of MS
patients (Supplementary Fig. 3A, B).

We found expression of CHIT1 to be strongest in cluster MG4
(2625 cells; Fig. 4B) and more than half of CHIT1+ cells were indeed
located in this cluster (200/386CHIT1+ cells; Fig. 4C).CHIT1+ cellswere
almost exclusively found in CNS tissue (spinal cord and brain; Fig. 4D).
Based on the metadata available for the CNS datasets, we found sam-
ples taken from the lesionedge aswell as fromchronic active lesions to

be most enriched for CHIT1+ cells (Fig. 4D). We verified that CHIT1+
cells were not a dataset-specific feature as all five datasets contributed
to the totalCHIT1+ cell pool (Supplementary Fig. 4).Module scoring of
all CHIT1+ cells indicated that these cells portrayed a high transcrip-
tional similarity to DAMs (Supplementary Fig. 3C).

CHIT1+ microglia are associated with MS and foam cell
differentiation
Differential gene expression (DGE) analysis identifiedmarker genes for
each cluster (Fig. 5A). The top five enriched markers of cluster MG4
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were GPNMB, CPM, NHSL1, NUPR1 and APOC1 (Supplementary Data 4).
CHIT1 did not come out as significantly upregulated in MG4 or in any
other cluster. However, this is probably due to the overall low
expression of CHIT1 we observed in the data. Interestingly, GPNMB –

one of the other biomarkers we measured in the CSF and which cor-
related significantly with CHIT1 –was themost differentially expressed
gene in MG4 (1.91-fold change; Supplementary Data 4).

Next, we compiled gene modules for specific microglia/macro-
phage subsets previously described in MS14,23–26 and once again cal-
culated module scores (Fig. 5B). Overall, clusters MG1-3 were most
enriched for ‘homeostatic’ signatures, MG4-7 for ‘MS-associated’,
‘phagocytic’ and ‘MIMS-foamy’ (or ‘microglia inflamed in MS - foamy’)
signatures and MG8-9 for ‘pre-activated’ and ‘pro-inflammatory’ sig-
natures. The two predominant modules for MG4 were ‘MS-
associated’23 and ‘MIMS-foamy’25 (Fig. 5C). ‘MS-associated’ microglia
were reported by Masuda and colleagues to express high levels of
CTSD,APOC1,GPNMB,ANXA2 and LGALS1 and to be involved inde- and
remyelination23. Absinta and colleagues found ‘MIMS-foamy’ to be
enriched for pathways such as foam cell differentiation, lipid storage,
response to lipoproteinparticles and lysosome,which argues for a role
in myelin phagocytosis and clearance25.

Tomore specifically characterize CHIT1+ cells, we performedDGE
analysis of all CHIT1+ versus CHIT1- cells (Fig. 5D, Supplementary
Data 5). Many of the genes upregulated in CHIT1+ cells were found in
the pathways as described for Absinta’s ‘MIMS-foamy’ (e.g. LPL, ABCA1
and NUPR1). Indeed, our own pathway analysis showed CHIT1+ cells to
be significantly enriched for several pathways related to foam cell
differentiation, lipid homeostasis and clearance (Fig. 5E). Altogether,
our analysis showed a considerable overlap in upregulated genes of
cluster MG4 and CHIT1+ cells with genes reported in ‘MS-associated’
and ‘MIMS-foamy’ signatures.

CHIT1 expression accompanies the transition from a homeo-
static towards a more activated, MS-associated cell state in
microglia
Based on our module scores, cluster MG4 – containing most of the
CHIT1+ cells – seemed to be positioned on the interface between
homeostatic microglia and disease-/MS-associated microglia (Fig. 5B,
Supplementary Fig. 3A, B). To investigate these apparent cell state
dynamics within the microglia clusters, we performed pseudotime

trajectory analysis on clustersMG1-9 (Fig. 6, Supplementary Fig. 5). We
identified four distinct lineages (Supplementary Fig. 5A), setting
homeostatic cluster MG1 as the starting point. In lineages 1-3, cells
belonging to cluster MG4 were positioned around the middle of the
trajectories (at pseudotime ±7.5; Fig. 6A, Supplementary Fig. 5A).
Global lineage structure showed MG4 to be an intermediate cluster,
after which the trajectories diverge towards the ‘MS-associated’ clus-
ters (MG5 and 6) on the one hand and the ‘pre-activated’/‘pro-inflam-
matory’ clusters (MG8 and 9) on the other hand (Supplementary
Fig. 5B). Indeed, when plotting the lineages, CHIT1+ microglia were
primarily located in-between the ‘homeostatic’microglia at the start of
the lineages and the ‘MS-associated’ and ‘pre-activated’/‘pro-inflam-
matory’ microglia at the end of the lineages (Fig. 6B). Next, we per-
formed DGE analysis over the course of the trajectories to validate this
observation (Supplementary Data 6). CHIT1 expression was found to
be higher at the end point as compared to the starting point across all
lineages (two-sided Wald test = 26.77, uncorrected P = 2.21 ×10−5).
However, statistical significance did not hold after correction for
multiple testing (Benjamini-Hochberg-corrected P =0.33). Never-
theless, we did find CHIT1 to be significantly enriched in cells posi-
tioned at pseudotime 7.5 (two-sided Wald test = 40.54, Benjamini-
Hochberg-corrected P = 5.01 ×10−4). Moreover, CHIT1 expression was
significantly associated with pseudotime in lineage 3 (two-sided Wald
test = 123.29, Benjamini-Hochberg-corrected P = 5.92 ×10−17; Fig. 6C,
Supplementary Data 6) and peaked as pseudotime passed through
cluster MG4 (Fig. 6). To sum up, pseudotime trajectory analysis indi-
cated that CHIT1 expression accompanies the transition of microglia
towards a more activated, MS-associated cell state.

