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Abstract 

Background In healthcare, an increasing collaboration can be noticed between different caregivers, especially 
considering the shift to homecare. To provide optimal patient care, efficient coordination of data and workflows 
between these different stakeholders is required. To achieve this, data should be exposed in a machine-interpretable, 
reusable manner. In addition, there is a need for smart, dynamic, personalized and performant services provided 
on top of this data. Flexible workflows should be defined that realize their desired functionality, adhere to use case 
specific quality constraints and improve coordination across stakeholders. User interfaces should allow configuring all 
of this in an easy, user-friendly way.

Methods A distributed, generic, cascading reasoning reference architecture can solve the presented challenges. 
It can be instantiated with existing tools built upon Semantic Web technologies that provide data-driven semantic 
services and constructing cross-organizational workflows. These tools include RMLStreamer to generate Linked Data, 
DIVIDE to adaptively manage contextually relevant local queries, Streaming MASSIF to deploy reusable services, AMA-
DEUS to compose semantic workflows, and RMLEditor and Matey to configure rules to generate Linked Data.

Results A use case demonstrator is built on a scenario that focuses on personalized smart monitoring and cross-
organizational treatment planning. The performance and usability of the demonstrator’s implementation is evalu-
ated. The former shows that the monitoring pipeline efficiently processes a stream of 14 observations per second: 
RMLStreamer maps JSON observations to RDF in 13.5 ms, a C-SPARQL query to generate fever alarms is executed 
on a window of 5 s in 26.4 ms, and Streaming MASSIF generates a smart notification for fever alarms based on sever-
ity and urgency in 1539.5 ms. DIVIDE derives the C-SPARQL queries in 7249.5 ms, while AMADEUS constructs a colon 
cancer treatment plan and performs conflict detection with it in 190.8 ms and 1335.7 ms, respectively.

Conclusions Existing tools built upon Semantic Web technologies can be leveraged to optimize continuous care 
provisioning. The evaluation of the building blocks on a realistic homecare monitoring use case demonstrates 
their applicability, usability and good performance. Further extending the available user interfaces for some tools 
is required to increase their adoption.
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Background
Introduction
Due to increased digitization allowing more easily 
capturing relevant data, industries are faced with the 
challenge of processing an increase in complex and het-
erogeneous data in an automated, scalable, performant 
and cost-efficient manner. Increasing demand can also be 
noted for offering more personalized, context-aware and 
intelligent applications to end users [1, 2]. This translates 
into increased non-recurring engineering costs, a need to 
build custom interfaces, and a long time to market.

To tackle these issues, during the last years, compa-
nies increasingly adopt a Service Oriented Architecture 
(SOA) in which systems consist of services that each offer 
a self-contained unit of functionality  [3]. By combin-
ing services into workflows, the required functionality 
can be offered in a structured way [4]. Existing workflow 
engines allow easily reusing services in different work-
flows, resulting in lower development and maintenance 
costs and a quicker time to market. Nevertheless, usu-
ally, custom APIs are built to expose each available data 
source, on which custom services are built that manually 
need to be configured into static workflows that fulfill a 
particular need. As a result, the intelligence of a platform 
is distributed over these different assets, making manage-
ment an immense burden. Every time a new data source 
or service becomes available, manual configuration effort 
is required to integrate it and set up a cross-organiza-
tional workflow, leading to high costs, possible configura-
tion errors, and custom APIs and services that cannot be 
reused. In addition, the custom services lack a personal-
ized approach: available knowledge cannot be efficiently 
exchanged and exploited, causing generic decisions to be 
made. Moreover, services usually follow a naive, static, 
centralized approach where all exposed data is processed 
on central servers. This leads to increasing scalability and 
performance issues incurred by the massive amounts of 
data they need to process, which is especially challenging 
in an Internet of Things (IoT) environment dealing with 
high-volume and high-velocity data generated by vari-
ous sensors. In addition, this also reduces local autonomy 
and data privacy of the set-up. Finally, existing end user 
tools that enable domain experts to create services and 
workflows do not scale in a non-entertainment or educa-
tional setting.

Healthcare is an application domain in which these 
challenges are prevalent  [5]. Homecare has become 
increasingly important over the last years, due to the 

gradual shift from acute to chronic care, where peo-
ple are living longer with one or more chronic dis-
eases, requiring more complex care  [6]. The Belgian 
Healthcare Knowledge Centre (KCE) calculated in 
2011 that a yearly increase between 1600 and 3500 
beds in residential care centers and 46000 new employ-
ees are required in Flanders by 2025 to care for these 
elderly [6]. To reserve residential care for patients with 
more severe care needs, hospital stays are being short-
ened by making care delivery more transmural and 
enabling recovery at home and in service flats  [7]. To 
reach the optimal scenario where only 1600 additional 
beds will be needed, KCE calculated that the accessibil-
ity of homecare should increase from 150000 patients 
to 225000 in Flanders to maintain a sustainable health-
care model  [6]. To facilitate the shift to homecare, 
it is crucial to monitor and follow up the elderly at 
home in a dependable, accurate manner  [8, 9]. Multi-
ple formal and informal caregivers are involved in this 
process, as illustrated in Fig.  1. Typically, the patients 
and their service flats are equipped with multiple sen-
sors to monitor patient and environment, and devices 
to steer home conditions such as its temperature and 
lights. Alarms are commonly generated by the services 
when anomalous situations are observed from the sen-
sors, such as an abnormal blood pressure. Moreover, 
patients have a Personal Alarm System (PAS) to gener-
ate calls. A nurse regularly visits patients to handle the 
alarms and calls, and perform daily care and follow-
up tasks. In addition, patients are followed up by their 
General Practitioner (GP), are registered as patients 
in their hospital, and often also have informal caregiv-
ers (e.g., a family member) to regularly check up on 
them. To perform their care tasks, all caregivers depend 
on the existing patient data and the data gathered by 
the different sources. However, these data are spread 
across the various involved stakeholders. As a result, 
it becomes challenging to deliver personalized home-
care, for example when assigning the optimal caregiver 
to handle an alarm or call according to a patient’s pro-
file [10]. Designing dynamic services that filter the data 
to detect alarming situations for which such an alarm 
or call should be generated, is specifically challenging 
within healthcare, as different diagnoses and contextual 
parameters will imply different conditions that need to 
be dynamically monitored. This requires custom ser-
vices that are personalized, dynamic and performant 
in heterogeneous IoT environments. In addition, it is 
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therefore also an existing challenge for these different 
stakeholders to organize themselves across organiza-
tions and leverage all available data optimally, in order 
to provide the best possible care for their patients [11].

