
De Brouwer et al.
Journal of Biomedical Semantics (2024) 15:9
https://doi.org/10.1186/s13326-024-00303-4

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of
Biomedical Semantics

Optimized continuous homecare
provisioning through distributed data-driven
semantic services and cross-organizational
workflows
Mathias De Brouwer1*, Pieter Bonte2, Dörthe Arndt3, Miel Vander Sande4, Anastasia Dimou5, Ruben Verborgh6,
Filip De Turck1 and Femke Ongenae1

Abstract

Background In healthcare, an increasing collaboration can be noticed between different caregivers, especially
considering the shift to homecare. To provide optimal patient care, efficient coordination of data and workflows
between these different stakeholders is required. To achieve this, data should be exposed in a machine-interpretable,
reusable manner. In addition, there is a need for smart, dynamic, personalized and performant services provided
on top of this data. Flexible workflows should be defined that realize their desired functionality, adhere to use case
specific quality constraints and improve coordination across stakeholders. User interfaces should allow configuring all
of this in an easy, user-friendly way.

Methods A distributed, generic, cascading reasoning reference architecture can solve the presented challenges.
It can be instantiated with existing tools built upon Semantic Web technologies that provide data-driven semantic
services and constructing cross-organizational workflows. These tools include RMLStreamer to generate Linked Data,
DIVIDE to adaptively manage contextually relevant local queries, Streaming MASSIF to deploy reusable services, AMA-
DEUS to compose semantic workflows, and RMLEditor and Matey to configure rules to generate Linked Data.

Results A use case demonstrator is built on a scenario that focuses on personalized smart monitoring and cross-
organizational treatment planning. The performance and usability of the demonstrator’s implementation is evalu-
ated. The former shows that the monitoring pipeline efficiently processes a stream of 14 observations per second:
RMLStreamer maps JSON observations to RDF in 13.5 ms, a C-SPARQL query to generate fever alarms is executed
on a window of 5 s in 26.4 ms, and Streaming MASSIF generates a smart notification for fever alarms based on sever-
ity and urgency in 1539.5 ms. DIVIDE derives the C-SPARQL queries in 7249.5 ms, while AMADEUS constructs a colon
cancer treatment plan and performs conflict detection with it in 190.8 ms and 1335.7 ms, respectively.

Conclusions Existing tools built upon Semantic Web technologies can be leveraged to optimize continuous care
provisioning. The evaluation of the building blocks on a realistic homecare monitoring use case demonstrates
their applicability, usability and good performance. Further extending the available user interfaces for some tools
is required to increase their adoption.

*Correspondence:
Mathias De Brouwer
Mathias.DeBrouwer@UGent.be
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13326-024-00303-4&domain=pdf

Page 2 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

Keywords Continuous homecare, Data-driven service, Distributed architecture, Cross-organizational workflows,
Stream reasoning, Healthcare

Background
Introduction
Due to increased digitization allowing more easily
capturing relevant data, industries are faced with the
challenge of processing an increase in complex and het-
erogeneous data in an automated, scalable, performant
and cost-efficient manner. Increasing demand can also be
noted for offering more personalized, context-aware and
intelligent applications to end users [1, 2]. This translates
into increased non-recurring engineering costs, a need to
build custom interfaces, and a long time to market.

To tackle these issues, during the last years, compa-
nies increasingly adopt a Service Oriented Architecture
(SOA) in which systems consist of services that each offer
a self-contained unit of functionality [3]. By combin-
ing services into workflows, the required functionality
can be offered in a structured way [4]. Existing workflow
engines allow easily reusing services in different work-
flows, resulting in lower development and maintenance
costs and a quicker time to market. Nevertheless, usu-
ally, custom APIs are built to expose each available data
source, on which custom services are built that manually
need to be configured into static workflows that fulfill a
particular need. As a result, the intelligence of a platform
is distributed over these different assets, making manage-
ment an immense burden. Every time a new data source
or service becomes available, manual configuration effort
is required to integrate it and set up a cross-organiza-
tional workflow, leading to high costs, possible configura-
tion errors, and custom APIs and services that cannot be
reused. In addition, the custom services lack a personal-
ized approach: available knowledge cannot be efficiently
exchanged and exploited, causing generic decisions to be
made. Moreover, services usually follow a naive, static,
centralized approach where all exposed data is processed
on central servers. This leads to increasing scalability and
performance issues incurred by the massive amounts of
data they need to process, which is especially challenging
in an Internet of Things (IoT) environment dealing with
high-volume and high-velocity data generated by vari-
ous sensors. In addition, this also reduces local autonomy
and data privacy of the set-up. Finally, existing end user
tools that enable domain experts to create services and
workflows do not scale in a non-entertainment or educa-
tional setting.

Healthcare is an application domain in which these
challenges are prevalent [5]. Homecare has become
increasingly important over the last years, due to the

gradual shift from acute to chronic care, where peo-
ple are living longer with one or more chronic dis-
eases, requiring more complex care [6]. The Belgian
Healthcare Knowledge Centre (KCE) calculated in
2011 that a yearly increase between 1600 and 3500
beds in residential care centers and 46000 new employ-
ees are required in Flanders by 2025 to care for these
elderly [6]. To reserve residential care for patients with
more severe care needs, hospital stays are being short-
ened by making care delivery more transmural and
enabling recovery at home and in service flats [7]. To
reach the optimal scenario where only 1600 additional
beds will be needed, KCE calculated that the accessibil-
ity of homecare should increase from 150000 patients
to 225000 in Flanders to maintain a sustainable health-
care model [6]. To facilitate the shift to homecare,
it is crucial to monitor and follow up the elderly at
home in a dependable, accurate manner [8, 9]. Multi-
ple formal and informal caregivers are involved in this
process, as illustrated in Fig. 1. Typically, the patients
and their service flats are equipped with multiple sen-
sors to monitor patient and environment, and devices
to steer home conditions such as its temperature and
lights. Alarms are commonly generated by the services
when anomalous situations are observed from the sen-
sors, such as an abnormal blood pressure. Moreover,
patients have a Personal Alarm System (PAS) to gener-
ate calls. A nurse regularly visits patients to handle the
alarms and calls, and perform daily care and follow-
up tasks. In addition, patients are followed up by their
General Practitioner (GP), are registered as patients
in their hospital, and often also have informal caregiv-
ers (e.g., a family member) to regularly check up on
them. To perform their care tasks, all caregivers depend
on the existing patient data and the data gathered by
the different sources. However, these data are spread
across the various involved stakeholders. As a result,
it becomes challenging to deliver personalized home-
care, for example when assigning the optimal caregiver
to handle an alarm or call according to a patient’s pro-
file [10]. Designing dynamic services that filter the data
to detect alarming situations for which such an alarm
or call should be generated, is specifically challenging
within healthcare, as different diagnoses and contextual
parameters will imply different conditions that need to
be dynamically monitored. This requires custom ser-
vices that are personalized, dynamic and performant
in heterogeneous IoT environments. In addition, it is

Page 3 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

therefore also an existing challenge for these different
stakeholders to organize themselves across organiza-
tions and leverage all available data optimally, in order
to provide the best possible care for their patients [11].

Looking at these challenges from a technical perspec-
tive, four roles can be discerned: data providers, service
providers, integrators and installers. Data providers
expose the available data, on which service providers can
build services used by integrators to compose workflows.
Installers are people responsible for configuring all ser-
vices, workflows and data provisioning tools to the needs
of the patients and caregivers. For every role, the pre-
sented issues impose the following technical challenges:

(a) Data providers: How can they easily expose their
data to other organizations in a reusable fashion,
while making the explicit meaning of the data clear?

(b) Service providers: How can they step away from
custom & non-reusable services, towards flexible &
reusable services that can easily be constructed and
configured based on the incoming data? How can
they take all available background knowledge and
contextual data of the patient profiles into account
to provide personalized services? How can they
intelligently deal with the high-volume and high-
velocity data coming in and still offer services that
meet the use case specific quality requirements
such as performance, scalability, local autonomy
and data privacy? How can they make the meaning
of their services clear such that they can be easily
picked up and reused by other organizations?

(c) Integrators: How can they move away from
generic, static, manually constructed workflows

towards flexible workflows, that can easily be con-
figured and adapted based on the available services?
How can they dynamically realize the desired func-
tionality and adhere to use case specific quality con-
straints?

(d) Installers: How can they easily expose data and
build services in a user-friendly way that minimizes
the required effort and error probability of the con-
figuration?

In addition, it is a technical challenge to create a closed
feedback loop within an IoT platform that involves these
different entities. To achieve this, the output of the ser-
vice providers’ semantic services and the integrators’
workflows should be taken into account as feedback to
update any local data sources as well as update how sen-
sor data should be processed by the same or other ser-
vices. This way, a closed loop would be created in the
chain of how these different entities (data providers,
services and workflows) are connected: data and knowl-
edge would flow from the data providers to services and
workflows, while knowledge and other feedback would
flow back from the final services and/or workflows in the
chain to the data providers and/or services in the begin-
ning of the chain. This additional flowing back of feed-
back would create a loop and would thus close this chain.

Semantic Web technologies
To resolve the individual challenges imposed to the dif-
ferent technical roles presented in the “Introduction” sec-
tion, Semantic Web technologies can be leveraged.
In general, data semantics allow a system to semanti-
cally annotate different heterogeneous data sources in a

Fig. 1 Visual overview of different possible caregivers that can be involved in following up homecare patients. These possible formal and informal
caregivers can include a nurse, a general practitioner, hospital doctors, family members, etc. The data needed by these caregivers to optimally
perform their care tasks and follow up the patient’s condition, is typically spread across the various involved stakeholders

Page 4 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

common, uniform, machine-interpretable format. In the
context of IoT environments, this allows the integration
of sensor data with various sources of domain knowledge,
background knowledge and context information. By inte-
grating all data, their meaning and context becomes clear,
allowing personalized services to process the data and
reason on it [12].

Semantic Web technologies are a set of recommended
technologies that represent the vision of the World Wide
Web Consortium (W3C) about applying data seman-
tics to the web. At its core is the Resource Description
Framework (RDF) [13], which is a graph-based model
for expressing relationships between resources, utilizing
subject-predicate-object triples to represent statements.
Different formats exist to store RDF data, such as RDF/
Turtle and N-Triples. Ontologies, which are often defined
through the Web Ontology Language (OWL) [14], are
semantic models that describe domain concepts, rela-
tionships and attributes in a formal way [12, 15]. The
collection of RDF datasets on the web that are semanti-
cally interconnected is referred to as Linked Data [16].
Linked Data principles encourage the use of standard-
ized Uniform Resource Identifiers (URIs) to interconnect
datasets, promoting a web of interconnected and seman-
tically enriched information. Using URIs improves the
interoperability and linked nature of data on the Seman-
tic Web. Triple stores, which essentially are databases
specifically designed for storing RDF triples, play a cru-
cial role in managing Semantic Web data. The SPARQL
Protocol and RDF Query Language (SPARQL) [17] is
another Semantic Web technology that is used to query
and manipulate RDF data sources. Semantic reason-
ers such as RDFox [18] and VLog [19] can derive new
implicit knowledge based on semantic descriptions and
axioms defined in ontologies, by applying logical rules
and inference techniques on these RDF triples. The com-
putational complexity of semantic reasoning algorithms
depends the expressivity of the underlying ontology [20],
with various OWL sublanguages exhibiting distinct levels
of expressiveness [21]. Stream reasoning is the research
field that investigates the adoption of such semantic rea-
soning techniques for streaming data [22]. RDF Stream
Processing (RSP) is a subdomain of stream reasoning that
focuses on engines processing RDF data streams by con-
tinuously evaluating semantic queries on sliding or tum-
bling data windows that are continuously placed on top
of the streams [23]. RSP-QL is a reference model unifying
the semantics of different existing RSP approaches [24].
Cascading reasoning introduces multi-layered processing
in stream reasoning with increasing reasoning expres-
sivity across layers in order to balance the expressiv-
ity with the data velocity: low expressivity techniques in
lower layers directly evaluate highly volatile data streams,

selecting relevant portions for subsequent layers to pro-
cess with increasing expressivity, resulting in the capa-
bility to perform highly expressive reasoning on reduced
data streams [20].

Semantic Web technologies allow addressing the pre-
sented challenges in continuous homecare. From these
challenges, it follows that there is a need to exchange,
integrate, retrieve, manipulate and intelligently process
the available healthcare data across different caregiver
parties. To do this, machines need to understand the
healthcare data in an unambiguous manner, in a simi-
lar way as humans do. Semantic Web technologies ena-
ble this and provide support for these various tasks to
machines, which makes them a suitable solution [25]. In
general, data semantics improve the interpretability, pre-
dictability and interoperability of a system [26], which is
a big advantage, especially in healthcare [9]. In addition,
Semantic Web technologies also allow building declara-
tive solutions. This is an important requirement for solu-
tions that tackle the challenges addressed in this paper:
whenever you want to instrument certain processes or
actions based on the healthcare data, you mainly want
to declare in a general way what should happen (e.g.,
instructions to generate semantic data, queries, ser-
vices, workflow steps), without already hard coding how
this will happen [16]. Using Semantic Web technologies
allows decoupling declarations from implementation.