Neuropathological evaluation shows phagocytic CHIT1+ cells in
actively demyelinating lesions
To validate our transcriptomic results at the protein level, we per-
formed neuropathological evaluation of brain tissue from 5 acute
monophasic MS, 1 RRMS, 3 primary progressive (PPMS) and 3 sec-
ondary progressive (SPMS) MS patients. A total of 8 inactive and 21
active (including 2 chronic active or smoldering) MS lesions were
analyzed (Supplementary Table 8).

Immunohistochemical staining of MS brains showed that CHIT1
was absent in normal-appearing white matter (NAWM, Supplementary
Fig. 6). Where 95.2% of actively demyelinating lesions contained
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CHIT1+ cells (20/21), none of the inactive lesions contained any CHIT1+
cells (0/8). We did not only observe CHIT1+ cells in active lesions of
more late-stage MS patients (RRMS, PPMS and SPMS with a disease
duration up to ±34 years), but also in acute (monophasic) MS patients
(disease duration of 0.2-5months) – confirming the presence of CHIT1
already early in the disease course. Of the two smoldering lesions, that
only have an active lesion edge, one contained few CHIT1+ cells,
whereas the other lacked CHIT1 immunoreactivity.

Immunofluorescent multiplex labeling confirmed that ionized
calcium-binding adapter molecule 1-positive (Iba1+) and transmem-
braneprotein 119-positive (TMEM119+)microglia donot expressCHIT1
in NAWM (Fig. 7A). In active lesions however, small Iba1+ TMEM119+
cells with no or little uptake of proteolipid protein-positive (PLP+)
degradation products were found to be CHIT1+ (Fig. 7B, C). Larger,

foamy (PLP-laden) CHIT1+ cells were mostly TMEM119- and some also
Iba1- (Fig. 7C–E). This was in line with our transcriptomic analyses
wherewe found thatAIF1 (the gene encoding for Iba1) was significantly
downregulated in CHIT1+ cells as compared to CHIT1- cells (Supple-
mentary Data 5) as well as along the pseudotime trajectories from
homeostatic towards more activated, MS-associated microglia (Sup-
plementaryData 6). Likewise, the lossofhomeostaticmicrogliamarker
TMEM119 with the acquirement of CHIT1 expression corroborated our
findings at the transcript level that CHIT1 expression in microglia
accompanies the transition into a disease-/MS-associated phenotype.
Interestingly, small CHIT1+ Iba1+ TMEM119+ cells (Fig. 7E) seemed to
be present more towards the lesion edge, whereas larger, foamy
CHIT1+ Iba1- TMEM119- cells were mostly found further away from the
lesion edge (Fig. 7B, C). Double staining for CHIT1 and glial fibrillary
acidic protein (GFAP) confirmed that none of the CHIT1+ cells were
GFAP+ astrocytes (Fig. 7F). In addition, triple staining for CHIT1 toge-
ther with Iba1 and CD68 illustrated that CHIT1+ Iba1- cells were still
phagocytic CD68+ cells (Fig. 7G).

Discussion
We demonstrated that CHIT1 concentration in CSF at diagnosis is a
robust predictor for faster disability progression in MS patients and
reflects early microglial activation. In comparison to several other
microglia/macrophage-related biomarkers, only CHIT1 was found to
correlate with future disability in our single-time-point analysis. By
means of multi-time-point EDSS assessments and mixed-effects mod-
els, we observed that MS patients with higher CSF CHIT1 concentra-
tions at diagnosis experienced more disability progression over time.
Our machine learning models showed that CHIT1 had the highest
predictive power for faster disability progression, after established
clinical prognostic factors such as baseline EDSS. The consistency of
our results across methodologies emphasizes the robustness of CSF
CHIT1 as a biomarker. Through the analysis of single-cell tran-
scriptomic profiles from CSF as well as CNS tissue of MS patients, we
found CHIT1 to be primarily expressed by a distinct microglia subset
(MG4). These CHIT1+ cells were most abundant within active MS
lesions. We discovered that the CHIT1+ cell state was enriched for
pathways related to foam cell differentiation, lipid homeostasis and
clearance, which suggests a role in the de- and/or remyelination pro-
cesses in MS. Moreover, our pseudotime trajectory analysis illustrated
that CHIT1 expression in microglia accompanies the transition from a
homeostatic towards a more activated, MS-associated phenotype.
Neuropathological evaluation of both early- and late-stageMSpatients
showed that CHIT1+ cells were indeed present in almost all actively
demyelinating lesions, whereas completely absent in inactive lesions
and normal-appearing white matter. CHIT1+ cells were consistently
CD68+ and PLP+, confirming their involvement in phagocytosis of
myelin degradation products.