Looking at these challenges from a technical perspec-
tive, four roles can be discerned: data providers, service 
providers, integrators and installers. Data providers 
expose the available data, on which service providers can 
build services used by integrators to compose workflows. 
Installers are people responsible for configuring all ser-
vices, workflows and data provisioning tools to the needs 
of the patients and caregivers. For every role, the pre-
sented issues impose the following technical challenges: 

(a) Data providers: How can they easily expose their 
data to other organizations in a reusable fashion, 
while making the explicit meaning of the data clear?

(b) Service providers: How can they step away from 
custom & non-reusable services, towards flexible & 
reusable services that can easily be constructed and 
configured based on the incoming data? How can 
they take all available background knowledge and 
contextual data of the patient profiles into account 
to provide personalized services? How can they 
intelligently deal with the high-volume and high-
velocity data coming in and still offer services that 
meet the use case specific quality requirements 
such as performance, scalability, local autonomy 
and data privacy? How can they make the meaning 
of their services clear such that they can be easily 
picked up and reused by other organizations?

(c) Integrators: How can they move away from 
generic, static, manually constructed workflows 

towards flexible workflows, that can easily be con-
figured and adapted based on the available services? 
How can they dynamically realize the desired func-
tionality and adhere to use case specific quality con-
straints?

(d) Installers: How can they easily expose data and 
build services in a user-friendly way that minimizes 
the required effort and error probability of the con-
figuration?

In addition, it is a technical challenge to create a closed 
feedback loop within an IoT platform that involves these 
different entities. To achieve this, the output of the ser-
vice providers’ semantic services and the integrators’ 
workflows should be taken into account as feedback to 
update any local data sources as well as update how sen-
sor data should be processed by the same or other ser-
vices. This way, a closed loop would be created in the 
chain of how these different entities (data providers, 
services and workflows) are connected: data and knowl-
edge would flow from the data providers to services and 
workflows, while knowledge and other feedback would 
flow back from the final services and/or workflows in the 
chain to the data providers and/or services in the begin-
ning of the chain. This additional flowing back of feed-
back would create a loop and would thus close this chain.

Semantic Web technologies
To resolve the individual challenges imposed to the dif-
ferent technical roles presented in the “Introduction” sec-
tion, Semantic Web technologies can be leveraged. 
In general, data semantics allow a system to semanti-
cally annotate different heterogeneous data sources in a 

Fig. 1 Visual overview of different possible caregivers that can be involved in following up homecare patients. These possible formal and informal 
caregivers can include a nurse, a general practitioner, hospital doctors, family members, etc. The data needed by these caregivers to optimally 
perform their care tasks and follow up the patient’s condition, is typically spread across the various involved stakeholders
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common, uniform, machine-interpretable format. In the 
context of IoT environments, this allows the integration 
of sensor data with various sources of domain knowledge, 
background knowledge and context information. By inte-
grating all data, their meaning and context becomes clear, 
allowing personalized services to process the data and 
reason on it [12].

Semantic Web technologies are a set of recommended 
technologies that represent the vision of the World Wide 
Web Consortium (W3C) about applying data seman-
tics to the web. At its core is the Resource Description 
Framework (RDF)  [13], which is a graph-based model 
for expressing relationships between resources, utilizing 
subject-predicate-object triples to represent statements. 
Different formats exist to store RDF data, such as RDF/
Turtle and N-Triples. Ontologies, which are often defined 
through the Web Ontology Language (OWL)  [14], are 
semantic models that describe domain concepts, rela-
tionships and attributes in a formal way  [12, 15]. The 
collection of RDF datasets on the web that are semanti-
cally interconnected is referred to as Linked Data  [16]. 
Linked Data principles encourage the use of standard-
ized Uniform Resource Identifiers (URIs) to interconnect 
datasets, promoting a web of interconnected and seman-
tically enriched information. Using URIs improves the 
interoperability and linked nature of data on the Seman-
tic Web. Triple stores, which essentially are databases 
specifically designed for storing RDF triples, play a cru-
cial role in managing Semantic Web data. The SPARQL 
Protocol and RDF Query Language (SPARQL)  [17] is 
another Semantic Web technology that is used to query 
and manipulate RDF data sources. Semantic reason-
ers such as RDFox  [18] and VLog  [19] can derive new 
implicit knowledge based on semantic descriptions and 
axioms defined in ontologies, by applying logical rules 
and inference techniques on these RDF triples. The com-
putational complexity of semantic reasoning algorithms 
depends the expressivity of the underlying ontology [20], 
with various OWL sublanguages exhibiting distinct levels 
of expressiveness  [21]. Stream reasoning is the research 
field that investigates the adoption of such semantic rea-
soning techniques for streaming data  [22]. RDF Stream 
Processing (RSP) is a subdomain of stream reasoning that 
focuses on engines processing RDF data streams by con-
tinuously evaluating semantic queries on sliding or tum-
bling data windows that are continuously placed on top 
of the streams [23]. RSP-QL is a reference model unifying 
the semantics of different existing RSP approaches  [24]. 
Cascading reasoning introduces multi-layered processing 
in stream reasoning with increasing reasoning expres-
sivity across layers in order to balance the expressiv-
ity with the data velocity: low expressivity techniques in 
lower layers directly evaluate highly volatile data streams, 

selecting relevant portions for subsequent layers to pro-
cess with increasing expressivity, resulting in the capa-
bility to perform highly expressive reasoning on reduced 
data streams [20].

Semantic Web technologies allow addressing the pre-
sented challenges in continuous homecare. From these 
challenges, it follows that there is a need to exchange, 
integrate, retrieve, manipulate and intelligently process 
the available healthcare data across different caregiver 
parties. To do this, machines need to understand the 
healthcare data in an unambiguous manner, in a simi-
lar way as humans do. Semantic Web technologies ena-
ble this and provide support for these various tasks to 
machines, which makes them a suitable solution [25]. In 
general, data semantics improve the interpretability, pre-
dictability and interoperability of a system [26], which is 
a big advantage, especially in healthcare [9]. In addition, 
Semantic Web technologies also allow building declara-
tive solutions. This is an important requirement for solu-
tions that tackle the challenges addressed in this paper: 
whenever you want to instrument certain processes or 
actions based on the healthcare data, you mainly want 
to declare in a general way what should happen (e.g., 
instructions to generate semantic data, queries, ser-
vices, workflow steps), without already hard coding how 
this will happen [16]. Using Semantic Web technologies 
allows decoupling declarations from implementation.