Paper objective, contribution and organization
The objective of this paper is to design a full semantic
platform that allows solving the challenges imposed to
the different technical roles presented in the “Introduc-
tion” section, and that introduces a closed feedback loop.
To achieve this, the paper presents a generic, distributed,
cascading reference architecture for such a platform,
which consists of different semantic building blocks.
Moreover, the paper presents a set of existing tools built
on Semantic Web technologies that can be deployed as
the different building blocks in an instantiation of the
presented reference architecture. For every role, the pre-
sented architecture and building blocks should solve the
imposed challenges in a performant manner. This trans-
lates the challenges into the following hypotheses:

(a) Data providers: By exposing data as Linked Data,
their meaning and context becomes clear. This way,
the data can easily be reused by different services.

(b) Service providers:

 (i) They can easily build data-driven, distrib-
uted semantic services upon the semantically
exposed data sets by expressing their func-
tionality as semantic definitions. These seman-

Page 5 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

tic definitions are represented by axioms and
rules that define and extract a certain infor-
mation need of the end user. A semantic rea-
soner can then derive new knowledge through
definitions out of the incoming data, to obtain
the requested information and possible corre-
sponding actions from the data. As such, the
functionality of each service is semantically
clear.

 (ii) Additional personalized, local semantic ser-
vices can be built that intelligently and effi-
ciently filter the high-volume and high-veloc-
ity1 sensor data to only forward relevant data
to the semantic reasoners according to medical
domain knowledge, the patient profile, back-
ground knowledge and possible other context
information.

(c) Integrators: By leveraging the semantic descrip-
tions of services and other potential workflow steps,
they can use reasoning to construct dynamic, easily
configurable, cross-organizational semantic work-
flows that fulfill a particular functionality and that
meet particular quality constraints.

(d) Installers: By using Semantic Web technologies,
they can focus on creating the required semantic
definitions, i.e., models, rules & axioms, without
bothering with the technological and heterogene-
ous details of custom interfaces.

The contribution of this paper is the design of the ref-
erence architecture that allows validating the hypotheses
and creates a closed feedback loop. Moreover, its contri-
bution lies in the realization of such a semantic health-
care platform using various existing building blocks,
that can be leveraged to optimize continuous homecare
provisioning. This is proven through a demonstrator on
a specific homecare use case scenario that focuses on
personalized smart monitoring and cross-organizational
treatment planning.

This paper is organized as follows. The “Methods” sec-
tion presents the generic reference architecture and a
selection of tools for the different architectural build-
ing blocks. The “Results” section presents the results
of applying the reference architecture to the use case
demonstrator, a performance evaluation of the different

building blocks on this demonstrator, and a usabil-
ity evaluation. Finally, the “Discussion” and “Conclu-
sion” sections discuss and conclude how the platform
allows solving the presented challenges, and validate the
hypotheses.

Methods
This section presents the reference architecture of the
semantic healthcare platform, and a selection of its dif-
ferent building blocks to instantiate it.

Reference architecture
Figure 2 presents the reference architecture of the seman-
tic healthcare platform that can be employed to deliver
data-driven, personalized continuous homecare. It con-
tains different semantic building blocks, for which vari-
ous existing tools can be employed. In the remainder of
this section, the architecture will be discussed in a tool-
agnostic way.

To generate Linked Data from both static & stream-
ing data sources, semantic data mapping tools can be
used that make use of mapping languages. Installers
should define the mapping rules to generate Linked Data
through a semantic data mapping Graphical User Inter‑
face (GUI). The generated rules are then forwarded to the
mapping tool.

The semantic Linked Data generated by the semantic
data mapping tools is forwarded to a semantic stream
query engine. This is an RSP engine that continuously
evaluates RSP queries on the data streams. These que-
ries are derived and configured by the semantic query
deriver. This component should be configured with a
set of generic query templates that define for the given
use case how to intelligently filter the relevant informa-
tion from the incoming streams for the various services.
By monitoring any changes to this data in the Knowledge
Base and using these changes as a trigger to update the
queries, this component ensures that the correct, con-
textually relevant semantic stream processing queries are
evaluated at all times.

The queries configured by the semantic query deriver
on the semantic stream query engine continuously filter
the Linked Data delivered by the semantic data mapping
tool. The filtered events are forwarded to semantic service
framework. Through the service GUI provided for this
framework, installers can configure the required services,
by expressing their functionality as semantic queries and
rules. The semantic service framework then performs
the necessary semantic reasoning on the incoming fil-
tered events to deliver the desired functionality. As such,
including the given streaming data processing pipeline
results in a cascading reasoning architecture.

1 In this paper, we define high velocity data as streaming data where the
total rate of observations is at least twice as high as the evaluation frequency
of the involved queries. This implies window-based processing will have
to deal with multiple events per query evaluation, in comparison to event-
based processing. We exclude streaming use cases with extremely high
velocities that need to deal with strict (hard) real-time requirements.

Page 6 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

The services can trigger the construction of a work-
flow in the semantic workflow engine, according to speci-
fied functionality and quality constraints. An example in
homecare is a service that raises an alarm, which trig-
gers a workflow to select a caregiver to handle this alarm.
However, an installer can also express desired functional-
ity by semantically specifying a goal and the constraints
that should be met. This triggers the automatic, ad-hoc
construction of a workflow by the engine.

Including the semantic query deriver into the archi-
tecture creates a closed feedback loop. Knowledge and
actions generated through the semantic services or work-
flows can update the context in the Knowledge Base. This
can trigger the semantic query deriver to update the con-
text-aware queries on its turn, thereby closing the loop.

Note that instantiating the abstract building blocks in
the reference architecture and configuring them is not
a linear process. Installers should work closely together
to ensure that the different building blocks in an instan-
tiated platform are designed and configured in a com-
patible way. For example, the design of services in the
semantic service framework through queries and rules
implies certain input requirements of the data. These
requirements should match the possible output for-
mat of the semantic queries configured by the semantic

query deriver on the semantic stream query engine, since
these services do not operate directly on the semantically
annotated raw data.

Building blocks
In the “Reference architecture” section, the presented ref-
erence architecture contains various building blocks. In
this section, existing semantic tools are selected for these
building blocks, to obtain an optimal instantiation of
this architecture for a semantic healthcare platform. The
overview is split up according to the different technical
roles identified in the “Background” section.

Data providers: semantic exposure of high‑velocity data
To generate Linked Data from heterogeneous data
sources, different mapping languages exist [27]. These
mapping languages can be considered as schema trans-
formation descriptions, since they allow describing the
mapping policy from source schema to target schema
for the involved data sources. Existing mapping lan-
guages include the RDF Mapping Language (RML) [28],
xR2RML [29], D2RML [30], Dataset Representation
(D-REPR) [31], and more. In this paper, RML is chosen
as it is considered the most popular mapping language
to date [27]. RML is generic, declarative, and is defined

Fig. 2 Reference architecture containing different building blocks built on Semantic Web technologies. This allows optimizing continuous
homecare provisioning through distributed, data-driven semantic services and cross-organizational workflows

Page 7 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

as a superset of the RDB to RDF Mapping Language
(R2RML), which is the W3C recommendation for map-
ping relational databases to RDF [32]. This way, the pur-
pose of RML is to extend the applicability and broaden
the scope of R2RML.

To perform the actual generation of RDF graphs from
heterogeneous data sources with RML, different mate-
rialization implementations exist. Examples include
RMLMapper [33], MapSDI [34], GeoTriples [35], and
more [27]. RMLMapper is one of the first, well-known
Java implementations to perform this task based on a set
of defined declarative RML mapping rules [33]. Before
the RDF generation starts, it sequentially ingests multi-
ple data sources. This process loads all data in memory,
imposing a strict limitation on the amount of data that
can be ingested. Therefore, an alternative methodology
was designed to parallelize the ingestion of data sources
by distributing the ingestion over multiple nodes [36].
This way, the generation of RDF tasks is scaled with the
volume of the data, allowing systems to generate RDF
data in larger volumes. This methodology was imple-
mented in Scala, resulting in the RMLStreamer materi-
alization tool [36]. In this paper, the RMLStreamer tool is
chosen as materialization implementation for the seman‑
tic data mapping tool in the architecture, since it is the
only existing implementation using RML that supports
the generation of RDF data from high-velocity streaming
data [27].

Service providers: semantic service exposure on high‑velocity
data
Multiple tools allow providing semantic services on the
generated high-velocity data. This section details two of
them: DIVIDE and Streaming MASSIF.

DIVIDE DIVIDE [37, 38] is a semantic IoT platform
component that can be employed as the semantic query
deriver in the architecture of Fig. 2. It can automatically
derive queries for stream processing components in an
adaptive and context-aware way. DIVIDE tries to solve
the performance issues in existing IoT platforms for
healthcare [25, 26, 39–41], which are caused by evaluat-
ing fixed, generic queries on high-velocity data streams.
These platforms do this to avoid having to manually
update the queries according to regularly changing appli-
cation context, e.g., updating the monitored sensors
when a patient’s diagnosis changes. DIVIDE avoids these
performance issues by working with non-generic, sensor-
specific queries for each RSP engine, allowing them to be
continuously evaluated without the need to perform any
more reasoning, thus improving query performance. It
does this by performing upfront rule-based semantic rea-
soning on the current environmental context within the

application, in order to automatically derive and config-
ure the queries that filter observations that are relevant
given the current context and the use case goal. To do so,
it makes use of a new formalism that allows semantically
representing generic query patterns in a declarative way.
Through its design, DIVIDE can automatically adapt the
configured queries upon context changes, ensuring they
are contextually relevant at all times.

Streaming MASSIF Streaming MASSIF [42] can be used
as the semantic service framework in the reference archi-
tecture of Fig. 2. It is a cascading reasoning framework
that enables to perform expressive semantic reasoning
over high velocity streams. Streaming MASSIF is the first
realization of the cascading reasoning vision. It employs
three layers. The lowest layer is the selection layer, which
efficiently selects those parts of the data stream that are
relevant for further processing. In the reference archi-
tecture in Fig. 2, the selection layer is represented by the
semantic stream query engine. This engine can be either
C-Sprite, a reasoning system that employs an optimized
reasoning algorithm for the efficient hierarchical rea-
soning on high-velocity data streams [43], or a regular
RSP engine such as C-SPARQL [44], SPARQLStream [45],
Yasper [46] and RSP4J [47]. The selections can then be
abstracted in the abstraction layer, which allows defining
high-level concepts and hide the low-level data details.
These abstractions can then be used to define temporal
dependencies in the temporal reasoning layer. All defi-
nitions can be easily provided in a declarative way. The
layered approach of Streaming MASSIF allows services
on top of these layers to easily define the data they are
interested in. This can be seen as a very expressive pub-
lish/subscribe mechanism employing highly expres-
sive reasoning to significantly decrease the subscription
complexity. In this process, both temporal and standard
logics can be incorporated to infer implicit data. Since
Streaming MASSIF is the first concrete realization of the
cascading reasoning vision and supports instrumenting
concrete services through its multiple layers, it was cho-
sen as a building block of the solution presented in this
paper [42].

Integrators: functional semantic workflow engine
AMADEUS is an adaptive, goal-driven workflow compo-
sition and conflict-detection engine [48, 49]. In the ref-
erence architecture in Fig. 2, it can be employed as the
semantic workflow engine. It solves the issues with com-
mon workflow planning systems [50–52], which can
not provide personalized workflows, detect future con-
flicts between workflows, or have a limited notion of

Page 8 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

change [48]. Therefore, AMADEUS is state-aware: the
workflow composition takes into account a semantic
description of the current state or context. Thereby, it
is driven by a Weighted State Transition logic: possible
steps are declaratively described by the changes they will
make to the state description, with a possible precondi-
tion. Hence, different step descriptions can be activated
in different circumstances, for example to add additional
steps to the plan, or to overrule other steps. AMADEUS
composes a workflow that would bring the current state
to the state described in the goal. To do this, it performs
semantic reasoning on the semantic data, which include
the state, steps and domain knowledge. The produced
workflows adhere to the quality constraints set up by the
given use case, which are captured in the step descrip-
tions. The semantic state description reflects all what is
known when the composition is performed and is itera-
tively modified by every step taken. Events produced by
services, for example via Streaming MASSIF, can make
external additions or alterations to the state description
and trigger a recomposition to adhere to new constraints
in a new workflow. In addition, AMADEUS is able to
detect possible conflicts between different workflows, for
instance between the current and newly adopted work-
flow. This conflict detection can be applied to find future
issues when the current workflow is continued.

AMADEUS is implemented in the rule-based Nota-
tion3 (N3) Logic [53], which is a superset of RDF/Turtle.
To compose the workflows, AMADEUS uses the EYE
reasoner [54]. Applications can use AMADEUS through
its Web API.