CHIT1 has been investigated as a putative biomarker in several
other neurological disorders27,28. Themost extensive research hasbeen
conducted in amyotrophic lateral sclerosis (ALS), a prototypic neuro-
degenerative disease. In parallel to our results, CSF CHIT1 has repeat-
edlybeen shown to correlatewith faster disease progression inALS16,29.
CHIT1 has also been implicated in lipid storage disorders such as
Gaucher, Niemann-Pick and Fabry disease. Particularly in Gaucher
disease, plasma CHIT1 has been commonly used in clinical practice for
over a decade to monitor disease severity and effectiveness of
treatment30,31. In these lysosomal disorders, CHIT1 was found to be a
marker for specialized lipid-laden macrophages or foam cells30,32,33.
Interestingly, CHIT1 was suggested to reflect a particular activation or
differentiation state of such lipid-ladenmacrophages rather than their
absolute cell number34. In accordancewith these findings, our pathway
and trajectory analyses aswell asneuropathological evaluation implied
that CHIT1 in MS also marks a subset of activated microglia enriched
for processes related to foam cell differentiation and lipid storage. Of
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note is that most of the studies on lipid storage disorders have looked
at the enzymatic activity of CHIT1 rather than its concentration in
plasma. In our study, we specifically chose to focus on the con-
centration of CHIT1 and the other biomarkers for two reasons. First,
literature on enzymatic activity of CHIT1 in CSF or plasma of MS
patients is inconsistent with regard to correlation with disease
course35–38. Second, compared to the assay for assessing CHIT1 enzy-
matic activity, measuring CHIT1 concentration is relatively quick, easy
and inexpensive, facilitating its use in routine clinical practice.

A well-known constraint for the use of CHIT1 as a biomarker is the
occurrence of a frequent 24-bp duplication in the CHIT1 gene which
leads to reduced expression levels and enzymatic activity39. As around
35% of individuals of European ancestry carry the variant40, we have
previously shown that CHIT1 genotype did not substantially alter the
correlation between CSF CHIT1 concentrations and disability7. Similar
results have been reported in the context of ALS41. This suggests that
variation in CSF CHIT1 concentrations does not mechanistically drive
disease activity, but rather mirrors the contribution of microglia to
disease. Since homozygous 24-bp duplication carriers – about 6% of
individuals of European ancestry – have no or near-absent CHIT1,
recommendations in Gaucher disease propose complementary CHIT1
genotyping in case of non-elevated CHIT1 levels42,43.

CHIT1 is a chitinase with as natural substrate chitin, an N-acetyl-
glucosamine polymer and a structural component of fungi, nematodes
and arthropods28. As chitin is not expressed in humans, chitinases are
produced as a line of defense against these chitin-containing patho-
gens. In addition, CHIT1 has a role in the homeostasis of the innate
immune system, where its precise mechanism of action remains
unresolved34. In Alzheimer’s disease, chitin-like glucosamine polymers
due to impaired glucose utilization have been found within β-amyloid
plaques44 and CHIT1 secretion has been implicated in the clearance of
these chitin-like polymers45. Although glucose metabolism is elevated
in inflammatory conditions, Sotgiu and colleagues did not detect such
chitin-like deposits in MS. The authors proposed that CHIT1 secretion
by microglia/macrophages in MS effectively counteracts the deposi-
tion of chitin-like compounds, whereas in severe Alzheimer’s disease
this clearance ismore imbalanced46. Alternatively, CHIT1 production in
the absence of chitin might also represent an ancient remnant of
microglia/macrophage activation as genes for chitinases are highly
evolutionary conserved34,46.

One of the principal challenges for the development of glial bio-
markers in MS has been cellular specificity. Several CSF and serum
biomarkers of myeloid cell activity in MS are under investigation (e.g.
CHI3L1, soluble CD163 and osteopontin). However, these biomarkers
do not sufficiently distinguish between CNS-resident microglia and
monocyte-derivedmacrophages, which complicates their applicability
since microglia and macrophages might effectuate different roles in
MS11. Here, our transcriptomics showed that CHIT1 expression is lar-
gely restricted tomicroglia and accompanies their transition towards a
more activated,MS-associated cell state. After the CHIT1+ clusterMG4,
our microglial trajectories diverged towards the ‘MS-associated’ clus-
ters (MG5 and 6) on the one hand and the ‘pre-activated’/‘pro-inflam-
matory’ clusters (MG8and9) on theother hand. This trajectory pattern
suggests that homeostaticmicroglia upregulate CHIT1when they start
to get activated and involved in lipid clearance. However, CHIT1
expression appeared to wane again in most microglia when they start
to develop a disease-/MS-associated phenotype, possibly instigated by
unrelenting inflammatory cues and/or persistent lipid phagocytosis
and accumulation. The second direction towards ‘pre-activated’/‘pro-
inflammatory’ clusters might reflect microglia present in the MS brain
that obtain a more general activated, inflammatory profile, possibly as
a form of bystander activation, although more in-depth functional
analyses of these cells are needed to confirm such hypotheses. Neu-
ropathological evaluation showed that small CHIT1+ cells with limited
PLP uptake were Iba1+ and TMEM119+ and were mostly situated

towards the lesion edge, whereas this Iba1 and TMEM119 immunor-
eactivity was absent on larger, foamy CHIT1+ cells located more away
from the lesion edge, suggesting that CHIT1+ microglia start to lose
certain surface markers in the process of PLP accumulation. TMEM119
is one of themain homeostaticmicrogliamarkers that is not expressed
on monocyte-derived macrophages and has been shown to be down-
regulated in active MS lesions and other inflammatory conditions of
the brain47–49. Moreover, decreased Iba1 expression and even Iba1-
microglia have previously been described in neurodegenerative dis-
orders such as Huntington’s and Alzheimer’s disease50. Keren-Shaul
and colleagues showed that DAMs found in a mouse model of Alz-
heimer’s disease were characterized by downregulation of AIF1 (the
gene encoding for Iba1) as well as homeostatic genes such as TMEM119
and P2RY1251.