Paper objective, contribution and organization
The objective of this paper is to design a full semantic 
platform that allows solving the challenges imposed to 
the different technical roles presented in the “Introduc-
tion” section, and that introduces a closed feedback loop. 
To achieve this, the paper presents a generic, distributed, 
cascading reference architecture for such a platform, 
which consists of different semantic building blocks. 
Moreover, the paper presents a set of existing tools built 
on Semantic Web technologies that can be deployed as 
the different building blocks in an instantiation of the 
presented reference architecture. For every role, the pre-
sented architecture and building blocks should solve the 
imposed challenges in a performant manner. This trans-
lates the challenges into the following hypotheses: 

(a) Data providers: By exposing data as Linked Data, 
their meaning and context becomes clear. This way, 
the data can easily be reused by different services.

(b) Service providers:

 (i) They can easily build data-driven, distrib-
uted semantic services upon the semantically 
exposed data sets by expressing their func-
tionality as semantic definitions. These seman-
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tic definitions are represented by axioms and 
rules that define and extract a certain infor-
mation need of the end user. A semantic rea-
soner can then derive new knowledge through 
definitions out of the incoming data, to obtain 
the requested information and possible corre-
sponding actions from the data. As such, the 
functionality of each service is semantically 
clear.

 (ii) Additional personalized, local semantic ser-
vices can be built that intelligently and effi-
ciently filter the high-volume and high-veloc-
ity1 sensor data to only forward relevant data 
to the semantic reasoners according to medical 
domain knowledge, the patient profile, back-
ground knowledge and possible other context 
information.

(c) Integrators: By leveraging the semantic descrip-
tions of services and other potential workflow steps, 
they can use reasoning to construct dynamic, easily 
configurable, cross-organizational semantic work-
flows that fulfill a particular functionality and that 
meet particular quality constraints.

(d) Installers: By using Semantic Web technologies, 
they can focus on creating the required semantic 
definitions, i.e., models, rules & axioms, without 
bothering with the technological and heterogene-
ous details of custom interfaces.

The contribution of this paper is the design of the ref-
erence architecture that allows validating the hypotheses 
and creates a closed feedback loop. Moreover, its contri-
bution lies in the realization of such a semantic health-
care platform using various existing building blocks, 
that can be leveraged to optimize continuous homecare 
provisioning. This is proven through a demonstrator on 
a specific homecare use case scenario that focuses on 
personalized smart monitoring and cross-organizational 
treatment planning.

This paper is organized as follows. The “Methods” sec-
tion presents the generic reference architecture and a 
selection of tools for the different architectural build-
ing blocks. The “Results”  section presents the results 
of applying the reference architecture to the use case 
demonstrator, a performance evaluation of the different 

building blocks on this demonstrator, and a usabil-
ity evaluation. Finally, the “Discussion” and  “Conclu-
sion”  sections discuss and conclude how the platform 
allows solving the presented challenges, and validate the 
hypotheses.

Methods
This section presents the reference architecture of the 
semantic healthcare platform, and a selection of its dif-
ferent building blocks to instantiate it.

Reference architecture
Figure 2 presents the reference architecture of the seman-
tic healthcare platform that can be employed to deliver 
data-driven, personalized continuous homecare. It con-
tains different semantic building blocks, for which vari-
ous existing tools can be employed. In the remainder of 
this section, the architecture will be discussed in a tool-
agnostic way.

To generate Linked Data from both static & stream-
ing data sources, semantic data mapping tools can be 
used that make use of mapping languages. Installers 
should define the mapping rules to generate Linked Data 
through a semantic data mapping Graphical User Inter‑
face (GUI). The generated rules are then forwarded to the 
mapping tool.

The semantic Linked Data generated by the semantic 
data mapping tools is forwarded to a semantic stream 
query engine. This is an RSP engine that continuously 
evaluates RSP queries on the data streams. These que-
ries are derived and configured by the semantic query 
deriver. This component should be configured with a 
set of generic query templates that define for the given 
use case how to intelligently filter the relevant informa-
tion from the incoming streams for the various services. 
By monitoring any changes to this data in the Knowledge 
Base and using these changes as a trigger to update the 
queries, this component ensures that the correct, con-
textually relevant semantic stream processing queries are 
evaluated at all times.

The queries configured by the semantic query deriver 
on the semantic stream query engine continuously filter 
the Linked Data delivered by the semantic data mapping 
tool. The filtered events are forwarded to semantic service 
framework. Through the service GUI provided for this 
framework, installers can configure the required services, 
by expressing their functionality as semantic queries and 
rules. The semantic service framework then performs 
the necessary semantic reasoning on the incoming fil-
tered events to deliver the desired functionality. As such, 
including the given streaming data processing pipeline 
results in a cascading reasoning architecture.

1 In this paper, we define high velocity data as streaming data where the 
total rate of observations is at least twice as high as the evaluation frequency 
of the involved queries. This implies window-based processing will have 
to deal with multiple events per query evaluation, in comparison to event-
based processing. We exclude streaming use cases with extremely high 
velocities that need to deal with strict (hard) real-time requirements.
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The services can trigger the construction of a work-
flow in the semantic workflow engine, according to speci-
fied functionality and quality constraints. An example in 
homecare is a service that raises an alarm, which trig-
gers a workflow to select a caregiver to handle this alarm. 
However, an installer can also express desired functional-
ity by semantically specifying a goal and the constraints 
that should be met. This triggers the automatic, ad-hoc 
construction of a workflow by the engine.

Including the semantic query deriver into the archi-
tecture creates a closed feedback loop. Knowledge and 
actions generated through the semantic services or work-
flows can update the context in the Knowledge Base. This 
can trigger the semantic query deriver to update the con-
text-aware queries on its turn, thereby closing the loop.