Installers: intuitive user interfaces
Multiple intuitive GUIs are available for installers. These
include a GUI for Streaming MASSIF and GUIs to define
RML mapping rules. In the architecture of Fig. 2, they
can serve as the service GUI and semantic data mapping
GUI, respectively.

Streaming MASSIF UI To simplify the service subscrip-
tion in Streaming MASSIF, a query language has been
developed that unifies the various layers of Streaming
MASSIF. Furthermore, as shown in Fig. 3, a GUI is pro-
vided to visually define these service subscriptions [55].

Graphical tools to define RML mapping rules The RML-
Editor [56] is a graph-based visualization tool to facilitate
the editing of RML mapping rules. Using the RMLEditor,
installers can create and edit mapping rules, preview the
RDF data that is generated from them, and export the
rules. As such, it is always possible for installers with suf-
ficient domain knowledge to generate Linked Data, even
if they do not have knowledge about the Semantic Web
or the used mapping language. The RMLEditor uses a
visual notation for mapping rules called MapVOWL [57].
In its GUI, different ontologies and vocabularies can be
used to define semantic annotations. The Linked Open
Vocabularies (LOV) [58] are integrated to discover rel-
evant classes, properties and datatypes. A screenshot of
the RMLEditor’s GUI is shown in Fig. 4 [56].

Matey [59] is another tool that can be used to view and
define Linked Data generation rules. It works with YAR-
RRML [60], which is a human-readable, text-based rep-
resentation language for RML mapping rules. YARRRML
is a subset of the YAML data serialization language [61].
Matey works as a browser-based tool. It allows exporting
the RML rules that correspond with the YARRRML rep-
resentation. This way, installers can define RML mapping
rules using the human-readable YARRRML representa-
tion, without requiring knowledge about the underlying
mapping language. As such, Matey is more adequate for
developers who are not Semantic Web experts, while the

Fig. 3 GUI to visually define service subscriptions in Streaming MASSIF [55]

Page 9 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

RMLEditor is more adequate for data owners who are
not developers.

Results
This section presents the results of applying the instan-
tiated reference architecture, introduced in the “Meth-
ods” section, on a use case demonstrator in homecare.
Moreover, it presents a performance evaluation of the
different building blocks on this demonstrator, and a usa-
bility evaluation of the installer tools.

Use case demonstrator
A demonstrator was built to showcase the feasibility
of how the semantic healthcare platform based on the
instantiated reference architecture can be used to opti-
mize continuous homecare provisioning [62]. The dem-
onstrator is implemented on a specific use case scenario
in continuous homecare, focusing on personalized smart
monitoring and the construction and cross-organiza-
tional coordination of patients’ treatment plans. This use
case scenario has been designed in collaboration with dif-
ferent domain experts and companies involved in contin-
uous homecare and hospital care. This way, it is ensured
that this scenario is representative for a large set of real-
world situations and problems within continuous home-
care specifically and continuous healthcare in general.
This will allow to generalize the performance and usabil-
ity evaluation results in this paper towards the continu-
ous homecare domain.

This section zooms in on the use case description, the
demonstrator architecture, the scenario description and
a web application of the demonstrator. An additional file
zooms in on the technical implementation details of the
Proof-of-Concept (PoC) implementation of the use case
demonstrator [see Additional file 1].

Use case description
The demonstrator tells the story of Rosa, an elderly
woman of 74 years old that lives in a service flat in
Ghent, Belgium. To follow up on Rosa, her service flat is
equipped with several environmental sensors measuring
properties such as room temperature and humidity. Door
sensors measure whether a door is currently open or
closed. Moreover, Rosa has a wearable that continuously
measures her steps, body temperature and heart rate. It
also contains a PAS. Through multiple Bluetooth Low
Energy (BLE) beacon sensors and a BLE tag integrated
into her wearable, Rosa’s presence in the different rooms
of the service flat can be detected.

Rosa’s medical profile contains the diagnosis of early
stage dementia. Multiple people are part of her caregiver
network. Nurse Suzy visits Rosa every afternoon, to assist
with daily care. Dr. Wilson is Rosa’s GP. Rosa is also a
known patient in a nearby hospital. Moreover, two infor-
mal caregivers of Rosa are registered: her daughter Holly,
who works nearby and pays Rosa a daily visit around
noon, and a neighbor Roger.

Demonstrator architecture
To monitor Rosa’s condition in real-time, the reference
architecture in Fig. 2 is instantiated to the specific dem-
onstrator architecture depicted in Fig. 5. The data pro-
cessing pipeline consists of the RMLStreamer, C-SPARQL
and Streaming MASSIF components. C-SPARQL was
chosen as RSP engine as it is one of the most well-known
existing RSP engines [22, 23]. Moreover, AMADEUS is
deployed as semantic workflow engine. UI components
are omitted from the demonstrator architecture.

The distributed architecture contains local and central
components. RMLStreamer and C-SPARQL are local com-
ponents that are deployed in the patient’s service flat, for
example on an existing low-end local gateway device. They

Fig. 4 GUI of the RMLEditor [56]

Page 10 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

operate only for the patient living in that particular ser-
vice flat. Streaming MASSIF, DIVIDE and AMADEUS run
centrally on a back-end server in a server environment of
either a nursing home or hospital. They perform their dif-
ferent tasks for all patients registered in the system.

In the smart monitoring pipeline, RMLStreamer maps
the sensor observations from JSON syntax to RDF data.
C-SPARQL filters the relevant RDF observations accord-
ing to Rosa’s profile through queries derived by DIVIDE.
In this use case, these queries are determined by the dis-
eases Rosa is diagnosed with. Streaming MASSIF performs
further abstraction and temporal reasoning to infer the
severity and urgency of the events filtered by C-SPARQL.
It implements a service that can detect alarming situations
and generate notifications for them to the most appropri-
ate person in the patient’s caregiver network. To decide this
person, it takes into account the inferred event parameters
and profile information such as already planned visits of
caregivers.

AMADEUS is employed to compose semantic work-
flows representing possible treatment plans to a diagnosis
in Rosa’s medical profile, and provide composed quality
parameters for them to help the human doctor select the
most optimal one. Quality constraints can be defined for
the proposed plans on cost, probability of success, relapse
risk, patient comfort, and such. The inputs of AMADEUS
include the patient’s profile and medical domain knowledge
about the options in the treatment of different diseases,
which are defined by their input, output, functionality and
quality parameters. AMADEUS’ automatic conflict detec-
tion between existing & new treatment plans can help a
doctor in avoiding generating certain conflicts that they are
unaware of.

Scenario description
To demonstrate how the building blocks of the demon-
strator architecture work together in the presented use
case, a specific scenario with multiple steps is designed.

Step 0 – Initial state In its initial state, the smart moni-
toring pipeline is not yet activated. This means that no
specific queries are evaluated on C-SPARQL. Instead,
naive monitoring takes places where all sensor observa-
tions are forwarded to the central server.

Step 1 – Activating the smart monitoring pipeline When
the smart monitoring pipeline is activated, DIVIDE
derives two personalized queries from the generic query
patterns to be evaluated on C-SPARQL for Rosa.

The first query filters observations indicating that Rosa
is longer than 30 minutes in her bathroom, without per-
forming any movement. This query is derived because
this might indicate that an accident has happened, e.g.,
Rosa has fallen. Because Rosa has dementia, there is a
higher chance that she might forget to use her PAS in
that case. This query monitors the bathroom’s BLE sensor
and the wearable’s step detector.

The second query filters sensor observations which
imply that Rosa has left her service flat. To detect this,
it monitors the BLE sensor in the hallway and the main
door’s sensor. Because Rosa has dementia, such events
should be detected and notified to a caregiver, since being
outside alone could possibly lead to a disorientation.

Step 2 – Colon cancer diagnosis At a certain moment
in time, Rosa’s medical profile is updated with the diag-
nosis of colon cancer by a medical specialist at the hos-
pital, who examined Rosa after she complained to the

Fig. 5 Architecture of the use case demonstrator

Page 11 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

nurse about pain in the stomach and intestines. This
update automatically triggers DIVIDE to reevaluate the
deployed C-SPARQL queries, without requiring any
additional user intervention. As a result, one additional
query is derived. It detects when Rosa’s body temperature
exceeds 38◦ C (38 degrees Celsius), i.e., when Rosa has a
fever, by monitoring the sensor in Rosa’s wearable. This
new query is derived because the medical domain knowl-
edge states that complications or additional infections
form a contraindication for several cancer treatments
such as chemoradiotherapy, which means that continu-
ing these treatments would be too dangerous [63]. Since
fever might indicate an underlying infection, the medical
domain knowledge therefore defines that cancer patients
should be monitored for fever.

Step 3 – Constructing a treatment plan for colon can‑
cer To construct a treatment plan for Rosa’s colon can-
cer, AMADEUS is triggered by the hospital doctor. First,
given Rosa’s profile, the defined treatments and their
quality parameters, it composes two possible workflows:
a plan consisting of neoadjuvant chemoradiotherapy fol-
lowed by surgery, and a plan consisting of surgery only.
The quality parameters for the presented plans include
duration, cost, comfort, survival rate and relapse risk.
Since the first plan has the highest survival rate and low-
est relapse risk, it is selected by the doctor. This selection
triggers AMADEUS to calculate a detailed workflow by
adding timestamps to the different steps. In this case, the
chemoradiotherapy step is split into four episodes in the
hospital, with 30 days between each session. Every ses-
sion can only be performed if there is no contraindica-
tion. After confirmation of the plan, it is added to Rosa’s
current treatment plan.

Step 4 – Influenza infection yielding fever notifica‑
tions Five days before her next chemoradiotherapy ses-
sion, Rosa gets infected with the influenza virus, causing
her body temperature to start rising. Any body tempera-
ture observation exceeding the fever threshold of 38◦ C
is filtered by the deployed C-SPARQL query and sent to
Streaming MASSIF.

The abstraction layer of Streaming MASSIF is config-
ured to abstract the incoming sensor events according to
several rules. A body temperature observation between
38.0◦ C and 38.5◦ C is a low fever event, one between
38.5◦ C and 39.0◦ C a medium fever event, and one above
39.0◦ C a high fever event. Its temporal reasoning layer
defines a rising fever event as a sequence of low, medium
and high fever events within an hour.

Two queries are defined for the notification service
instructed on top of Streaming MASSIF’s temporal

reasoning layer. When a low fever event is detected, and
a person in the patient’s caregiver network has already
planned a visit to the patient on the current day, the first
query notifies this person to check up on the patient dur-
ing this visit. In that case, no other (medical) caregiver
should be called. The second query notifies a medical
caregiver from the patient’s caregiver network as quickly
as possible when a rising fever event is detected.

In the use case scenario, in the morning of the given
day, Rosa’s body temperature exceeds 38◦ C. This event
is filtered by C-SPARQL, and abstracted by Stream-
ing MASSIF as a low fever event. The daily visit of Rosa’s
daughter Holly around noon is still planned for the cur-
rent day, causing Streaming MASSIF to generate a noti-
fication to Holly, indicating that she should check up
on Rosa’s low fever during her planned visit. However,
within an hour after the first low fever event, Rosa’s body
temperature further rises to above 39◦ C. Thus, Stream-
ing MASSIF detects both a medium fever event and a high
fever event in its abstraction layer, and thus a correspond-
ing rising fever event in its temporal reasoning layer.
Hence, the Streaming MASSIF service generates a notifi-
cation to Rosa’s nurse Suzy to visit her with high priority.

Step 5 – Constructing a treatment plan for influ‑
enza After Suzy’s examination, Rosa’s GP dr. Wilson is
called and diagnoses her with the influenza virus, which
is added to her medical profile. To construct a treatment
plan for it, dr. Wilson can use AMADEUS. It proposes
three possible plans: taking the oseltamivir medicine for
ten days, taking the zanamivir medicine for eight days,
or waiting for 16 days until the influenza goes over natu-
rally. The durations of the plans resemble the expected
time after which the influenza should be cured. Given
Rosa’s situation, dr. Wilson decides to choose the first
plan, which has the highest value for the comfort qual-
ity parameter. After selecting the plan, AMADEUS con-
structs the detailed workflow of taking the medication
every day for a period of ten days.

Step 6 – Treatment plan conflict AMADEUS performs
a verification step to ensure that the newly added treat-
ment plan, confirmed by dr. Wilson, does not yield any
conflicts with Rosa’s current treatment plan. In this sce-
nario, AMADEUS detects a conflict: Rosa’s next chemo-
radiotherapy session in the colon cancer treatment plan
is scheduled in five days. However, since the influenza
treatment plan still takes ten days, the influenza virus
will not be cured by then, which forms a contraindica-
tion conflict. AMADEUS leaves resolving detected con-
flicts to its end users. In this case, dr. Wilson can do so by
postponing the next chemoradiotherapy session until the
influenza virus is fully cured.