Although relapsing and progressive MS are classified as distinct
clinical phenotypes, the field now increasingly recognizes that the
clinical course of MS is a continuum, where both inflammatory and
neurodegenerative processes co-exist in a spectrum52. Moreover, it is
known that activationofCNS-residentmicroglia alreadyoccurs early in
the disease53. Indeed, most phagocytes initially present in active MS
lesions are microglia, and with lesion maturation, more macrophages
will infiltrate from theblood47. AsMSshifts towards amore progressive
phase, microglia are once more involved in the slow expansion of
chronic active lesions54. Our work suggests that already early in theMS
disease course CHIT1 is secreted into the CNS parenchyma by acti-
vated microglia who lost their homeostatic signature as these cells
start to accumulate myelin debris. Conceivably, interstitial CHIT1
consequently ends up in the CSF via the glia-lymphatic or ‘glymphatic’
system in which CSF mixes with the interstitial fluid to wash away
extracellular waste, as has been described for β-amyloid55,56. Elevated
CSF CHIT1 concentrations at diagnosis thus likely identify MS patients
who already at the start of their disease present with significant CNS
pathology – i.e. more extensive microglial activation – and are at
greater risk for faster disability progression. As of now, apart from
some clinical parameters such as baseline EDSS, older age at diagnosis
and spinal cord lesions,MS clinicians are equippedwith fewpredictors
for disability progression at time of diagnosis57. Therefore, a fast-
progressive disease course is now often only recognized retro-
spectively, when damage has already been acquired. In particular with
the advent of CNS-penetrant therapies that modulate microglial
activity such as Bruton’s tyrosine kinase inhibitors58, the use of
microglia biomarkers such as CHIT1 to inform the benefit of these
treatments might significantly improve MS outcome.

We note some limitations of our study. First, the clinical data in
ourMS cohort comes froma real-world clinical environment. Although
real-world data achieves high external validity, it introduces non-
standardized time-points for disability assessment. To mitigate this
limitation, we included covariates that reflect biological differences
where relevant and chose analytical methods suitable for unbalanced
datasets. With regard to the transcriptomics, the absolute number of
CHIT1+ cells was small and within these cells expression of CHIT1 was
relatively low, which might have hampered the power of downstream
analyses. However, as reported, most statistical tests on CHIT1+ cells
yielded highly significant results (P ≤0.001) after correction for mul-
tiple testing. Furthermore, as we worked with publicly available data-
sets, someof the transcriptomic analyseswere limited by themetadata
available in these studies. In particular, evaluation of the enrichment of
CHIT1 transcripts within certain lesion types or lesion edge versus core
might have been impeded by inconsistent labeling of samples across
studies.

Further validation is indispensable before employment of CSF
CHIT1 concentration as a prognostic biomarker in MS clinical practice.
First and foremost, the prognostic value of CHIT1 should be re-
evaluated in a large, prospective and independent MS cohort, which
will also be instrumental to define clinically relevant thresholds of CSF
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CHIT1 concentrations for patient stratification. Secondly, as our pri-
mary outcome for themixed-effects andmachine learningmodels was
EDSS, we were not able to dissect the relative contribution of relapse-
associated worsening to the global disability progression in our MS
cohort. Although CSF CHIT1 concentration was not significantly cor-
related with annualized relapse rate in this study, an alternative pri-
mary endpoint to use in future studies to address this would be
‘progression independent of relapse activity’ or PIRA59. Lastly, as we
hereprovided initial biological insights into theprognosticpotential of
CHIT1 in MS, nowmore in-depth neuropathology as well as functional
cellular studies areneeded to 1) further determine the exact locationof
CHIT1 cells within different lesion types and 2) infer their exact phe-
notype and role in the de- and/or remyelination processes in MS.

In summary, we combined various complementary methods to
proposeCSF CHIT1 concentration at diagnosis as a putative biomarker
to predict faster disability progression and reflect early microglial
activation in MS. Our work provides a rationale for further validation
with a prospect to clinical implementation. We believe CHIT1 has
potential to cater to the unmet need for tools to aid MS clinicians in
patient stratification and therapy selection, whichmight enable amore
personalized approach in the treatment of MS patients.

Methods
All MS patients provided written informed consent for CSF sample
collection and data analysis. This study was approved by the Ethics
Committee of the University Hospitals Leuven (S60222 and S50354)
and performed in accordance with the declaration of Helsinki. The use
of post-mortem brain samples from the archives of the Center for Brain
Research was approved by the Ethics Committee of the Medical Uni-
versity of Vienna (EK. Nr.: 535-2004).