Note that instantiating the abstract building blocks in 
the reference architecture and configuring them is not 
a linear process. Installers should work closely together 
to ensure that the different building blocks in an instan-
tiated platform are designed and configured in a com-
patible way. For example, the design of services in the 
semantic service framework through queries and rules 
implies certain input requirements of the data. These 
requirements should match the possible output for-
mat of the semantic queries configured by the semantic 

query deriver on the semantic stream query engine, since 
these services do not operate directly on the semantically 
annotated raw data.

Building blocks
In the “Reference architecture” section, the presented ref-
erence architecture contains various building blocks. In 
this section, existing semantic tools are selected for these 
building blocks, to obtain an optimal instantiation of 
this architecture for a semantic healthcare platform. The 
overview is split up according to the different technical 
roles identified in the “Background” section.

Data providers: semantic exposure of high‑velocity data
To generate Linked Data from heterogeneous data 
sources, different mapping languages exist  [27]. These 
mapping languages can be considered as schema trans-
formation descriptions, since they allow describing the 
mapping policy from source schema to target schema 
for the involved data sources. Existing mapping lan-
guages include the RDF Mapping Language (RML) [28], 
xR2RML  [29], D2RML  [30], Dataset Representation 
(D-REPR)  [31], and more. In this paper, RML is chosen 
as it is considered the most popular mapping language 
to date  [27]. RML is generic, declarative, and is defined 

Fig. 2 Reference architecture containing different building blocks built on Semantic Web technologies. This allows optimizing continuous 
homecare provisioning through distributed, data-driven semantic services and cross-organizational workflows
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as a superset of the RDB to RDF Mapping Language 
(R2RML), which is the W3C recommendation for map-
ping relational databases to RDF [32]. This way, the pur-
pose of RML is to extend the applicability and broaden 
the scope of R2RML.

To perform the actual generation of RDF graphs from 
heterogeneous data sources with RML, different mate-
rialization implementations exist. Examples include 
RMLMapper  [33], MapSDI  [34], GeoTriples  [35], and 
more  [27]. RMLMapper is one of the first, well-known 
Java implementations to perform this task based on a set 
of defined declarative RML mapping rules  [33]. Before 
the RDF generation starts, it sequentially ingests multi-
ple data sources. This process loads all data in memory, 
imposing a strict limitation on the amount of data that 
can be ingested. Therefore, an alternative methodology 
was designed to parallelize the ingestion of data sources 
by distributing the ingestion over multiple nodes  [36]. 
This way, the generation of RDF tasks is scaled with the 
volume of the data, allowing systems to generate RDF 
data in larger volumes. This methodology was imple-
mented in Scala, resulting in the RMLStreamer materi-
alization tool [36]. In this paper, the RMLStreamer tool is 
chosen as materialization implementation for the seman‑
tic data mapping tool in the architecture, since it is the 
only existing implementation using RML that supports 
the generation of RDF data from high-velocity streaming 
data [27].

Service providers: semantic service exposure on high‑velocity 
data
Multiple tools allow providing semantic services on the 
generated high-velocity data. This section details two of 
them: DIVIDE and Streaming MASSIF.

DIVIDE DIVIDE  [37, 38] is a semantic IoT platform 
component that can be employed as the semantic query 
deriver in the architecture of Fig. 2. It can automatically 
derive queries for stream processing components in an 
adaptive and context-aware way. DIVIDE tries to solve 
the performance issues in existing IoT platforms for 
healthcare [25, 26, 39–41], which are caused by evaluat-
ing fixed, generic queries on high-velocity data streams. 
These platforms do this to avoid having to manually 
update the queries according to regularly changing appli-
cation context, e.g., updating the monitored sensors 
when a patient’s diagnosis changes. DIVIDE avoids these 
performance issues by working with non-generic, sensor-
specific queries for each RSP engine, allowing them to be 
continuously evaluated without the need to perform any 
more reasoning, thus improving query performance. It 
does this by performing upfront rule-based semantic rea-
soning on the current environmental context within the 

application, in order to automatically derive and config-
ure the queries that filter observations that are relevant 
given the current context and the use case goal. To do so, 
it makes use of a new formalism that allows semantically 
representing generic query patterns in a declarative way. 
Through its design, DIVIDE can automatically adapt the 
configured queries upon context changes, ensuring they 
are contextually relevant at all times.

Streaming MASSIF Streaming MASSIF [42] can be used 
as the semantic service framework in the reference archi-
tecture of Fig.  2. It is a cascading reasoning framework 
that enables to perform expressive semantic reasoning 
over high velocity streams. Streaming MASSIF is the first 
realization of the cascading reasoning vision. It employs 
three layers. The lowest layer is the selection layer, which 
efficiently selects those parts of the data stream that are 
relevant for further processing. In the reference archi-
tecture in Fig. 2, the selection layer is represented by the 
semantic stream query engine. This engine can be either 
C-Sprite, a reasoning system that employs an optimized 
reasoning algorithm for the efficient hierarchical rea-
soning on high-velocity data streams  [43], or a regular 
RSP engine such as C-SPARQL [44], SPARQLStream [45], 
Yasper  [46] and RSP4J  [47]. The selections can then be 
abstracted in the abstraction layer, which allows defining 
high-level concepts and hide the low-level data details. 
These abstractions can then be used to define temporal 
dependencies in the temporal reasoning layer. All defi-
nitions can be easily provided in a declarative way. The 
layered approach of Streaming MASSIF allows services 
on top of these layers to easily define the data they are 
interested in. This can be seen as a very expressive pub-
lish/subscribe mechanism employing highly expres-
sive reasoning to significantly decrease the subscription 
complexity. In this process, both temporal and standard 
logics can be incorporated to infer implicit data. Since 
Streaming MASSIF is the first concrete realization of the 
cascading reasoning vision and supports instrumenting 
concrete services through its multiple layers, it was cho-
sen as a building block of the solution presented in this 
paper [42].