Page 12 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

Demonstrator web application
To visually demonstrate the described use case scenario,
a web application is designed [62] on top of a PoC imple-
mentation of the use case demonstrator [see Additional
file 1]. It illustrates how medical care providers could fol-
low up patients in homecare through the smart monitor-
ing pipeline, in addition to the designed GUIs presented
in the “Building blocks” section. More specifically, it con-
tains multiple UI buttons to simulate the different steps
of the scenario in the “Scenario description” section and
shows a visualization throughout the simulation of Rosa’s
profile, the location of Rosa and the people in her car-
egiver network, and the real-time observations gener-
ated by the sensors processed in the monitoring pipeline.
Furthermore, it contains a UI to trigger AMADEUS and
visualize its output. Figure 6 shows multiple screenshots
of the web application corresponding to the different
scenario steps. Moreover, a video of the demonstrator is
available online at https:// vimeo. com/ 38071 6692.

Performance evaluation
This section evaluates the performance of the differ-
ent building blocks in the architecture of the use case
demonstrator presented in the “Use case demonstra-
tor” section [62]. The main purpose of this evaluation is
to evaluate the individual building blocks of the seman-
tic healthcare platform on a single, fixed use case. For
in-depth evaluations of the involved building blocks,
we refer to the corresponding publications.

The evaluation is split up in three parts. The first
part evaluates the data stream processing pipeline with
RMLStreamer, C-SPARQL and Streaming MASSIF.
Part two evaluates the DIVIDE query derivation. The
third part evaluates AMADEUS.

For all evaluations, the local components in the dem-
onstrator architecture in Fig. 5 are running on an Intel
NUC, model D54250WYKH, which has a 1300 MHz
dual-core Intel Core i5-4250U CPU (turbo frequency
2600 MHz) and 8 GB DDR3-1600 RAM. The central
components are deployed on a virtual Ubuntu 18.04
server with a Intel Xeon E5620 2.40GHz CPU, and
12GB DDR3 1066 MHz RAM.

Fig. 6 Screenshots of the web application built on top of the use case demonstrator’s PoC implementation. They correspond to different steps
in the scenario: a Step 0 – Initial state; b Step 3 – Constructing a treatment plan for colon cancer; c Step 4 – Influenza infection yielding fever
notifications; d Step 6 – Treatment plan conflict

https://vimeo.com/380716692

Page 13 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

All evaluation results are aggregated in Table 1. For
every evaluated component, the following subsections
detail the evaluation cases, their rationales, the meas-
ured metrics, and how the measures were obtained to
calculate the reported statistics.

Performance evaluation of the data stream processing
pipeline
The evaluation of the data stream processing pipeline
is performed separately for the three components. This
approach is chosen because C-SPARQL performs con-
tinuous time-based processing of windows on the data
streams, while RMLStreamer and Streaming MASSIF
do event-based processing. Analyzing the components
individually means that inherent networking delays are
omitted.

RMLStreamer For the RMLStreamer evaluation, the
processing time is measured, which is defined as the dif-
ference between the time at which a JSON observation is
sent on the TCP socket input stream of RMLStreamer,
and the time at which the RDF observation arrives at the
client consuming the TCP socket output stream. This
client and the sensor simulator are both running on the
same device as the RMLStreamer.

In Table 1, the RMLStreamer performance measures
are reported for three different rates of incoming obser-
vations on the RMLStreamer: 1 observation per second, 7
observations per second and 14 observations per second.
This maximum of 14 is chosen because the demonstra-
tor contains 14 sensors. The reported numbers are aggre-
gated over all observations generated during a simulation
of 2 minutes.

C‑SPARQL For the C-SPARQL evaluation, the execu-
tion time is measured of the query that is filtering Rosa’s
body temperature after she is diagnosed with colon can-
cer. This is the only query that is important for the sce-
nario of the demonstrator, since the other two deployed
queries never filter any event during the scenario.

Table 1 reports the evaluation results for the three
rates of incoming RDF observations. For C-SPARQL, this
defines the number of observations in the data window
on which the queries are evaluated. For every rate, exactly
one body temperature observation higher than 38◦ C is
generated per second. Hence, this resembles the period
in the scenario when Rosa has a fever. Thus, the reported
measures are for query executions that each yield exactly
one result, being the most recent high body temperature
observation. The query is evaluated every 3 seconds on a
5-second window. The reported numbers are aggregated
over all query executions during a 2-minute simulation.

Note that the evaluation results report measures about
the query execution times, and not the processing times
of an observation. This is because the C-SPARQL query
evaluation is not event-based but a continuous, periodic
process. The total processing time per observation con-
sists of the waiting time before the window trigger and
query evaluation, and the query execution time. The wait-
ing time is upper bounded by the time period between
consecutive query evaluations, which is 3 seconds in the
demonstrator. Since the actual waiting time is inherent to
the system, depends on the mutual initialization of com-
ponents, and is not dependent on the query bodies and
data models, it is not included in the reported results.

Streaming MASSIF For the evaluation of Streaming
MASSIF, the processing time of an incoming event is

Table 1 Results of the performance evaluation of the building blocks in the use case demonstrator’s architecture

Evaluated component Measured metric Evaluation case Average
value (ms)

Standard
deviation
(ms)

RMLStreamer processing time 1 observation per second 8.1 3.1

7 observations per second 11.8 7.1

14 observations per second 13.5 8.3

C-SPARQL query execution time query filtering body temperature with 1 observation per second 12.2 3.3

query filtering body temperature with 7 observations per second 15.2 9.1

query filtering body temperature with 14 observations per second 26.4 23.5

Streaming MASSIF processing time fever event processing 1539.5 60.1

DIVIDE processing time query derivation 7249.5 175.8

AMADEUS processing time generating treatment plans for colon cancer 190.8 1.4

generating treatment plans for influenza 88.6 1.7

aggregating treatment plans and performing conflict detection 1335.7 3.8

Page 14 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

measured. This is defined as the difference between the
event’s arrival time and the time at which the notification
(to either Rosa’s daughter or nurse) leaves the system. The
reported numbers in the results in Table 1 are aggregated
over all processed events in a simulation of 3 minutes,
where Rosa’s body temperature is gradually increased
from 38.3◦ C up to 39.1◦ C. The period between incoming
events in Streaming MASSIF is equal to the output rate
of the evaluated C-SPARQL query, which is 3 seconds.

Performance evaluation of DIVIDE
The evaluation of DIVIDE measures the processing time
of the query derivation on the context associated to Rosa,
which includes both the dementia and colon cancer diag-
noses. DIVIDE performs the semantic reasoning during
the query derivation in three parallel threads, where each
thread is responsible for deriving the RSP queries from
one of the generic query templates. The output consists
of the three queries described in the demonstrator’s sce-
nario. The processing time is measured from start to
completion of the parallel reasoning processes. All net-
working overhead for registering the context to DIVIDE,
which triggers the query derivation, and registering the
resulting queries on C-SPARQL, is not included in the
results reported in Table 1. These are aggregated over 30
runs, excluding 3 warm-up and 2 cool-down runs.

Performance evaluation of AMADEUS
For the evaluation of AMADEUS, the processing times
are measured of a request to the AMADEUS Web API for
the three most important cases in the demonstrator’s sce-
nario: (1) requesting possible treatment plans for colon
cancer, (2) requesting possible treatment plans for influ-
enza, and (3) adding the chosen influenza treatment plan
to the existing treatment plan for colon cancer, including
the conflict detection. The processing time corresponds
to the response time of the AMADEUS Web API, which
mainly represents the duration of the started EYE rea-
soner process. The results in Table 1 are measured over
30 runs, excluding 3 warm-up and 2 cool-down runs.

Usability evaluation
This section discusses the usability evaluations of the
installer tools in the semantic healthcare platform: the
RMLEditor and Streaming MASSIF with its GUI. The
evaluations make use of the System Usability Scale (SUS),
which is a well-known, rapid method for gathering usabil-
ity ratings for a technology through a questionnaire [64].
It is known for being concise, applicable across various
technologies, and effective in scenarios with limited sam-
ple sizes [65]. The SUS measures the user satisfaction of
a technology, but not its effectiveness or the efficiency,
which is an important consideration when interpreting

SUS-scores. The usability of DIVIDE and AMADEUS has
not been evaluated.

Usability evaluation of RMLEditor and MapVOWL
In a previous publication, Heyvaert et al. have evalu-
ated the usability of the RMLEditor and its visual map-
ping rule notation MapVOWL [57]. To this end, they
first evaluated whether the MapVOWL graph-based rep-
resentation of RML mapping rules has a higher human
processing accuracy and preference than the classic tex-
tual representation of RML rules. Based on the evalua-
tion, the authors concluded that users with knowledge of
RML exhibit no difference in accuracy of processing the
representations, but do have a preference for MapVOWL
to visualize and edit rules. As a second step, the authors
evaluated the usability of the graph-based RMLEditor
to the RMLx Visual Editor, which is form-based edi-
tor to show and edit RML mapping rules [66, 67]. This
evaluation showed no difference in the accuracy of cre-
ating mapping rules between both editors, but revealed
a higher user satisfaction of the RMLEditor through a
SUS-score of 82.75 compared to 42 for the RMLx Visual
Editor. This is mainly caused by the usage of MapVOWL.
For details about the evaluation set-up and results of
both evaluations, we refer to the original publication of
Heyvaert et al. [57].

Usability evaluation of Streaming MASSIF
To evaluate the usability of using and configuring seman-
tic services with Streaming MASSIF for installers, it is
compared with Kafka Streams. This is a stream pro-
cessing library provided by Apache Kafka that enables
developers to build scalable and fault-tolerant real-time
applications and microservices [68]. It allows Kafka con-
sumers to process continuous streams of data records
from Kafka topics, supporting tasks such as data trans-
formation, aggregation, and event-driven computations.

Evaluation set‑up The evaluation was configured
through an online questionnaire. Potential participants
were approached from imec and Ghent University. Those
agreeing to participate were provided with a short intro-
duction of Streaming MASSIF and Kafka Streams to read
through. After the introduction, the actual evaluation
was performed together with one of the researchers, con-
stituting of four consecutive parts.

Part 1. In this part of the evaluation, the questionnaire
queried the participant’s socio-demographics. Moreover,
questions were asked about their experience & familiarity
with Linked Data & Semantic Web technologies, stream
processing in general, Streaming MASSIF, and Kafka.

Page 15 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

Part 2. The second part of the evaluation presented a
short text about the fictional evaluation use case, which
was the use case of the demonstrator presented in the
“Use case demonstrator” section. It described the task
that should be performed by the participant, which was
about step 4 of the described scenario, i.e., the configura-
tion of a service filtering the alarming situation of a rising
fever event for patient Rosa with the influenza diagno-
sis. More specifically, this text reads as follows: “In the
patient room of the future, rooms are equipped with many
sensors that capture their environment. These sensors
allow to monitor both patients and the status of the room.
Let’s consider the presence of a light, sound, and body tem‑
perature sensor present in the room. To process this data
in a meaningful way, this data needs to be combined with
background knowledge regarding the hospital and the
patient that is being treated in the room. In this use case,
we want to monitor to see if our patients are not being
exposed to any alarming situation. For example, let’s
assume our patient has influenza. The background knowl‑
edge about our patient will then describe that our patient
with influenza should be monitored for body temperature
values. Therefore we should monitor the body temperature
sensors in the room, in order to detect alarming situations.
In this case, an alarming situation occurs when the body
temperature of our patient is rising too quickly in a lim‑
ited time span.”

After reading this text and following a short tutorial
for both Streaming MASSIF and Kafka Streams, the par-
ticipants were requested to complete this task with both
tools. To have a variation in which tool was used first
for the task, the participants were randomly assigned in
two groups of equal size. The correctness of perform-
ing the task with both tools was assessed by the present
researcher.

Part 3. The third part of the evaluation consisted of a
multiple-choice questionnaire assessing how well the
participants understand Streaming MASSIF. The ques-
tions asked and their corresponding correct answer(s)
were the following:

1. How does one filter data in Streaming MASSIF? Cor-
rect answers: by defining a filter, by abstracting the
data, by defining a Complex Event Processing pattern

2. How does one enrich events from the data stream
in Streaming MASSIF? Correct answers: by defining
a CONSTRUCT query in a filter, by abstracting the
data through reasoning

3. How does one abstract the data in Streaming MAS-
SIF? Correct answer: by defining ontological patterns

4. How does one detect temporal dependencies in
Streaming MASSIF? Correct answer: by defining a
temporal pattern

Part 4. The final part was a post-assessment question-
ing the usability of both tools. First, the difficulty of per-
forming the use case task with the tools was rated on a
7-point Likert scale from extremely difficult to extremely
easy. Similarly, confidence in successful completion was
rated on a 7-point Likert scale from strongly agree to
strongly disagree. Second, the SUS-score was obtained
for both tools. Third, the overall user-friendliness of the
tools was rated on a 7-point Likert scale from awful to
excellent.

Evaluation results Part 1. Eight participants were
recruited. They were all male researchers and students
from imec and Ghent University between 22 and 28
years old, all but one holding a master’s degree. One
participant considered himself a novice on Linked Data
and Semantic Web technologies, five were developing
knowledge in this domain, one was proficient, and one
was an expert. Concerning stream processing in general,
four participants were developing knowledge and four
were novices. Six participants had already heard of both
Streaming MASSIF and Kafka, of which two had already
used the latter. The other two participants had never
heard of both.