Study design
In this study, we aimed to identify a strong predictive biomarker for
disability progression in MS amongst five microglia/macrophage-
related proteins measured in the CSF at diagnostic lumbar puncture –
CHIT1, CHI3L1, sTREM2, GPNMB and CCL18. To this end, we extended
our previously described cohort (n = 143)7 to 196 MS patients. Protein
concentrations were measured in duplicate and blinded to clinical
data. After rigorous quality control (QC), 192 MS patients were
retained for further analyses. Primary and secondary endpoints were
defined in advance. For single-time-point analysis, primary outcomes
were ARMSS and annualized relapse rate (ARR) before treatment and
secondary outcomes were MSSS and EDSS. For multi-time-point ana-
lysis (mixed-effects models and machine learning algorithms), we
assessed EDSS as the only outcome. Next, we addressed the cellular
source of CHIT1 – our most robust CSF biomarker – to provide a
biological rationale for its prognostic value. We performed scRNA-seq
on CSF of 11 MS patients and supplemented these data with single-cell
profiles of MS CNS tissue from four publicly available sc/snRNA-seq
datasets. Samples of interest were included based on prior knowledge
as described below. All CSF and CNS transcriptomes that failed strin-
gent QC were removed from downstream analyses. Finally, we corro-
borated our observed CHIT1 expression patterns at the protein level
with immunohistochemistry on post-mortem brain tissue of MS
patients, both in early and late disease stages. Tissue selection was
informed by results from transcriptomics.

Biomarker analysis
Study population. All MS patients were diagnosed according to the
2017 revised McDonald criteria60 at the Department of Neurology of
the University Hospitals Leuven (Belgium). We distinguished disease
course basedon a relapsing-remittingorprimaryprogressiveMSonset
(RRMS or PPMS). Clinical data were collected by the same expert
neurologist (BD) at diagnosis and follow-up visits up to 15 years
(median of 5.4 years) after diagnosis, effectively minimizing

information bias. All EDSS assessments were done when MS patients
were not in active relapse. To control for the effect of age and disease
duration on our disability measures, individual EDSS scores were
converted to ARMSS and MSSS values, respectively61,62. The ARR was
calculated over a minimum period of 90 days before the start of
treatment, as reported earlier63. During disability follow-up (EDSS,
ARMSS and MSSS), 62% of MS patients were on disease-modifying
therapies.

CSF protein measurements. CSF of MS patients was collected during
diagnostic lumbar puncture as part of standard clinical care. None of
these patients were on disease-modifying therapy at the time of sam-
ple collection. Polypropylene tubes were centrifuged for 10min at
3000× g at 4 °C andCSF supernatantwas stored at −80 °Cuntil protein
measurements. We assessed CHIT1, CHI3L1, sTREM2, GPNMB and
CCL18. NfL was also included as canonical biomarker for neuronal
damage. CHIT1, GPNMB, CCL18 and NfL were measured within the
entire MS cohort (n = 196). For CHI3L1 and sTREM2, measurements
were limited to the original cohort (n = 143) as previously described7.

CSF protein concentrations were measured in duplicate and
blinded to clinical data. For CHIT1, the CircuLex Human Chito-
triosidase ELISA Kit (#CY-8074, MBL Life Science) was used. GPNMB
and CCL18 concentrations were quantified with U-PLEX technology
(#F21ZH-3 and #F212H-3, MSD). CHI3L1, sTREM2 and NfL measure-
ments were obtained as previously described7. We performed all
assays conforming to the manufacturer’s instructions.

QC was carried out as follows: we checked for consistency of the
standard curves across plates, with 0.74 ˂ r ˂ 1 (P ≤0.05) for all assays.
Concerning plate-to-plate variability, we calculated the coefficient of
variation (CV) based on an internal control sample measured on all
plates. Samples with a CV more than 20% or CSF biomarker con-
centrations below the detection limit were excluded. Samples above
the upper detection limit were remeasured using a different dilution
factor where possible or were eliminated otherwise. Within-plate
variability was assessed based on the CV across duplicates (Supple-
mentaryTable 1).Meanvalues across duplicateswereused for analysis.

Single-cell transcriptomics
Datasets. In-house CSF cohort: All patients (n = 11) were diagnosed
with RRMS according to the 2017 revised McDonald criteria60 by the
same expert neurologist (BD) at the Department of Neurology of the
University Hospitals Leuven (Belgium) (Supplementary Data 2). None
of these patients were on disease-modifying therapy at the time of
sample collection.

Previously published CNS datasets: All previously published CNS
datasets were downloaded as FASTQ files from the Sequence Read
Archive [SRA, National Center for Biotechnology Information (NCBI)]
under BioProject accession numbers PRJNA544731 [Schirmer et al.24],
PRJNA749443 [Absinta et al.25], PRJNA743676 [Miedema et al.14] and
PRJNA726991 [Trobisch et al.64]. The data from Miedema et al.14 was
acquired via scRNA-seq, whereas the others performed snRNA-seq.
From all studies, only samples of interest were used, i.e. CNS lesions or
periplaque white matter of MS patients (Supplementary Data 2). CNS
data was processed in parallel to our in-house CSF data from the Cell
Ranger count pipeline onwards.

CSF sample collection and sequencing. CSF samples were obtained
during diagnostic lumbar puncture. 5ml of CSF was collected into
round-bottom polypropylene tubes (Sarstedt) and processed within
1 hour after lumbar puncture to ensure optimal sample quality. CSF
sampleswere centrifuged for 15min at 400× g at 4 °C.We resuspended
the CSF cell pellets in 100 µl of phosphate-buffered saline (PBS, Gibco)
and counted the cells on a LUNA-FL Dual Fluorescence Cell Counter
(Logos Biosystems). CSF cells were centrifuged again (15min, 400× g,
4 °C) and resuspended in 1.5ml of RPMI 1640 Medium (Gibco)
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containing 20% heat-inactivated fetal bovine serum (FBS, Merck) and
10% dimethyl sulfoxide (DMSO, Merck). CSF cells were transferred to
Nunc CryoTubes (Thermo Scientific) and stored in a CoolCell con-
tainer (Corning) at −80 °C. After 24 h, cells were relocated to liquid
nitrogen for cryopreservation until further processing. Cryopreserva-
tion allowed us to limit batch effects without a substantial effect on
gene expression patterns65,66.