Integrators: functional semantic workflow engine
AMADEUS is an adaptive, goal-driven workflow compo-
sition and conflict-detection engine  [48, 49]. In the ref-
erence architecture in Fig.  2, it can be employed as the 
semantic workflow engine. It solves the issues with com-
mon workflow planning systems  [50–52], which can 
not provide personalized workflows, detect future con-
flicts between workflows, or have a limited notion of 
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change  [48]. Therefore, AMADEUS is state-aware: the 
workflow composition takes into account a semantic 
description of the current state or context. Thereby, it 
is driven by a Weighted State Transition logic: possible 
steps are declaratively described by the changes they will 
make to the state description, with a possible precondi-
tion. Hence, different step descriptions can be activated 
in different circumstances, for example to add additional 
steps to the plan, or to overrule other steps. AMADEUS 
composes a workflow that would bring the current state 
to the state described in the goal. To do this, it performs 
semantic reasoning on the semantic data, which include 
the state, steps and domain knowledge. The produced 
workflows adhere to the quality constraints set up by the 
given use case, which are captured in the step descrip-
tions. The semantic state description reflects all what is 
known when the composition is performed and is itera-
tively modified by every step taken. Events produced by 
services, for example via Streaming MASSIF, can make 
external additions or alterations to the state description 
and trigger a recomposition to adhere to new constraints 
in a new workflow. In addition, AMADEUS is able to 
detect possible conflicts between different workflows, for 
instance between the current and newly adopted work-
flow. This conflict detection can be applied to find future 
issues when the current workflow is continued.

AMADEUS is implemented in the rule-based Nota-
tion3 (N3) Logic [53], which is a superset of RDF/Turtle. 
To compose the workflows, AMADEUS uses the EYE 
reasoner [54]. Applications can use AMADEUS through 
its Web API.

Installers: intuitive user interfaces
Multiple intuitive GUIs are available for installers. These 
include a GUI for Streaming MASSIF and GUIs to define 
RML mapping rules. In the architecture of Fig.  2, they 
can serve as the service GUI and semantic data mapping 
GUI, respectively.

Streaming MASSIF UI To simplify the service subscrip-
tion in Streaming MASSIF, a query language has been 
developed that unifies the various layers of Streaming 
MASSIF. Furthermore, as shown in Fig. 3, a GUI is pro-
vided to visually define these service subscriptions [55].

Graphical tools to define RML mapping rules The RML-
Editor [56] is a graph-based visualization tool to facilitate 
the editing of RML mapping rules. Using the RMLEditor, 
installers can create and edit mapping rules, preview the 
RDF data that is generated from them, and export the 
rules. As such, it is always possible for installers with suf-
ficient domain knowledge to generate Linked Data, even 
if they do not have knowledge about the Semantic Web 
or the used mapping language. The RMLEditor uses a 
visual notation for mapping rules called MapVOWL [57]. 
In its GUI, different ontologies and vocabularies can be 
used to define semantic annotations. The Linked Open 
Vocabularies (LOV)  [58] are integrated to discover rel-
evant classes, properties and datatypes. A screenshot of 
the RMLEditor’s GUI is shown in Fig. 4 [56].

Matey [59] is another tool that can be used to view and 
define Linked Data generation rules. It works with YAR-
RRML [60], which is a human-readable, text-based rep-
resentation language for RML mapping rules. YARRRML 
is a subset of the YAML data serialization language [61]. 
Matey works as a browser-based tool. It allows exporting 
the RML rules that correspond with the YARRRML rep-
resentation. This way, installers can define RML mapping 
rules using the human-readable YARRRML representa-
tion, without requiring knowledge about the underlying 
mapping language. As such, Matey is more adequate for 
developers who are not Semantic Web experts, while the 

Fig. 3 GUI to visually define service subscriptions in Streaming MASSIF [55]
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RMLEditor is more adequate for data owners who are 
not developers.

Results
This section presents the results of applying the instan-
tiated reference architecture, introduced in the “Meth-
ods”  section, on a use case demonstrator in homecare. 
Moreover, it presents a performance evaluation of the 
different building blocks on this demonstrator, and a usa-
bility evaluation of the installer tools.

Use case demonstrator
A demonstrator was built to showcase the feasibility 
of how the semantic healthcare platform based on the 
instantiated reference architecture can be used to opti-
mize continuous homecare provisioning  [62]. The dem-
onstrator is implemented on a specific use case scenario 
in continuous homecare, focusing on personalized smart 
monitoring and the construction and cross-organiza-
tional coordination of patients’ treatment plans. This use 
case scenario has been designed in collaboration with dif-
ferent domain experts and companies involved in contin-
uous homecare and hospital care. This way, it is ensured 
that this scenario is representative for a large set of real-
world situations and problems within continuous home-
care specifically and continuous healthcare in general. 
This will allow to generalize the performance and usabil-
ity evaluation results in this paper towards the continu-
ous homecare domain.

This section zooms in on the use case description, the 
demonstrator architecture, the scenario description and 
a web application of the demonstrator. An additional file 
zooms in on the technical implementation details of the 
Proof-of-Concept (PoC) implementation of the use case 
demonstrator [see Additional file 1].

Use case description
The demonstrator tells the story of Rosa, an elderly 
woman of 74 years old that lives in a service flat in 
Ghent, Belgium. To follow up on Rosa, her service flat is 
equipped with several environmental sensors measuring 
properties such as room temperature and humidity. Door 
sensors measure whether a door is currently open or 
closed. Moreover, Rosa has a wearable that continuously 
measures her steps, body temperature and heart rate. It 
also contains a PAS. Through multiple Bluetooth Low 
Energy (BLE) beacon sensors and a BLE tag integrated 
into her wearable, Rosa’s presence in the different rooms 
of the service flat can be detected.

Rosa’s medical profile contains the diagnosis of early 
stage dementia. Multiple people are part of her caregiver 
network. Nurse Suzy visits Rosa every afternoon, to assist 
with daily care. Dr. Wilson is Rosa’s GP. Rosa is also a 
known patient in a nearby hospital. Moreover, two infor-
mal caregivers of Rosa are registered: her daughter Holly, 
who works nearby and pays Rosa a daily visit around 
noon, and a neighbor Roger.

Demonstrator architecture
To monitor Rosa’s condition in real-time, the reference 
architecture in Fig. 2 is instantiated to the specific dem-
onstrator architecture depicted in Fig.  5. The data pro-
cessing pipeline consists of the RMLStreamer, C-SPARQL 
and Streaming MASSIF components. C-SPARQL was 
chosen as RSP engine as it is one of the most well-known 
existing RSP engines  [22, 23]. Moreover, AMADEUS is 
deployed as semantic workflow engine. UI components 
are omitted from the demonstrator architecture.