Part 2. All participants successfully completed the task
on the presented use case with both evaluated tools.

Part 3. The questions about Streaming MASSIF were
answered by all participants. For question 1, one par-
ticipant selected all three correct answers. Two partici-
pants selected two of them, and the other five selected
one correct answer. For question 2, three participants
selected both correct answers. The other five participants
selected one correct answer. For question 3, five partici-
pants selected the single correct answer. Three people
also selected an additional wrong answer. For question 4,
the same happened for two participants, while all of them
selected the correct answer.

Part 4. The difficulty of performing the use case task
was rated higher for Kafka Streams compared to Stream-
ing MASSIF by seven participants. Five participants rated
completing the task with Streaming MASSIF moderately
or slightly easy, compared to only two for Kafka Streams.
Moreover, regarding confidence in successful comple-
tion of the tasks, two participants revealed a higher con-
fidence when using Streaming MASSIF, while the others
revealed equal confidence. This confidence was rated
positively (slightly agree, agree or strongly agree) by
seven participants for Streaming MASSIF. In addition,
the average obtained SUS-score of Streaming MASSIF
was 72.81, compared to 53.75 for Kafka Streams. Inspect-
ing the individual SUS-scores, they were higher for
Streaming MASSIF for six participants, while both scores

Page 16 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

were equal for the other two participants. Finally, the
overall user-friendliness of Streaming MASSIF was rated
higher than that of Kafka Streams by five participants,
while the other three participants rated it equally well. All
participants rated the overall user-friendliness of Stream-
ing MASSIF as good or excellent, compared to a rating of
good or OK for Kafka Streams by six participants.

Discussion
This section discusses how the presented existing
building blocks built upon Semantic Web technologies
(“Building blocks” section) can help solving the chal-
lenges related to every individual role in the instantiated
reference architecture (“Reference architecture” sec-
tion). To do so, relevant insights from designing the
use case demonstrator (“Use case demonstrator” sec-
tion) and evaluating our PoC implementation of this
demonstrator (“Performance evaluation” and “Usability
evaluation” sections) are shared as well. This way, the
hypotheses presented in the “Paper objective, contribu-
tion and organization” section are validated. This vali-
dation is justified by the fact that the use case scenario
of the demonstrator use case is representative to the
real world within the continuous homecare domain.
This domain is an actual, currently relevant application
domain within healthcare, due to the shift to homecare,
which is demonstrated in Flanders by the analysis and
calculations made by the KCE.

Data providers
Semantic Web technologies offer the tools to data
providers to formally describe different heterogene-
ous data sources in a uniform, common, machine-
interpretable format. This way, reusing data sources
defined as Linked Data across organizations and appli-
cations becomes possible. Exposing data from various
sources as Linked Data is possible through RML map-
pings. RMLMapper is a tool that can process such map-
ping rules and generate Linked Data. RMLStreamer
is another tool that parallelizes the Linked Data gen-
eration process as much as possible. This reduces its
memory footprint and thus allows efficiently generating
Linked Data in streaming use cases as well [36].

The evaluation results with the use case demonstra-
tor prove that RMLStreamer can efficiently process and
map JSON observations to RDF data. For a scenario
where 14 observations per second are generated, the
average processing time is only 13.5 ms.

To summarize, hypothesis (a) of this paper can be val-
idated by following the Linked Data approach and using
technologies and tools such as RML and RMLStreamer.

Service providers
Service providers are responsible to build services
upon the data exposed by the data providers. Differ-
ent semantic building blocks such as Streaming MAS-
SIF and DIVIDE in combination with engines such as
C-Sprite or C-SPARQL allow moving away from the
manual configuration and non-reusable services.

Both Streaming MASSIF and DIVIDE take the avail-
able background knowledge and contextual data of the
patient profiles into account when performing seman-
tic reasoning. This way, they allow designing person-
alized services. Moreover, they are both designed to
deal with high-volume and high-velocity data streams
in many healthcare use cases. They are designed for a
distributed, cascading reasoning architecture, where
some data stream processing is already performed in
the edge of the IoT network, for example on a device in
the local environment of the patient. This is done in the
selection layer of Streaming MASSIF, where different
engines such as C-Sprite, C-SPARQL or another regu-
lar RSP engine can be employed. C-Sprite is especially
useful when efficient reasoning needs to be performed
with many hierarchical concepts.

DIVIDE is responsible for configuring the queries
that are evaluated on the local RSP engine. Through the
defined generic query templates, it performs semantic
reasoning to derive the specific RSP queries that are rel-
evant with the given environmental context, every time
this context (e.g., the medical profile) changes. The evalu-
ation results show that the query derivation for the use
case demonstrator takes a little over 7 seconds. This is
relatively high, however, it is only performed upon con-
text changes, of which the frequency is a few orders of
magnitudes smaller than the frequency of the RSP query
evaluation. DIVIDE ensures that only the relevant data is
filtered, and that no real-time reasoning is required dur-
ing the query evaluation. Hence, this query evaluation is
very efficient. This is shown in the C-SPARQL evaluation
results, which report an average query execution time of
only 26.4 ms for a data stream containing 14 RDF obser-
vations per second. It should be noted that the query
evaluation is also performant on low-end devices with
few resources, which often occur in the IoT edge, even
for data streams with a higher data velocity [37]. This
allows for improved system performance, scalability, and
local autonomy.

Moreover, by embedding DIVIDE into the refer-
ence architecture, privacy by design is enabled to some
extent [69]. Multiple foundational principles of privacy
by design are partly addressed this way, such as visibility
& transparency, user-centric design and proactiveness,
helping installers to design applications with the user
data privacy in mind. Thus, this leaves an additional

Page 17 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

responsibility to installers, which implies the need for
proper education and supporting GUIs for user-centric
privacy management. Nevertheless, the use of DIVIDE
in the distributed reference architecture system of course
does not guarantee privacy as such. To achieve optimal
privacy, it should be combined with additional privacy
measures, both generic (e.g., strong cryptography) and
use case specific measures. To this end, much existing
research can be consulted [70]. Moreover, privacy meas-
ures should also consider other aspects than the trans-
mission of data, such as privacy of data stored on devices.

In its abstraction and temporal reasoning layer, Stream-
ing MASSIF allows defining functionality through new
semantic axioms and rules in a relatively simple way [see
Additional file 1]. Similarly for the services instructed
on top of these layers, simple queries can be declared to
describe the functionality of the service. This allows them
to be reused in a user-friendly way. Streaming MASSIF
also delivers performant semantic services, as is shown
through the evaluation results on the use case demon-
strator. On average, it takes a little over 1.5 seconds to
generate the correct notification corresponding to a fever
event received from the selection layer. Considering this
processing includes expressive semantic reasoning on
the full ontology with all medical domain knowledge and
Rosa’s profile information, this is a performant result.

Based on this discussion, it can be concluded that
hypothesis (b) of this paper can be validated by using
the DIVIDE and Streaming MASSIF building blocks in a
distributed, cascading reasoning architecture. More spe-
cifically, Streaming MASSIF validates sub-hypothesis (i),
while using DIVIDE allows validating sub-hypothesis (ii).

Integrators
Integrators compose workflows that fulfill a particular
functionality. AMADEUS uses semantics to move away
from generic, static, manually constructed workflows
that cannot easily be coordinated across organizations. It
performs semantic reasoning to compose possible work-
flows using the semantic description of all context and
profile information, possible workflow steps, functional-
ity of services, and quality parameters offered by them.
This way, the resulting workflow always offers the desired
functionality and meets quality constraints dynamically
chosen by the end user.

To make this more tangible, the use case demonstra-
tor focuses on an example where workflows represent
medical treatment plans for a disease. In this example,
potential steps in the treatment of diseases represent pos-
sible workflow steps. The semantic description of a step
defines when applying this step is useful (e.g., for which
diseases, given which preconditions), what the impact
on the state and context is (e.g., how much does it cure

the patient’s disease), what the quality parameters of this
step are (e.g., what is the patient comfort or the treatment
cost), and what possible contraindications exist for this
step (e.g., what other diagnoses cannot be present to take
this step). This makes it possible to create personalized,
dynamic treatment plans that take into account particu-
lar quality constraints about the treatment.

An additional advantage of using AMADEUS is its
ability to perform automatic conflict detection between
workflows. In the use case demonstrator, a possible con-
flict is a contraindication for a new treatment plan. This
detection is particularly interesting in cross-organiza-
tional environments, like in the use case scenario. The
original colon cancer treatment plan was constructed by
a hospital doctor, while the new influenza treatment plan
was created by Rosa’s GP. Hence, this demonstrates how
AMADEUS can help improving the communication and
coordination of workflows across the different organiza-
tions and stakeholders involved in Rosa’s caregiving.

The evaluation results of AMADEUS on the demon-
strator show that it can efficiently generate its dynamic
workflows. All possible treatment plans for both the
colon cancer and influenza diagnoses are generated in
less than 200 ms on average. The conflict detection takes
on average a little above 1.3 s, which is still acceptable
given the fact that AMADEUS should not be deployed in
a real-time data processing pipeline.

To summarize, it can be concluded that the design and
performance of AMADEUS allows validating hypoth-
esis (c) of this paper.

Installers
Installers are people responsible for configuring all data
provisioning tools, services, and workflows. For the first
two aspects, GUIs for the semantic tools are available.

Defining RML mapping rules for the Linked Data gen-
eration is a tedious and time-consuming work, as map-
pings need to be created for each type of input data
source to the semantic ontology model. To make this
process much easier, either the RMLEditor or Matey can
be used. These tools have an optimized GUI to easily gen-
erate, visualize and export mapping rules and/or Linked
Data. Matey is most suited for developers who do not
have knowledge about Semantic Web technologies, while
the RMLEditor is most useful for data owners who are no
developers. Specifically focusing on RMLEditor, previ-
ous research has shown that using the RMLEditor and its
graph-based MapVOWL representation has a high usa-
bility compared to alternatives [57].

In addition, a GUI allows installers to declare the
axioms, rules and queries that define the services in
Streaming MASSIF, without having to bother with the
underlying technological details. However, additional

Page 18 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

research is still needed to design a GUI to properly con-
figure DIVIDE and its generic query templates. The usa-
bility evaluation of Streaming MASSIF in the “Usability
evaluation of Streaming MASSIF” section proves that
configuring semantic services with Streaming MASSIF is
considered relatively easy and user-friendly by almost all
participants. The average SUS-score of 72.81 of Stream-
ing MASSIF translates to a usability rating of good [65].
With a proper introduction and a small tutorial, users
can confidently and successfully use Streaming MAS-
SIF and mostly correctly assess how it works. Altogether,
these are positive results.

To conclude, the available GUIs validate hypothesis (d)
of this paper.

In addition, it should be noted that the usability of two
other building blocks, DIVIDE and AMADEUS, has not
been formally evaluated within the scope of this paper.
Therefore, it is important to zoom in on the required
configuration workload of these tools for installers.

Looking at DIVIDE, its configuration workload
mainly consists of defining the generic query tem-
plates. To do so, it should be noted that the DIVIDE
implementation includes a parser that can automati-
cally translate SPARQL queries into the required inter-
nal representation format of generic query templates
used by DIVIDE [37]. This way, end users can config-
ure DIVIDE in a straightforward way, without having to
know its internal representation format. To define these
SPARQL queries, existing SPARQL query configuration
UI tools could possibly be employed as well, to further
reduce the configuration workload. During its runtime,
no manual (re)configuration of DIVIDE is required, as its
internal algorithm will automatically ensure that the cor-
rect stream processing queries are deployed at all times.
In addition, the configuration of DIVIDE also includes
defining a set of properties that can overwrite its default
values, which is easily possible through properties files.
To make this configuration more easy, a simple UI tool
could be designed on top of these properties files. Thus,
altogether, the configuration workload of DIVIDE is
relatively small compared to the configuration workload
of the other components. This workload is significantly
higher for configuring the RML mappings for RML-
Streamer, and will typically become more extensive for
the rules and queries for the different layers of Streaming
MASSIF as well.

Zooming in on AMADEUS, it should be noted that
the biggest part of the AMADEUS configuration actu-
ally represents medical domain knowledge, and should
thus be captured in the used ontology. This includes
the definition of policies, all possible workflow step
descriptions, and additionally relevant medical domain
knowledge such as preconditions of certain steps or

contraindications. This knowledge should thus be cap-
tured from the involved domain experts in the ontology
design process, for which existing ontology editors such
as PoolParty or Topbraid Composer can be used [71, 72].
This configuration should only be done once for a given
use case domain. In addition, the state description used
by AMADEUS is captured through the current use case
context in the knowledge base. Hence, the only use case
specific configuration element is the goal of the work-
flow generation. This configuration is limited to a single
rule for a given type of workflow, implying a small con-
figuration workload for AMADEUS. In terms of end user
interaction after the workflow generation process, an end
user is required to select one of the proposed workflows
to add it to the user’s set of workflows in the knowledge
base and trigger the conflict detection. The design of the
web application involves a use case specific UI element
that specifically focuses on this selection and the presen-
tation of possible workflows and conflicts (Fig. 6b and d).
This part of the web application could serve as a starting
point to design a generic UI tool for AMADEUS.