Library preparation and scRNA-seq of our in-house CSF cohort
wasperformed in three separate batches. The average latency between
cryopreservation and library construction was 4.3 months (Supple-
mentary Data 2). For every batch, we resuscitated the cryopreserved
CSF cells in warmed RPMI 1640 Medium (Gibco) containing 20% heat-
inactivated FBS (Merck). Cells were centrifuged for 10min at 400× g at
room temperature (RT) and resuspended in PBS (Gibco) containing
0.04%bovine serumalbumin (BSA,Merck).We consistently obtained a
high cell viability (mean: 94.7% ± 5.8% SD). Single-cell suspensionswere
loaded on a Chromium Next GEM Chip K for single-cell partitioning
and barcoding with the Chromium Controller according to the Chro-
mium Next GEM Single Cell 5′ Reagent Kit v2 (Dual Index) (#1000286
and #1000263, 10x Genomics). We performed further library pre-
paration conforming to themanufacturer’s instructions. Libraries were
sequenced on an Illumina NovaSeq 6000 with a target sequencing
depth of 50,000 reads per cell.

Preprocessing of sequencing data. Processing of the sequencing
data from both our in-house CSF cohort as well as the four previously
published CNS datasets was performed with Cell Ranger
v7.1.0 software (10x Genomics). Read alignment and transcript count
were done individually for each sample via the Cell Ranger count
pipeline with default parameters. Human reference GRCh38 (GEN-
CODE v32/Ensembl 98) version 2020-A (July, 2020) was used for gene
mapping.

Quality control. Before integration, all samples from all CSF and CNS
datasets went separately through our QC pipeline in R v4.2.2. Ambient
RNA contamination was removed using the SoupX v1.6.2 package67

with default parameters, except for samples from Miedema et al.14

where tfidfMin was adjusted to 0.8 (default 1) due to the lower cellular
complexity of the dataset (prior FACS). Doublets were identified via
scDblFinder v1.12.068 with default parameters. The corrected count
matrices and relevant metadata were used to create Seurat objects for
further analysis with Seurat v4.3.069. Features (genes) present in less
than five cells were removed and only high-quality cells were retained,
i.e. singlets with more than 200 features and a maximal percentage of
mitochondrial RNA content of 15% for scRNA-seq data70 and 5% for
snRNA-seq data25,64 (SupplementaryData 2).We normalized and scaled
the count matrices via SCTransform v0.3.571 with default parameters.
Mitochondrial and ribosomal content as well as the difference in
expression between S and G2M cell cycle genes were regressed out.

Data integration, batch effect removal and myeloid clustering. In
order to harmonize the different samples and avoid subject-specific
clusters, we integrated the individual samples of the five datasets (our
in-house CSF dataset and four previously published CNS datasets) into
one dataset using the Harmony v0.1.1 package72 with default para-
meters. We assessed different integration strategies with various
(combinations of) covariates to correct for. Best integration was
obtained when each sample was treated as a batch and sequencing
technique (scRNA-seq or snRNA-seq) was included as a variable. To
cluster the cells, FindNeighbours() was run with Harmony-corrected
principal components, followed by FindClusters(). We visualized the
clusters on a UniformManifold Approximation and Projection (UMAP)
plot. Optimal cluster resolution was determined with guidance of the
clustree v0.5.0 package73. To identifymyeloid clusters, we checked the
expression of canonical myeloid marker genes (Supplementary Data

3). Furthermore, we used SingleR v2.0.074 for automated annotation
basedon theNovershtern immune referencedataset75 from the celldex
v1.8.0 package74. Non-myeloid clusters were removed.

Annotation of myeloid clustering. DGE analysis was performed using
FindAllmarkers() with default parameters, except for min.pct = 0.25
(default 0.10), to investigate the most differentially expressed genes
(DEGs) in each cluster. We subdivided the myeloid clusters into
monocytes, macrophages and microglia based on canonical marker
genes (Supplementary Data 3). For more in-depth annotation of these
clusters, we compiled gene sets of interest (or modules) from pre-
viously published articles (Supplementary Data 3) and scored their
expression levels in our integrated dataset via AddModuleScore()76.

Pathwayanalysis.CHIT1+ cells were identified viaWhichCells() as cells
with an expression value > 0 in the RNA assay. We used FindMarkers()
to get DEGs between CHIT1+ and CHIT1- cells. Only genes with an
adjusted p-value < 0.05 were retained and used as input for Gene
Ontology (GO) andKyoto Encyclopedia of Genes andGenomes (KEGG)
gene set enrichment analysis via the clusterProfiler v4.6.2 package77.

Pseudotime trajectory analysis. To estimate cell state dynamics, we
performed pseudotime trajectory analysis using the slingshot v2.6.078

and tradeSeq v1.12.079 packages. Homeostatic cluster “Microglia 1”
(MG1) was defined as the starting point. Since the inclusion of non-
microglia clusters [“Monocytes” (MON), “CNS-associated macro-
phages 1 and 2” (CAM1 and CAM2) and “Mixed myeloid cells” (MMC)]
might lead to nonsensical trajectories, we subsetted our data to only
retain microglia clusters for pseudotime trajectory analysis to gauge
where the CHIT1+ microglia were positioned among the different
microglia cell states. Moreover, we carried out DGE analysis along the
inferred trajectories with fitGAM(), assoRes() and startVsEndTest().