The distributed architecture contains local and central 
components. RMLStreamer and C-SPARQL are local com-
ponents that are deployed in the patient’s service flat, for 
example on an existing low-end local gateway device. They 

Fig. 4 GUI of the RMLEditor [56]
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operate only for the patient living in that particular ser-
vice flat. Streaming MASSIF, DIVIDE and AMADEUS run 
centrally on a back-end server in a server environment of 
either a nursing home or hospital. They perform their dif-
ferent tasks for all patients registered in the system.

In the smart monitoring pipeline, RMLStreamer maps 
the sensor observations from JSON syntax to RDF data. 
C-SPARQL filters the relevant RDF observations accord-
ing to Rosa’s profile through queries derived by DIVIDE. 
In this use case, these queries are determined by the dis-
eases Rosa is diagnosed with. Streaming MASSIF performs 
further abstraction and temporal reasoning to infer the 
severity and urgency of the events filtered by C-SPARQL. 
It implements a service that can detect alarming situations 
and generate notifications for them to the most appropri-
ate person in the patient’s caregiver network. To decide this 
person, it takes into account the inferred event parameters 
and profile information such as already planned visits of 
caregivers.

AMADEUS is employed to compose semantic work-
flows representing possible treatment plans to a diagnosis 
in Rosa’s medical profile, and provide composed quality 
parameters for them to help the human doctor select the 
most optimal one. Quality constraints can be defined for 
the proposed plans on cost, probability of success, relapse 
risk, patient comfort, and such. The inputs of AMADEUS 
include the patient’s profile and medical domain knowledge 
about the options in the treatment of different diseases, 
which are defined by their input, output, functionality and 
quality parameters. AMADEUS’ automatic conflict detec-
tion between existing & new treatment plans can help a 
doctor in avoiding generating certain conflicts that they are 
unaware of.

Scenario description
To demonstrate how the building blocks of the demon-
strator architecture work together in the presented use 
case, a specific scenario with multiple steps is designed.

Step 0 – Initial state In its initial state, the smart moni-
toring pipeline is not yet activated. This means that no 
specific queries are evaluated on C-SPARQL. Instead, 
naive monitoring takes places where all sensor observa-
tions are forwarded to the central server.

Step 1 – Activating the smart monitoring pipeline When 
the smart monitoring pipeline is activated, DIVIDE 
derives two personalized queries from the generic query 
patterns to be evaluated on C-SPARQL for Rosa.

The first query filters observations indicating that Rosa 
is longer than 30 minutes in her bathroom, without per-
forming any movement. This query is derived because 
this might indicate that an accident has happened, e.g., 
Rosa has fallen. Because Rosa has dementia, there is a 
higher chance that she might forget to use her PAS in 
that case. This query monitors the bathroom’s BLE sensor 
and the wearable’s step detector.

The second query filters sensor observations which 
imply that Rosa has left her service flat. To detect this, 
it monitors the BLE sensor in the hallway and the main 
door’s sensor. Because Rosa has dementia, such events 
should be detected and notified to a caregiver, since being 
outside alone could possibly lead to a disorientation.

Step 2 – Colon cancer diagnosis At a certain moment 
in time, Rosa’s medical profile is updated with the diag-
nosis of colon cancer by a medical specialist at the hos-
pital, who examined Rosa after she complained to the 

Fig. 5 Architecture of the use case demonstrator
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nurse about pain in the stomach and intestines. This 
update automatically triggers DIVIDE to reevaluate the 
deployed C-SPARQL queries, without requiring any 
additional user intervention. As a result, one additional 
query is derived. It detects when Rosa’s body temperature 
exceeds 38◦ C (38 degrees Celsius), i.e., when Rosa has a 
fever, by monitoring the sensor in Rosa’s wearable. This 
new query is derived because the medical domain knowl-
edge states that complications or additional infections 
form a contraindication for several cancer treatments 
such as chemoradiotherapy, which means that continu-
ing these treatments would be too dangerous [63]. Since 
fever might indicate an underlying infection, the medical 
domain knowledge therefore defines that cancer patients 
should be monitored for fever.

Step 3 – Constructing a treatment plan for colon can‑
cer To construct a treatment plan for Rosa’s colon can-
cer, AMADEUS is triggered by the hospital doctor. First, 
given Rosa’s profile, the defined treatments and their 
quality parameters, it composes two possible workflows: 
a plan consisting of neoadjuvant chemoradiotherapy fol-
lowed by surgery, and a plan consisting of surgery only. 
The quality parameters for the presented plans include 
duration, cost, comfort, survival rate and relapse risk. 
Since the first plan has the highest survival rate and low-
est relapse risk, it is selected by the doctor. This selection 
triggers AMADEUS to calculate a detailed workflow by 
adding timestamps to the different steps. In this case, the 
chemoradiotherapy step is split into four episodes in the 
hospital, with 30 days between each session. Every ses-
sion can only be performed if there is no contraindica-
tion. After confirmation of the plan, it is added to Rosa’s 
current treatment plan.

Step 4 – Influenza infection yielding fever notifica‑
tions Five days before her next chemoradiotherapy ses-
sion, Rosa gets infected with the influenza virus, causing 
her body temperature to start rising. Any body tempera-
ture observation exceeding the fever threshold of 38◦ C 
is filtered by the deployed C-SPARQL query and sent to 
Streaming MASSIF.

The abstraction layer of Streaming MASSIF is config-
ured to abstract the incoming sensor events according to 
several rules. A body temperature observation between 
38.0◦ C and 38.5◦ C is a low fever event, one between 
38.5◦ C and 39.0◦ C a medium fever event, and one above 
39.0◦ C a high fever event. Its temporal reasoning layer 
defines a rising fever event as a sequence of low, medium 
and high fever events within an hour.

Two queries are defined for the notification service 
instructed on top of Streaming MASSIF’s temporal 

reasoning layer. When a low fever event is detected, and 
a person in the patient’s caregiver network has already 
planned a visit to the patient on the current day, the first 
query notifies this person to check up on the patient dur-
ing this visit. In that case, no other (medical) caregiver 
should be called. The second query notifies a medical 
caregiver from the patient’s caregiver network as quickly 
as possible when a rising fever event is detected.