Conclusion
The impact and contribution of this paper is the design
of a reference architecture for a semantic healthcare plat-
form that can be leveraged to optimize continuous home-
care provisioning use cases. To this end, the distributed,
cascading reasoning architecture is instantiated with dif-
ferent existing building blocks, built upon Semantic Web
technologies. This architecture allows solving the chal-
lenges associated to the different roles involved in contin-
uous care solutions. For data providers, the architecture
allows exposing data as Linked Data to services and other
organizations in reusable fashion, using declarative map-
ping rules. This Linked Data can be efficiently generated
in use cases dealing with high-velocity streaming data.
Concerning service providers, the architecture allows
designing dynamic, use case specific, data-driven, per-
sonalized, reusable services. These services are defined by
declaratively expressing their functionality and meaning
as semantic definitions, and operate on the data abstrac-
tions and insights generated by stream reasoning queries.
These queries efficiently process the generated Linked
Data in a cascading reasoning pipeline, which allows for
improved system performance, scalability, local auton-
omy, and data privacy to a certain extent. Moreover,
considering service integrators, the architecture allows
constructing dynamic workflows of different services
or specific functionality described through declarative
semantic descriptions. Conflicts can be automatically
detected between constructed workflows, improving
their coordination across organizations and stakeholders
involved in the care provisioning of patients. By chaining

Page 19 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

all building blocks, a closed feedback loop is created:
knowledge generated through services and workflows
can result in context changes, which are automatically
reflected in the adaptive, context-aware stream reasoning
queries. Finally, for installers, different GUIs are available
to easily expose Linked Data and build dynamic services
in a user-friendly way. This allows installers to configure
the system without requiring knowledge about technical
details, minimizing the manual effort and risk of configu-
ration errors. Through the performance evaluation on a
PoC implementation of a realistic use case demonstrator
in homecare, the paper has also shown that the platform
can be successfully realized, and that the different build-
ing blocks of the instantiated reference architecture can
perform their tasks in an efficient way.

Future work could involve multiple different pathways.
First, since the solutions presented in this paper are tar-
geted towards continuous homecare provisioning, a real-
world production environment of the presented semantic
healthcare platform should further address the involved
privacy and security requirements. More specifically, for
privacy, it is necessary to implement a set of additional
privacy measures. These may include traditional meth-
ods like robust cryptography and access control mecha-
nisms. In addition, other privacy solutions should be
tailored to meet specific requirements of the use case.
Second, to improve the overall usability of the presented
semantic healthcare platform for the installers of the sys-
tem, additional measures should be implemented. More
specifically, UI tools should be designed for DIVIDE to
more easily configure DIVIDE and its different generic
query templates. In addition, the part of the web appli-
cation built to configure AMADEUS for the demon-
strator use case could be further generalized towards
a generic UI tool for AMADEUS. The usability of these
new and existing UI tools involved in the platform should
be further evaluated as well, including their effective-
ness and efficiency. Third, individual improvements of
the different building blocks in the presented reference
architecture, such as DIVIDE, Streaming MASSIF and
AMADEUS, could further extend their applicability to
different use cases and the available support for specific
types of services and workflows. For concrete pointers
on how to improve them, we refer to the specific publi-
cations about these individual building blocks. Fourth,
future work should include the application and valida-
tion of the presented reference architecture on other
healthcare use cases that exhibit requirements similar to
homecare, such as system performance, local autonomy,
data privacy, automation, dealing with dynamic environ-
ments, and cross-organizational workflows. Moreover, it
might as well be interesting to investigate its generalization

towards other IoT applications domains, such as smart
cities or smart home and automation. This would allow
to further evaluate the platform’s performance and usa-
bility on other use cases as well.

Abbreviations
ACCIO Ambient-aware provisioning of Continuous Care for Intramu-

ral Organizations
API Application Programming Interface
BLE Bluetooth Low Energy
C-SPARQL Continuous SPARQL
CPU Central Processing Unit
DDR Double Data Rate
e.g. exempli gratia – for example
FWO Research Foundation – Flanders (Dutch: Fonds Wetenschap-

pelijk Onderzoek – Vlaanderen)
GP General Practitioner
GUI Graphical User Interface
i.e. id est – that is (in other words)
IoT Internet of Things
JSON JavaScript Object Notation
LOV Linked Open Vocabularies
N3 Notation3
OWL Web Ontology Language
PAS Personal Alarm System
PoC Proof-of-Concept
R2RML RDB to RDF Mapping Language
RAM Random Access Memory
RDF Resource Description Framework
RML RDF Mapping Language
RSP RDF Stream Processing
SNOMED CT Systematized Nomenclature of Medicine Clinical Terms
SOA Service Oriented Architecture
SPARQL SPARQL Protocol And RDF Query Language
Turtle Terse RDF Triple Language
UI User Interface
W3C World Wide Web Consortium
YAML YAML Ain’t Markup Language

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13326- 024- 00303-4.

Additional file 1. Implementation details of the PoC implementation of
the use case demonstrator presented in the “Use case demonstrator” sec-
tion. This file contains descriptions and listings about the implementation
and configuration of RMLStreamer, DIVIDE, C-SPARQL, Streaming MASSIF
and AMADEUS.

Acknowledgements
Not applicable.

Authors’ contributions
M.D.B., P.B., D.A., M.V.S., A.D., R.V., F.D.T. and F.O. were involved in the design of
the reference architecture and the development of the use case demonstrator.
M.D.B., P.B., D.A., M.V.S., F.O. and A.D. designed the demonstrator architecture,
and implemented & configured the building blocks for the demonstrator’s use
case scenario. M.D.B. implemented the demonstrator web application, and
evaluated the performance of the demonstrator. All authors were involved in
writing the “Background”, “Building blocks” and “Reference architecture” sec-
tions of the paper. M.D.B. wrote the remainder of the paper. A.D. and F.O.
supervised the study and were actively involved in all phases. M.D.B., P.B., D.A.,
M.V.S., A.D., R.V., F.D.T. and F.O. reviewed the paper, gave some valuable sugges-
tions, and approved the final version of the paper.

https://doi.org/10.1186/s13326-024-00303-4
https://doi.org/10.1186/s13326-024-00303-4

Page 20 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

Funding
This research is partly funded by FWO (Research Foundation – Flanders) SBO
grant 150038 (DiSSeCt). This work is also partly funded by the postdoctoral fel-
lowship of FWO of Pieter Bonte (1266521N) and Ruben Verborgh (12I9219N).

Availability of data and materials
Code and set-up documentation of the different tools are available online.
For DIVIDE, this information is available at https:// github. com/ IBCNS ervic
es/ DIVIDE. For Streaming MASSIF, this is provided at https:// github. com/
IBCNS ervic es/ Strea mingM ASSIF. For AMADEUS, this is available at https://
github. com/ IDLab Resea rch/ AMADE US- workfl ows. For the RMLStreamer and
RMLMapper, more information is available at https:// github. com/ RMLio/ RMLSt
reamer and https:// github. com/ RMLio/ rmlma pper- java, respectively. Similarly,
https:// rml. io/ tools/ rmled itor/ and https:// w3id. org/ yarrr ml/ matey/ contain
extra information about the RMLEditor and Matey, respectively. For C-Sprite,
extra info is available at https:// github. com/ IBCNS ervic es/C- Sprite. The ACCIO
ontology used in the use case demonstrator is available online at https://
github. com/ IBCNS ervic es/ Accio- Ontol ogy/ tree/ gh- pages.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Information Technology, IDLab – Ghent University – imec,
9052 Ghent, Belgium. 2 Stream Intelligence Lab, KU Leuven Kulak, Kortrijk 8500,
Belgium. 3 International Center for Computational Logic, Technische Universität
Dresden, 01187 Dresden, Germany. 4 meemoo, Flemish Institute for Archives,
9000 Ghent, Belgium. 5 Department of Computer Science, KU Leuven,
2860 Sint-Katelijne-Waver, Belgium. 6 Department of Electronics and Informa-
tion Systems, IDLab – Ghent University – imec, 9052 Ghent, Belgium.

Received: 1 August 2023 Accepted: 19 March 2024

References
 1. Perera C, Zaslavsky A, Christen P, Georgakopoulos D. Context aware

computing for the internet of things: a survey. IEEE Commun Surv Tutor.
2014;16(1):414–54. https:// doi. org/ 10. 1109/ SURV. 2013. 042313. 00197.

 2. Sezer OB, Dogdu E, Ozbayoglu AM. Context-Aware Computing, Learn-
ing, and Big Data in Internet of Things: A Survey. IEEE Internet Things J.
2018;5(1):1–27. https:// doi. org/ 10. 1109/ JIOT. 2017. 27736 00.

 3. Avila K, Sanmartin P, Jabba D, Jimeno M. Applications based on service-
oriented architecture (SOA) in the field of home healthcare. Sensors.
2017;17(8). https:// doi. org/ 10. 3390/ s1708 1703.

 4. Emanuele J, Koetter L. Workflow opportunities and challenges in health-
care. 2007 BPM Workflow Handbook. 2007. https:// www. resea rchga te.
net/ profi le/ Laura- Koett er/ publi cation/ 25206 5707_ Workfl ow_ Oppor tunit
ies_ and_ Chall enges_ in_ Healt hcare/ links/ 55229 0170c f2f9c 13052 e464/
Workfl ow- Oppor tunit ies- and- Chall enges- in- Healt hcare. pdf.

 5. Zayas-Cabán T, Haque SN, Kemper N. Identifying Opportunities for Work-
flow Automation in Health Care: Lessons Learned from Other Industries.
Appl Clin Inform. 2021;12(03):686–97. https:// doi. org/ 10. 1055/s- 0041-
17317 44.

 6. Bosch K, Willemé P, Geerts J, Breda J, Peeters S, Van De Sande S, Vrijens
F, Voorde C, Stordeur S. Residential care for older persons in Belgium:
Projections 2011–2025 – Supplement. KCE Reports 167C, Belgian Health
Care Knowledge Centre (KCE); 2011. https:// kce. fgov. be/ sites/ defau lt/
files/ atoms/ files/ KCE_ 167S_ resid ential_ elder ly_ care_ suppl ement. log_.
pdf. Accessed 1 Mar 2024.

 7. De Witte N, Campens J, De Donder L, Dierckx E, Rammelaere S, Verté D.
Nico De Witte, Jorrit Campens, Liesbeth De Donder, Eva Dierckx, Stefanie
Rammelaere, Dominique Verté. 2016. https:// socia al. net/ achte rgrond/
oudere- mensen- blijv en- langer- thuis- wonen/. Accessed 3 Dec 2023.

 8. Tyagi AK, Fernandez TF, Mishra S, Kumari S. Intelligent Automation
Systems at the Core of Industry 4.0. In: Intelligent Systems Design and
Applications. Cham: Springer; 2021. p. 1–18. https:// doi. org/ 10. 1007/
978-3- 030- 71187-0_1

 9. Al-Jaroodi J, Mohamed N, Abukhousa E. Health 4.0: On the Way to Real-
izing the Healthcare of the Future. IEEE Access. 2020;8. https:// doi. org/ 10.
1109/ ACCESS. 2020. 30388 58.

 10. Spyropoulos B. Towards Internet of Things Supported Active Ageing and
Home-Care. Biomed Stat Inform. 2017;2(3):77–86.

 11. Alansari Z, Soomro S, Belgaum MR, Shamshirband S. The Rise of Internet
of Things (IoT) in Big Healthcare Data: Review and Open Research
Issues. In: Progress in Advanced Computing and Intelligent Engineering,
Springer; 2018. p. 675–685. https:// doi. org/ 10. 1007/ 978- 981- 10- 6875-1_
66.

 12. Barnaghi P, Wang W, Henson C, Taylor K. Semantics for the Internet of
Things: Early Progress and Back to the Future. Int J Semant Web Inf Syst.
2012;8(1):1–21. https:// doi. org/ 10. 4018/ jswis. 20120 10101.

 13. Cyganiak R, Wood D, Lanthaler M, Klyne G, Carroll JJ, McBride B. RDF
1.1 concepts and abstract syntax. W3C Recommendation, World Wide
Web Consortium (W3C); 2014. https:// www. w3. org/ TR/ rdf11- conce pts/.
Accessed 1 Mar 2024.

 14. W3C OWL Working Group: OWL 2 Web Ontology Language. W3C Recom-
mendation, World Wide Web Consortium (W3C); 2012. https:// www. w3.
org/ TR/ owl2- overv iew/. Accessed 1 Mar 2024.