Neuropathological evaluation
Patients. For neuropathological evaluation, formalin-fixed paraffin-
embedded (FFPE) autopsymaterial from the archives of the Center for
Brain Research (Medical University of Vienna) was used. We assessed
samples from acute monophasic MS [n = 5, described before80], RRMS
(n = 1), PPMS (n = 3) and SPMS (n = 3) patients. From theseMS patients,
we analyzed a total of 21 active (2 smoldering) and 8 inactive lesions
(Supplementary Table 8).

Luxol Fast Blue-Periodic acid Schiff staining for myelin. 5 µm thick
paraffin sections of MS brain were stained with Luxol Fast Blue-
Periodic acid Schiff (LFB-PAS) according to standard procedure to
detect demyelinated lesions and macrophages with myelin degrada-
tion products.

Immune light microscopical staining. 3-5 µm FFPE sections were
deparaffinized in xylene (2× 15min) and rinsed with 96% ethanol. To
block endogenous peroxidase activity, samples were incubated in
H2O2-methanol (30min). Next, we gradually rehydrated the samples
with ethanol (96%, 70%, 50%) and finally deionized water. Heat-
induced epitope retrieval (HIER) was performed with ethylenediami-
netetraacetic acid (EDTA, pH 9.0) in a household food steamer (Braun,
1 h). Afterwards, we rinsed the sections with tris-buffered saline solu-
tion (TBS) 3-5 times. Non-specific background reactions were blocked
with 10% fetal calf serum (FCS) in DAKO buffer (Agilent) for 15min.
Hereafter, we incubated the slides with primary antibody CHIT1
(#HPA010575, Sigma, 1:100, 4 °C overnight) or CD68 (#M0814, Dako-
cytomation, 1:100, 4 °C overnight) and rinsed them with TBS before
incubating them with a secondary biotin anti-rabbit-conjugated anti-
body (1:200, #711-065-152, Jackson, 1 h at RT) or biotin-anti-mouse-
conjugated antibody (#715-065-150, Jackson, 1:500, 1 h at RT). Next, the
slides were rinsedwith TBS and incubatedwith peroxidase-conjugated

Article https://doi.org/10.1038/s41467-024-49312-y

Nature Communications |         (2024) 15:5013 11



streptavidin (1:500) in 10% FCS-DAKO buffer (1 h at RT). Finally, the
sections were rinsed with TBS, developed with 3,3’-Diaminobenzidine
(DAB) and counterstained in hematoxylin (15-20 s) before dehydration
and mounting with cover slips using EUKITT (ORSAtec).

Immunofluorescent multiplex labeling. Immunofluorescent multi-
plex labeling was performed with Akoya’s Fluorescent Multiplex
reagents according to the PerkinElmer´s application note ‘Automated
multiplex Biomarker Staining and Imaging’ for CHIT1 (#HPA010575,
Sigma, 1:1000), Iba1 (#019-19741, Wako, 1:10,000), PLP (#MCA839G,
Bio-Rad, 1:5000), GFAP (#MS-1376, Thermo Scientific, 1:1000),
TMEM119 (#HPA051870, Sigma, 1:1000) and CD68 (#M0814, Dakocy-
tomation, 1:1000). In short, after deparaffination, the sections were
fixed with 4% paraformaldehyde (PFA, 20min), rinsed with deionized
water and steamed in Antigen Retrieval buffer (pH 9.0, Akoya,
AR900250ML) in a household food steamer (Braun, 1 h). The sections
were rinsed with TBS-Tween 2.0 (TBST, pH 7.5) followed by a blocking
step with Opal Antibody Diluent/Block solution (Akoya, ARD1001EA,
10min). Next, we incubated the slides with a first primary antibody
(4 °C, overnight). Then, the slideswere rinsedwithTBST and incubated
with Akoya’s secondary antibodies (Opal Polymer horseradish perox-
idase conjugated antibodies, ARH1001EA, 10min at RT). The sections
were rinsed with TBST and incubated with a fluorophore (Opal dye
480, 520, 570, 620, 690 or 780, 1:100, 10min) in 1X Plus Amplification
Diluent (Akoya, FP1497). Next, the slides were rinsed with TBST, fixed
with 4% PFA (10min) and steamed with Antigen Retrieval buffer (AR6,
Akoya, AR600250ML, 30min). From here, the above-mentioned steps
were repeated for each primary antibody. Finally, we counterstained
with 4’,6-Diamidino-2-phenylindole (DAPI) and the slides were moun-
ted with Fluoromount-G (SouthernBiotech). The slides were scanned
with a Vectra Polaris scanner (PerkinElmer) at 20× magnification or on
a laser scanningmicroscope equippedwith lasers for 504, 488, 543 and
633 nm excitation (Leica SP5, Leica, Mannheim, Germany).

Statistical analysis
For single-time-point analysis and mixed-effects models, all statistical
testswere performedwithR v4.0.1. Normaldistributionof thedatawas
assessed with Shapiro-Wilk tests. Biomarker concentrations and clin-
ical variables were normally distributed after a logarithmic transfor-
mation with base 10 and an inverse rank normal transformation,
respectively.