In the use case scenario, in the morning of the given 
day, Rosa’s body temperature exceeds 38◦ C. This event 
is filtered by C-SPARQL, and abstracted by Stream-
ing MASSIF as a low fever event. The daily visit of Rosa’s 
daughter Holly around noon is still planned for the cur-
rent day, causing Streaming MASSIF to generate a noti-
fication to Holly, indicating that she should check up 
on Rosa’s low fever during her planned visit. However, 
within an hour after the first low fever event, Rosa’s body 
temperature further rises to above 39◦ C. Thus, Stream-
ing MASSIF detects both a medium fever event and a high 
fever event in its abstraction layer, and thus a correspond-
ing rising fever event in its temporal reasoning layer. 
Hence, the Streaming MASSIF service generates a notifi-
cation to Rosa’s nurse Suzy to visit her with high priority.

Step 5 – Constructing a treatment plan for influ‑
enza After Suzy’s examination, Rosa’s GP dr. Wilson is 
called and diagnoses her with the influenza virus, which 
is added to her medical profile. To construct a treatment 
plan for it, dr. Wilson can use AMADEUS. It proposes 
three possible plans: taking the oseltamivir medicine for 
ten days, taking the zanamivir medicine for eight days, 
or waiting for 16 days until the influenza goes over natu-
rally. The durations of the plans resemble the expected 
time after which the influenza should be cured. Given 
Rosa’s situation, dr. Wilson decides to choose the first 
plan, which has the highest value for the comfort qual-
ity parameter. After selecting the plan, AMADEUS con-
structs the detailed workflow of taking the medication 
every day for a period of ten days.

Step 6 – Treatment plan conflict AMADEUS performs 
a verification step to ensure that the newly added treat-
ment plan, confirmed by dr. Wilson, does not yield any 
conflicts with Rosa’s current treatment plan. In this sce-
nario, AMADEUS detects a conflict: Rosa’s next chemo-
radiotherapy session in the colon cancer treatment plan 
is scheduled in five days. However, since the influenza 
treatment plan still takes ten days, the influenza virus 
will not be cured by then, which forms a contraindica-
tion conflict. AMADEUS leaves resolving detected con-
flicts to its end users. In this case, dr. Wilson can do so by 
postponing the next chemoradiotherapy session until the 
influenza virus is fully cured.
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Demonstrator web application
To visually demonstrate the described use case scenario, 
a web application is designed [62] on top of a PoC imple-
mentation of the use case demonstrator [see Additional 
file 1]. It illustrates how medical care providers could fol-
low up patients in homecare through the smart monitor-
ing pipeline, in addition to the designed GUIs presented 
in the “Building blocks” section. More specifically, it con-
tains multiple UI buttons to simulate the different steps 
of the scenario in the “Scenario description” section and 
shows a visualization throughout the simulation of Rosa’s 
profile, the location of Rosa and the people in her car-
egiver network, and the real-time observations gener-
ated by the sensors processed in the monitoring pipeline. 
Furthermore, it contains a UI to trigger AMADEUS and 
visualize its output. Figure 6 shows multiple screenshots 
of the web application corresponding to the different 
scenario steps. Moreover, a video of the demonstrator is 
available online at https:// vimeo. com/ 38071 6692.

Performance evaluation
This section evaluates the performance of the differ-
ent building blocks in the architecture of the use case 
demonstrator presented in the “Use case demonstra-
tor” section [62]. The main purpose of this evaluation is 
to evaluate the individual building blocks of the seman-
tic healthcare platform on a single, fixed use case. For 
in-depth evaluations of the involved building blocks, 
we refer to the corresponding publications.

The evaluation is split up in three parts. The first 
part evaluates the data stream processing pipeline with 
RMLStreamer, C-SPARQL and Streaming MASSIF. 
Part two evaluates the DIVIDE query derivation. The 
third part evaluates AMADEUS.

For all evaluations, the local components in the dem-
onstrator architecture in Fig. 5 are running on an Intel 
NUC, model D54250WYKH, which has a 1300 MHz 
dual-core Intel Core i5-4250U CPU (turbo frequency 
2600 MHz) and 8 GB DDR3-1600 RAM. The central 
components are deployed on a virtual Ubuntu 18.04 
server with a Intel Xeon E5620 2.40GHz CPU, and 
12GB DDR3 1066 MHz RAM.

Fig. 6 Screenshots of the web application built on top of the use case demonstrator’s PoC implementation. They correspond to different steps 
in the scenario: a Step 0 – Initial state; b Step 3 – Constructing a treatment plan for colon cancer; c Step 4 – Influenza infection yielding fever 
notifications; d Step 6 – Treatment plan conflict

https://vimeo.com/380716692
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All evaluation results are aggregated in Table  1. For 
every evaluated component, the following subsections 
detail the evaluation cases, their rationales, the meas-
ured metrics, and how the measures were obtained to 
calculate the reported statistics.

Performance evaluation of the data stream processing 
pipeline
The evaluation of the data stream processing pipeline 
is performed separately for the three components. This 
approach is chosen because C-SPARQL performs con-
tinuous time-based processing of windows on the data 
streams, while RMLStreamer and Streaming MASSIF 
do event-based processing. Analyzing the components 
individually means that inherent networking delays are 
omitted.

RMLStreamer For the RMLStreamer evaluation, the 
processing time is measured, which is defined as the dif-
ference between the time at which a JSON observation is 
sent on the TCP socket input stream of RMLStreamer, 
and the time at which the RDF observation arrives at the 
client consuming the TCP socket output stream. This 
client and the sensor simulator are both running on the 
same device as the RMLStreamer.

In Table  1, the RMLStreamer performance measures 
are reported for three different rates of incoming obser-
vations on the RMLStreamer: 1 observation per second, 7 
observations per second and 14 observations per second. 
This maximum of 14 is chosen because the demonstra-
tor contains 14 sensors. The reported numbers are aggre-
gated over all observations generated during a simulation 
of 2 minutes.

C‑SPARQL For the C-SPARQL evaluation, the execu-
tion time is measured of the query that is filtering Rosa’s 
body temperature after she is diagnosed with colon can-
cer. This is the only query that is important for the sce-
nario of the demonstrator, since the other two deployed 
queries never filter any event during the scenario.