 15. Gruber TR. A translation approach to portable ontology specifications.
Knowl Acquis. 1993;5(2):199–220. https:// doi. org/ 10. 1006/ knac. 1993.
1008.

 16. Bizer C, Heath T, Berners-Lee T. Linked data: The story so far. In: Sheth A,
editors. Semantic Services, Interoperability and Web Applications: Emerg-
ing Concepts. IGI Global; 2011. p. 205–227. https:// doi. org/ 10. 4018/ 978-1-
60960- 593-3. ch008.

 17. Harris S, Seaborne A. SPARQL 1.1 Query Language. W3C Recommenda-
tion, World Wide Web Consortium (W3C); 2013. https:// www. w3. org/ TR/
sparq l11- query/. Accessed 1 Mar 2024.

 18. Nenov Y, Piro R, Motik B, Horrocks I, Wu Z, Banerjee J. RDFox: A highly-
scalable RDF store. In: The Semantic Web - ISWC 2015: Proceedings, Part
II of the 14th International Semantic Web Conference, Cham: Springer;
2015. p. 3–20. https:// doi. org/ 10. 1007/ 978-3- 319- 25010-6_1.

 19. Urbani J, Jacobs C, Krötzsch M. Column-oriented datalog materialization
for large knowledge graphs. In: Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence. OJS/PKP; 2016. https:// doi. org/ 10. 1609/
aaai. v30i1. 9993.

 20. Stuckenschmidt H, Ceri S, Della Valle E, Van Harmelen F. Towards expres-
sive stream reasoning. In: Semantic Challenges in Sensor Networks,
Dagstuhl Seminar Proceedings. Dagstuhl; 2010. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik. https:// doi. org/ 10. 4230/ DagSe mProc. 10042.4.

 21. Motik B, Grau BC, Horrocks I, Wu Z, Fokoue A, Lutz C, et al. OWL 2 Web
Ontology Language Profiles (Second Edition). W3C Recommendation,
World Wide Web Consortium (W3C); 2012. https:// www. w3. org/ TR/ owl2-
profi les/. Accessed 1 Mar 2024.

 22. Dell’Aglio D, Della Valle E, Harmelen F, Bernstein A. Stream reasoning: A
survey and outlook. Data Sci. 2017;1(1-2):59–83. https:// doi. org/ 10. 3233/
DS- 170006.

 23. Su X, Gilman E, Wetz P, Riekki J, Zuo Y, Leppänen T. Stream reasoning for
the Internet of Things: Challenges and gap analysis. In: Proceedings of the
6th International Conference on Web Intelligence, Mining and Semantics
(WIMS 2016), New York: Association for Computing Machinery (ACM);
2016. p. 1–10. https:// doi. org/ 10. 1145/ 29128 45. 29128 53.

 24. Dell’Aglio D, Della Valle E, Calbimonte J-P, Corcho O. RSP-QL Semantics: A
Unifying Query Model to Explain Heterogeneity of RDF Stream Process-
ing Systems. Int J Semant Web Inf Syst. 2014;10(4):17–44.

 25. Jabbar S, Ullah F, Khalid S, Khan M, Han K. Semantic interoperability in
heterogeneous IoT infrastructure for healthcare. Wirel Commun Mob
Comput. 2017;2017. https:// doi. org/ 10. 1155/ 2017/ 97318 06.

 26. Ullah F, Habib MA, Farhan M, Khalid S, Durrani MY, Jabbar S. Semantic
interoperability for big-data in heterogeneous IoT infrastructure for

https://github.com/IBCNServices/DIVIDE
https://github.com/IBCNServices/DIVIDE
https://github.com/IBCNServices/StreamingMASSIF
https://github.com/IBCNServices/StreamingMASSIF
https://github.com/IDLabResearch/AMADEUS-workflows
https://github.com/IDLabResearch/AMADEUS-workflows
https://github.com/RMLio/RMLStreamer
https://github.com/RMLio/RMLStreamer
https://github.com/RMLio/rmlmapper-java
https://rml.io/tools/rmleditor/
https://w3id.org/yarrrml/matey/
https://github.com/IBCNServices/C-Sprite
https://github.com/IBCNServices/Accio-Ontology/tree/gh-pages
https://github.com/IBCNServices/Accio-Ontology/tree/gh-pages
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1109/JIOT.2017.2773600
https://doi.org/10.3390/s17081703
https://www.researchgate.net/profile/Laura-Koetter/publication/252065707_Workflow_Opportunities_and_Challenges_in_Healthcare/links/552290170cf2f9c13052e464/Workflow-Opportunities-and-Challenges-in-Healthcare.pdf
https://www.researchgate.net/profile/Laura-Koetter/publication/252065707_Workflow_Opportunities_and_Challenges_in_Healthcare/links/552290170cf2f9c13052e464/Workflow-Opportunities-and-Challenges-in-Healthcare.pdf
https://www.researchgate.net/profile/Laura-Koetter/publication/252065707_Workflow_Opportunities_and_Challenges_in_Healthcare/links/552290170cf2f9c13052e464/Workflow-Opportunities-and-Challenges-in-Healthcare.pdf
https://www.researchgate.net/profile/Laura-Koetter/publication/252065707_Workflow_Opportunities_and_Challenges_in_Healthcare/links/552290170cf2f9c13052e464/Workflow-Opportunities-and-Challenges-in-Healthcare.pdf
https://doi.org/10.1055/s-0041-1731744
https://doi.org/10.1055/s-0041-1731744
https://kce.fgov.be/sites/default/files/atoms/files/KCE_167S_residential_elderly_care_supplement.log_.pdf
https://kce.fgov.be/sites/default/files/atoms/files/KCE_167S_residential_elderly_care_supplement.log_.pdf
https://kce.fgov.be/sites/default/files/atoms/files/KCE_167S_residential_elderly_care_supplement.log_.pdf
https://sociaal.net/achtergrond/oudere-mensen-blijven-langer-thuis-wonen/
https://sociaal.net/achtergrond/oudere-mensen-blijven-langer-thuis-wonen/
https://doi.org/10.1007/978-3-030-71187-0_1
https://doi.org/10.1007/978-3-030-71187-0_1
https://doi.org/10.1109/ACCESS.2020.3038858
https://doi.org/10.1109/ACCESS.2020.3038858
https://doi.org/10.1007/978-981-10-6875-1_66
https://doi.org/10.1007/978-981-10-6875-1_66
https://doi.org/10.4018/jswis.2012010101
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.4018/978-1-60960-593-3.ch008
https://doi.org/10.4018/978-1-60960-593-3.ch008
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.1609/aaai.v30i1.9993
https://doi.org/10.1609/aaai.v30i1.9993
https://doi.org/10.4230/DagSemProc.10042.4
https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
https://doi.org/10.3233/DS-170006
https://doi.org/10.3233/DS-170006
https://doi.org/10.1145/2912845.2912853
https://doi.org/10.1155/2017/9731806

Page 21 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

healthcare. Sustain Cities Soc. 2017;34:90–6. https:// doi. org/ 10. 1016/j. scs.
2017. 06. 010.

 27. Van Assche D, Delva T, Haesendonck G, Heyvaert P, De Meester B, Dimou
A. Declarative RDF graph generation from heterogeneous (semi-)struc-
tured data: A systematic literature review. J Web Semant. 2023;75. https://
doi. org/ 10. 1016/j. websem. 2022. 100753.

 28. Dimou A, Vander Sande M, Colpaert P, Verborgh R, Mannens E, Walle R.
RML: A Generic Language for Integrated RDF Mappings of Heterogene-
ous Data. In: Proceedings of the Workshop on Linked Data on the Web,
Co-located with the 23rd International World Wide Web Conference
(WWW 2014), vol 1184. 2014. https:// ceur- ws. org/ Vol- 1184/ ldow2 014_
paper_ 01. pdf. Accessed 1 Mar 2024.

 29. Michel F, Djimenou L, Faron-Zucker C, Montagnat J. Translation of Rela-
tional and Non-relational Databases into RDF with xR2RML. In: Proceed-
ings of the 11th International Conference on Web Information Systems
and Technologies - WEBIST. 2015. p. 443–454. https:// doi. org/ 10. 5220/
00054 48304 430454.

 30. Chortaras A, Stamou G. Mapping Diverse Data to RDF in Practice. In: The
Semantic Web – ISWC 2018. Springer; 2018. p. 441–457. https:// doi. org/
10. 1007/ 978-3- 030- 00671-6_ 26.

 31. Vu B, Pujara J, Knoblock CA. D-REPR: A Language for Describing and
Mapping Diversely-Structured Data Sources to RDF. In: Proceedings of
the 10th International Conference on Knowledge Capture. New York:
Association for Computing Machinery; 2019. p. 189–196. https:// doi. org/
10. 1145/ 33609 01. 33644 49.

 32. Das S, Sundara S, Cyganiak R. R2RML: RDB to RDF Mapping Language.
W3C Recommendation, World Wide Web Consortium (W3C); 2012.
https:// www. w3. org/ TR/ rdf11- conce pts/. Accessed 1 Mar 2024.

 33. Dimou A, De Nies T, Verborgh R, Mannens E, Walle R. Automated Meta-
data Generation for Linked Data Generation and Publishing Workflows.
In: Auer S, Berners-Lee T, Bizer C, Heath T, editors. Proceedings of the 9th
Workshop on Linked Data on the Web. 2016. CEUR Workshop Proceed-
ings. http:// events. linke ddata. org/ ldow2 016/ papers/ LDOW2 016_ paper_
04. pdf. Accessed 1 Mar 2024.

 34. Jozashoori S, Vidal M-E. MapSDI: A Scaled-Up Semantic Data Integration
Framework for Knowledge Graph Creation. In: On the Move to Meaning-
ful Internet Systems: OTM 2019 Conferences, Springer; 2019. p. 58–75.
https:// doi. org/ 10. 1007/ 978-3- 030- 33246-4_4.

 35. Kyzirakos K, Savva D, Vlachopoulos I, Vasileiou A, Karalis N, Koubarakis M,
Manegold S. GeoTriples: Transforming geospatial data into RDF graphs
using R2RML and RML mappings. J Web Semant. 2018;52-53:16–32.
https:// doi. org/ 10. 1016/j. websem. 2018. 08. 003.

 36. Haesendonck G, Maroy W, Heyvaert P, Verborgh R, Dimou A. Parallel RDF
generation from heterogeneous big data. In: SBD ’19: Proceedings of the
International Workshop on Semantic Big Data. 2019. p. 1–6. https:// doi.
org/ 10. 1145/ 33238 78. 33258 02.

 37. De Brouwer M, Steenwinckel B, Fang Z, Stojchevska M, Bonte P, De Turck
F, Van Hoecke S, Ongenae F. Context-aware query derivation for IoT
data streams with DIVIDE enabling privacy by design. Semant Web.
2023;14(5):893–941. https:// doi. org/ 10. 3233/ SW- 223281.

 38. De Brouwer M, Arndt D, Bonte P, De Turck F, Ongenae F. DIVIDE: Adaptive
Context-Aware Query Derivation for IoT Data Streams. In: Joint Proceed-
ings of the International Workshops on Sensors and Actuators on the
Web, and Semantic Statistics, Co-located with the 18th International
Semantic Web Conference (ISWC 2019), vol 2549. Aachen: CEUR Work-
shop Proceedings; 2019. p. 1–16. https:// ceur- ws. org/ Vol- 2549/ artic le- 01.
pdf. Accessed 1 Mar 2024.

 39. Jaiswal K, Anand V. A Survey on IoT-Based Healthcare System: Potential
Applications, Issues, and Challenges. In: Rizvanov AA, Singh BK, Ganasala
P, editors. Advances in Biomedical Engineering and Technology, Springer;
2021. p. 459–471. https:// doi. org/ 10. 1007/ 978- 981- 15- 6329-4_ 38.

 40. Zgheib R, Kristiansen S, Conchon E, Plageman T, Goebel V, Bastide
R. A scalable semantic framework for IoT healthcare applications. J
Ambient Intell Humanized Comput. 2020. https:// doi. org/ 10. 1007/
s12652- 020- 02136-2.

 41. Subramaniyaswamy V, Manogaran G, Logesh R, Vijayakumar V, Chilam-
kurti N, Malathi D, Senthilselvan N. An ontology-driven personalized
food recommendation in IoT-based healthcare system. J Supercomput.
2019;75(6):3184–216. https:// doi. org/ 10. 1007/ s11227- 018- 2331-8.

 42. Bonte P, Tommasini R, Della Valle E, De Turck F, Ongenae F. Streaming
MASSIF: cascading reasoning for efficient processing of iot data streams.
Sensors. 2018;18(11):3832. https:// doi. org/ 10. 3390/ s1811 3832.

 43. Bonte P, Tommasini R, De Turck F, Ongenae F, Valle ED. C-Sprite: Efficient
Hierarchical Reasoning for Rapid RDF Stream Processing. In: Proceedings
of the 13th ACM International Conference on Distributed and Event-
based Systems. 2019. p. 103–114. https:// doi. org/ 10. 1145/ 33289 05. 33295
02.