Single-time-point analysis. To evaluate the relationships between
the five microglia/macrophage CSF biomarkers – CHIT1, CHI3L1,
sTREM2, GPNMB and CCL18 – and CSF NfL concentrations, we cal-
culated pairwise Pearson correlation coefficients and tested their
significance with two-sided Pearson correlation tests. Next, we tested
the association between these biomarker concentrations and several
MS disease activity parameters: ARMSS and ARR before treatment
(primary outcomes); MSSS and EDSS (secondary outcomes). These
associations were assessed in a linear regression model which
included age at diagnosis and sex as covariates as well as the
rs150192398 genotype for CHIT1 as in our previous work7. Based on
the results of the linear regression model, we focused on the corre-
lations between CSF CHIT1 concentrations and future disability
(ARMSS, MSSS and EDSS). The percentage of variance explained (r2)
with and without clinical covariates, the division between MS
patients with high (ARMSS ≥ 5) and low (ARMSS< 5) disability accu-
mulation as well as the ROC curve were determined as previously
described7,61. We applied Bonferroni corrections for multiple testing
as stated in the table legends.

Multi-time-point analysis – mixed-effects models. The correlation
between CSF CHIT1 concentrations at diagnosis and disability pro-
gression (EDSS) over time was assessed using both mixed-effects

models and artificial intelligence algorithms (see Machine learning
algorithms). Mixed-effects models were chosen due to their robust-
ness and power to handle unbalanced data given the gradual loss of
EDSS data over time within our MS cohort. Despite the unbalanced
EDSS data, themixed-effectsmodels allowed us to examine the impact
of CHIT1 on disability progression over time while also considering
variabilitywithin and acrossMSpatients and time aswell as controlling
for relevant variables81. Within our model development, we tested
models with and without the following considerations: controlling for
1) interindividual variance in EDSS scores; 2) intraindividual variance in
EDSS scores across time; and 3) interaction effects between CHIT1 and
time from MS diagnosis to EDSS score. Mixed-effects models were
constructed and assessed with packages lme4 v1.1-31, afex v1.2-1
(convergence checks) and ggplot v3.4.2. Included continuous pre-
dictors were scaled to assist with convergence and result interpreta-
tion. Model fits were assessed using likelihood-ratio tests.

Multi-time-point analysis –machine learning algorithms. In D’hondt
et al.19, we developed machine learning algorithms to model EDSS
trajectories of MS patients. In short, this approach transformed real-
world EDSS assessments for each patient to yearly average disability
scores up to the 10th year after diagnosis. These 10 disability
averages then formed the outcomes of a machine learning model
based on random forests. For each of these 10 outcomes, a random
forest was trained. In a regressor chain fashion82, the disability pre-
dictions of previous years were added as extra input to the random
forests of the next years. These trainedmodels could then be used to
predict the disability of an individual MS patient for up to 10 years
after diagnosis.

In this work, we used this regressor chain model to analyze the
prognostic importance of input variables, in particular the CSF bio-
markers under study. For this, we used permutation importance
scores20, which reflect the effect on model performance if one of the
input variables is randomly shuffled (simulating the removal of that
variable). Model performance (mean absolute error and Pearson cor-
relation) was measured using 5-fold cross-validation (to avoid over-
fitting) and the variable shuffling was repeated multiple times to
counter variability. In order to control for statistical interactions
between CSF biomarkers, we conducted a separate analysis where we
made a correction on the permutation importance scores for possible
CSF biomarker interactions. To this end, in addition to shuffling each
biomarker separately, we also shuffled all possible pairs, triplets,
quartets and quintets of biomarkers (simulating the removal of several
biomarkers simultaneously). In eachof these shuffles, theperformance
drop was calculated and divided by the size of the shuffled subset of
biomarkers (1, 2, 3, 4 or 5) and by the number of times each biomarker
appears in a subset of that size (1, 5, 15, 5, 1). For each biomarker, a final
score was then obtained by summing all performance drops in which
that biomarker was shuffled. The machine learning methodology was
developed in Python 3.8.10.

Single-cell transcriptomics. With regard to the transcriptomics, all
statistical tests were performed in R v4.2.2. DGE results were con-
sistently assessed for statistical significance using a two-sided
unpaired Wilcoxon rank-sum test with Bonferroni correction for mul-
tiple testing. Differential expression of modules across clusters was
demonstrated using a Kruskal-Wallis test followed by a two-sided
Dunn’s test for pairwise multiple comparisons with Benjamini-
Hochberg correction for multiple testing. For pathway analysis,
p-values were calculated by a one-sided Fisher’s exact test with
Benjamini-Hochberg correction. For the DGE analyses across trajec-
tories, statistical significance was evaluated by means of a two-sided
Wald test with Benjamini-Hochberg correction for multiple testing.
The exactmethod is also always stated in the legends. Forhistology, no
statistical analyses were performed.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data that support themain findings in this study are available in the
manuscript or the supplementary materials. Raw biomarker mea-
surements are available in Supplementary Data 1. Source data are
provided with this paper. The previously published CNS scRNA-seq
and snRNA-seq datasets were downloaded from the Sequence Read
Archive [SRA, National Center for Biotechnology Information (NCBI)]
under BioProject accession numbers PRJNA544731 (Schirmer et al.24),
PRJNA749443 (Absinta et al.25), PRJNA743676 (Miedema et al.14) and
PRJNA726991 (Trobisch et al.64). Our previously unpublished CSF
scRNA-seq cohort has been uploaded to the SRA under BioProject
accession number PRJNA996357. Source data are provided with
this paper.

Code availability
The code scripts to recreate themain figures and results are accessible
in Zenodo under https://doi.org/10.5281/zenodo.11235175.
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