 44. Barbieri DF, Braga D, Ceri S, Della Valle E, Grossniklaus M. C-SPARQL: a
continuous query language for RDF data streams. Int J Semant Comput.
2010;4(1):3–25. https:// doi. org/ 10. 1142/ S1793 351X1 00009 36.

 45. Calbimonte J-P, Corcho O, Gray AJ. Enabling ontology-based access to
streaming data sources. In: The Semantic Web – ISWC 2010. Springer;
2010. p. 96–111. https:// doi. org/ 10. 1007/ 978-3- 642- 17746-0_7.

 46. Tommasini R, Della Valle E. Yasper 1.0: Towards an RSP-QL Engine. In: Pro-
ceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks,
Co-located with 16th International Semantic Web Conference (ISWC
2017). CEUR Workshop Proceedings; 2017. https:// ceur- ws. org/ Vol- 1963/
paper 487. pdf. Accessed 1 Mar 2024.

 47. Tommasini R, Bonte P, Ongenae F, Della Valle E. RSP4J: An API for RDF
Stream Processing. In: Verborgh R, Hose K, Paulheim H, Champin P-A,
Maleshkova M, Corcho O, Ristoski P, Alam M, (editors.) The Semantic Web:
Proceedings of the 18th International Conference, ESWC 2021. Cham:
Springer; 2021. p. 565–581. https:// doi. org/ 10. 1007/ 978-3- 030- 77385-4_ 34.

 48. Sun H, Arndt D, De Roo J, Mannens E. Predicting future state for adaptive
clinical pathway management. J Biomed Inform. 2021;117. https:// doi.
org/ 10. 1016/j. jbi. 2021. 103750.

 49. AMADEUS. 2020. https:// github. com/ IDLab Resea rch/ AMADE US- workf
lows. Accessed 1 Apr 2020.

 50. Sun H, Depraetere K, De Roo J, Mels G, De Vloed B, Twagirumukiza M,
Colaert D. Semantic processing of EHR data for clinical research. J Biomed
Inform. 2015;58:247–59. https:// doi. org/ 10. 1016/j. jbi. 2015. 10. 009.

 51. Zhang Y-F, Tian Y, Zhou T-S, Araki K, Li J-S. Integrating HL7 RIM and ontol-
ogy for unified knowledge and data representation in clinical decision
support systems. Comput Methods Prog Biomed. 2016;123:94–108.
https:// doi. org/ 10. 1016/j. cmpb. 2015. 09. 020.

 52. Alexandrou DA, Skitsas IE, Mentzas GN. A holistic environment for the
design and execution of self-adaptive clinical pathways. IEEE Trans Inf
Technol Biomed. 2011;15(1):108–18. https:// doi. org/ 10. 1109/ TITB. 2010.
20742 05.

 53. Berners-Lee T, Connolly D, Kagal L, Scharf Y, Hendler J. N3Logic: A
logical framework for the World Wide Web. Theory Pract Log Program.
2008;8(3):249–69. https:// doi. org/ 10. 1017/ S1471 06840 70032 13.

 54. Verborgh R, De Roo J. Drawing Conclusions from Linked Data on the
Web: The EYE Reasoner. IEEE Softw. 2015;32(3):23–7. https:// doi. org/ 10.
1109/ MS. 2015. 63.

 55. Bonte P, Ongenae F, Nelis J, Vanhove T, De Turck F. User-Friendly and Scal-
able Platform for the Design of Intelligent IoT Services: a Smart Office Use
Case. In: Proceedings of the ISWC 2016 Posters & Demonstrations Track,
Co-located with 15th International Semantic Web Conference (ISWC
2016). 2016. https:// ceur- ws. org/ Vol- 1690/ paper 99. pdf. Accessed 1 Mar
2024.

 56. Heyvaert P, Dimou A, Herregodts A-L, Verborgh R, Schuurman D, Mann-
ens E, Walle R. RMLEditor: A Graph-Based Mapping Editor for Linked Data
Mappings. In: The Semantic Web: Latest Advances and New Domains:
Proceedings of the 13th International Conference, ESWC 2016. Springer;
2016. p. 709–723. https:// doi. org/ 10. 1007/ 978-3- 319- 34129-3_ 43.

 57. Heyvaert P, Dimou A, Meester BD, Seymoens T, Herregodts A-L, Verborgh
R, Schuurman D, Mannens E. Specification and implementation of map-
ping rule visualization and editing: MapVOWL and the RMLEditor. J Web
Semant. 2018;49:31–50. https:// doi. org/ 10. 1016/j. websem. 2017. 12. 003.

 58. Vandenbussche P-Y, Atemezing GA, Poveda-Villalón M, Vatant B. Linked
Open Vocabularies (LOV): A gateway to reusable semantic vocabularies
on the Web. Semant Web. 2017;8(3):437–52. https:// doi. org/ 10. 3233/
SW- 160213.

 59. Heyvaert P, De Meester B, Dimou A, Verborgh R. Declarative Rules for
Linked Data Generation at Your Fingertips! In: The Semantic Web: ESWC
2018 Satellite Events. 2018. p. 213–217. https:// doi. org/ 10. 1007/ 978-3-
319- 98192-5_ 40 . Springer.

https://doi.org/10.1016/j.scs.2017.06.010
https://doi.org/10.1016/j.scs.2017.06.010
https://doi.org/10.1016/j.websem.2022.100753
https://doi.org/10.1016/j.websem.2022.100753
https://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
https://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
https://doi.org/10.5220/0005448304430454
https://doi.org/10.5220/0005448304430454
https://doi.org/10.1007/978-3-030-00671-6_26
https://doi.org/10.1007/978-3-030-00671-6_26
https://doi.org/10.1145/3360901.3364449
https://doi.org/10.1145/3360901.3364449
https://www.w3.org/TR/rdf11-concepts/
https://events.linkeddata.org/ldow2016/papers/LDOW2016_paper_04.pdf
https://events.linkeddata.org/ldow2016/papers/LDOW2016_paper_04.pdf
https://doi.org/10.1007/978-3-030-33246-4_4
https://doi.org/10.1016/j.websem.2018.08.003
https://doi.org/10.1145/3323878.3325802
https://doi.org/10.1145/3323878.3325802
https://doi.org/10.3233/SW-223281
https://ceur-ws.org/Vol-2549/article-01.pdf
https://ceur-ws.org/Vol-2549/article-01.pdf
https://doi.org/10.1007/978-981-15-6329-4_38
https://doi.org/10.1007/s12652-020-02136-2
https://doi.org/10.1007/s12652-020-02136-2
https://doi.org/10.1007/s11227-018-2331-8
https://doi.org/10.3390/s18113832
https://doi.org/10.1145/3328905.3329502
https://doi.org/10.1145/3328905.3329502
https://doi.org/10.1142/S1793351X10000936
https://doi.org/10.1007/978-3-642-17746-0_7
https://ceur-ws.org/Vol-1963/paper487.pdf
https://ceur-ws.org/Vol-1963/paper487.pdf
https://doi.org/10.1007/978-3-030-77385-4_34
https://doi.org/10.1016/j.jbi.2021.103750
https://doi.org/10.1016/j.jbi.2021.103750
https://github.com/IDLabResearch/AMADEUS-workflows
https://github.com/IDLabResearch/AMADEUS-workflows
https://doi.org/10.1016/j.jbi.2015.10.009
https://doi.org/10.1016/j.cmpb.2015.09.020
https://doi.org/10.1109/TITB.2010.2074205
https://doi.org/10.1109/TITB.2010.2074205
https://doi.org/10.1017/S1471068407003213
https://doi.org/10.1109/MS.2015.63
https://doi.org/10.1109/MS.2015.63
https://ceur-ws.org/Vol-1690/paper99.pdf
https://doi.org/10.1007/978-3-319-34129-3_43
https://doi.org/10.1016/j.websem.2017.12.003
https://doi.org/10.3233/SW-160213
https://doi.org/10.3233/SW-160213
https://doi.org/10.1007/978-3-319-98192-5_40
https://doi.org/10.1007/978-3-319-98192-5_40

Page 22 of 22De Brouwer et al. Journal of Biomedical Semantics (2024) 15:9

 60. imec – Ghent University – IDLab: YARRRML. 2017. https:// rml. io/ yarrr ml/.
Accessed 24 Apr 2023.

 61. Ben-Kiki O, Evans C, Ingerson B. Yaml Ain’t Markup Language (YAML),
version 1.2. 2009. Tech Rep. https:// yaml. org/ spec/1. 2.2/.

 62. De Brouwer M, Bonte P, Arndt D, Vander Sande M, Heyvaert P, Dimou A,
Verborgh R, De Turck F, Ongenae F. Distributed Continuous Home Care
Provisioning through Personalized Monitoring & Treatment Planning.
In: Companion Proceedings of the Web Conference 2020 (WWW 2020).
Association for Computing Machinery (ACM); 2020. p. 143–147. https://
doi. org/ 10. 1145/ 33664 24. 33835 28.

 63. Taha A, Vinograd I, Sakhnini A, Eliakim-Raz N, Farbman L, Baslo R, Stemmer
SM, Gafter-Gvili A, Leibovici L, Paul M. The association between infections
and chemotherapy interruptions among cancer patients: Prospective
cohort study. J Infect. 2015;70(3):223–9. https:// doi. org/ 10. 1016/j. jinf.
2014. 10. 008.

 64. Brooke J. SUS: a quick and dirty usability scale. Usability Eval Ind.
1996;189(3):189–94.

 65. Bangor A, Kortum P, Miller J. Determining What Individual SUS Scores
Mean: Adding an Adjective Rating Scale. J Usability Stud. 2009;4(3):114–23.
https:// doi. org/ 10. 5555/ 28355 87. 28355 89.

 66. Aryan PR, Ekaputra FJ, Kiesling E, Tjoa AM, Kurniawan K. RMLx: Mapping
interface for integrating open data with linked data exploration environ-
ment. In: 2017 1st International Conference on Informatics and Computa-
tional Sciences (ICICoS). 2017. p. 113–118. https:// doi. org/ 10. 1109/ ICICOS.
2017. 82763 47.

 67. RMLx Visual Editor. https:// pebbie. org/ mashup/ rml. Accessed 8 Dec 2023.
 68. Bejeck B. Kafka Streams in Action: real-time apps and microservices with

the Kafka Streams API. Simon and Schuster; 2018.
 69. Cavoukian A. Privacy by design. Office of the Information and Privacy

Commissioner; 2009. https:// www. ipc. on. ca/ wp- conte nt/ uploa ds/ Resou
rces/ 7foun datio nalpr incip les. pdf. Accessed 25 Sep 2022.

 70. Hathaliya J.J, Tanwar S. An exhaustive survey on security and privacy
issues in Healthcare 4.0. Comput Commun. 2020;153:311–35. https:// doi.
org/ 10. 1016/j. comcom. 2020. 02. 018.

 71. World Wide Web Consortium (W3C): Ontology editors - W3C Wiki. https://
www. w3. org/ wiki/ Ontol ogy_ edito rs. Accessed 11 Mar 2024.

 72. Schandl T, Blumauer A. PoolParty: SKOS thesaurus management utilizing
linked data. In: The Semantic Web: Research and Applications. Springer;
2010. p. 421–425. https:// doi. org/ 10. 1007/ 978-3- 642- 13489-0_ 36.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://rml.io/yarrrml/
https://yaml.org/spec/1.2.2/
https://doi.org/10.1145/3366424.3383528
https://doi.org/10.1145/3366424.3383528
https://doi.org/10.1016/j.jinf.2014.10.008
https://doi.org/10.1016/j.jinf.2014.10.008
https://doi.org/10.5555/2835587.2835589
https://doi.org/10.1109/ICICOS.2017.8276347
https://doi.org/10.1109/ICICOS.2017.8276347
https://pebbie.org/mashup/rml
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf
https://doi.org/10.1016/j.comcom.2020.02.018
https://doi.org/10.1016/j.comcom.2020.02.018
https://www.w3.org/wiki/Ontology_editors
https://www.w3.org/wiki/Ontology_editors
https://doi.org/10.1007/978-3-642-13489-0_36

	Optimized continuous homecare provisioning through distributed data-driven semantic services and cross-organizational workflows
	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Introduction
	Semantic Web technologies
	Paper objective, contribution and organization

	Methods
	Reference architecture
	Building blocks
	Data providers: semantic exposure of high-velocity data
	Service providers: semantic service exposure on high-velocity data
	Integrators: functional semantic workflow engine
	Installers: intuitive user interfaces

	Results
	Use case demonstrator
	Use case description
	Demonstrator architecture
	Scenario description
	Demonstrator web application

	Performance evaluation
	Performance evaluation of the data stream processing pipeline
	Performance evaluation of DIVIDE
	Performance evaluation of AMADEUS

	Usability evaluation
	Usability evaluation of RMLEditor and MapVOWL
	Usability evaluation of Streaming MASSIF

	Discussion
	Data providers
	Service providers
	Integrators
	Installers

	Conclusion
	Acknowledgements
	References