Table  1 reports the evaluation results for the three 
rates of incoming RDF observations. For C-SPARQL, this 
defines the number of observations in the data window 
on which the queries are evaluated. For every rate, exactly 
one body temperature observation higher than 38◦ C is 
generated per second. Hence, this resembles the period 
in the scenario when Rosa has a fever. Thus, the reported 
measures are for query executions that each yield exactly 
one result, being the most recent high body temperature 
observation. The query is evaluated every 3 seconds on a 
5-second window. The reported numbers are aggregated 
over all query executions during a 2-minute simulation.

Note that the evaluation results report measures about 
the query execution times, and not the processing times 
of an observation. This is because the C-SPARQL query 
evaluation is not event-based but a continuous, periodic 
process. The total processing time per observation con-
sists of the waiting time before the window trigger and 
query evaluation, and the query execution time. The wait-
ing time is upper bounded by the time period between 
consecutive query evaluations, which is 3 seconds in the 
demonstrator. Since the actual waiting time is inherent to 
the system, depends on the mutual initialization of com-
ponents, and is not dependent on the query bodies and 
data models, it is not included in the reported results.

Streaming MASSIF For the evaluation of Streaming 
MASSIF, the processing time of an incoming event is 

Table 1 Results of the performance evaluation of the building blocks in the use case demonstrator’s architecture

Evaluated component Measured metric Evaluation case Average 
value (ms)

Standard 
deviation 
(ms)

RMLStreamer processing time 1 observation per second 8.1 3.1

7 observations per second 11.8 7.1

14 observations per second 13.5 8.3

C-SPARQL query execution time query filtering body temperature with 1 observation per second 12.2 3.3

query filtering body temperature with 7 observations per second 15.2 9.1

query filtering body temperature with 14 observations per second 26.4 23.5

Streaming MASSIF processing time fever event processing 1539.5 60.1

DIVIDE processing time query derivation 7249.5 175.8

AMADEUS processing time generating treatment plans for colon cancer 190.8 1.4

generating treatment plans for influenza 88.6 1.7

aggregating treatment plans and performing conflict detection 1335.7 3.8
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measured. This is defined as the difference between the 
event’s arrival time and the time at which the notification 
(to either Rosa’s daughter or nurse) leaves the system. The 
reported numbers in the results in Table 1 are aggregated 
over all processed events in a simulation of 3 minutes, 
where Rosa’s body temperature is gradually increased 
from 38.3◦ C up to 39.1◦ C. The period between incoming 
events in Streaming MASSIF is equal to the output rate 
of the evaluated C-SPARQL query, which is 3 seconds.

Performance evaluation of DIVIDE
The evaluation of DIVIDE measures the processing time 
of the query derivation on the context associated to Rosa, 
which includes both the dementia and colon cancer diag-
noses. DIVIDE performs the semantic reasoning during 
the query derivation in three parallel threads, where each 
thread is responsible for deriving the RSP queries from 
one of the generic query templates. The output consists 
of the three queries described in the demonstrator’s sce-
nario. The processing time is measured from start to 
completion of the parallel reasoning processes. All net-
working overhead for registering the context to DIVIDE, 
which triggers the query derivation, and registering the 
resulting queries on C-SPARQL, is not included in the 
results reported in Table 1. These are aggregated over 30 
runs, excluding 3 warm-up and 2 cool-down runs.

Performance evaluation of AMADEUS
For the evaluation of AMADEUS, the processing times 
are measured of a request to the AMADEUS Web API for 
the three most important cases in the demonstrator’s sce-
nario: (1) requesting possible treatment plans for colon 
cancer, (2) requesting possible treatment plans for influ-
enza, and (3) adding the chosen influenza treatment plan 
to the existing treatment plan for colon cancer, including 
the conflict detection. The processing time corresponds 
to the response time of the AMADEUS Web API, which 
mainly represents the duration of the started EYE rea-
soner process. The results in Table 1 are measured over 
30 runs, excluding 3 warm-up and 2 cool-down runs.

Usability evaluation
This section discusses the usability evaluations of the 
installer tools in the semantic healthcare platform: the 
RMLEditor and Streaming MASSIF with its GUI. The 
evaluations make use of the System Usability Scale (SUS), 
which is a well-known, rapid method for gathering usabil-
ity ratings for a technology through a questionnaire [64]. 
It is known for being concise, applicable across various 
technologies, and effective in scenarios with limited sam-
ple sizes [65]. The SUS measures the user satisfaction of 
a technology, but not its effectiveness or the efficiency, 
which is an important consideration when interpreting 

SUS-scores. The usability of DIVIDE and AMADEUS has 
not been evaluated.

Usability evaluation of RMLEditor and MapVOWL
In a previous publication, Heyvaert et  al. have evalu-
ated the usability of the RMLEditor and its visual map-
ping rule notation MapVOWL  [57]. To this end, they 
first evaluated whether the MapVOWL graph-based rep-
resentation of RML mapping rules has a higher human 
processing accuracy and preference than the classic tex-
tual representation of RML rules. Based on the evalua-
tion, the authors concluded that users with knowledge of 
RML exhibit no difference in accuracy of processing the 
representations, but do have a preference for MapVOWL 
to visualize and edit rules. As a second step, the authors 
evaluated the usability of the graph-based RMLEditor 
to the RMLx Visual Editor, which is form-based edi-
tor to show and edit RML mapping rules  [66, 67]. This 
evaluation showed no difference in the accuracy of cre-
ating mapping rules between both editors, but revealed 
a higher user satisfaction of the RMLEditor through a 
SUS-score of 82.75 compared to 42 for the RMLx Visual 
Editor. This is mainly caused by the usage of MapVOWL. 
For details about the evaluation set-up and results of 
both evaluations, we refer to the original publication of 
Heyvaert et al. [57].

Usability evaluation of Streaming MASSIF
To evaluate the usability of using and configuring seman-
tic services with Streaming MASSIF for installers, it is 
compared with Kafka Streams. This is a stream pro-
cessing library provided by Apache Kafka that enables 
developers to build scalable and fault-tolerant real-time 
applications and microservices [68]. It allows Kafka con-
sumers to process continuous streams of data records 
from Kafka topics, supporting tasks such as data trans-
formation, aggregation, and event-driven computations.

Evaluation set‑up The evaluation was configured 
through an online questionnaire. Potential participants 
were approached from imec and Ghent University. Those 
agreeing to participate were provided with a short intro-
duction of Streaming MASSIF and Kafka Streams to read 
through. After the introduction, the actual evaluation 
was performed together with one of the researchers, con-
stituting of four consecutive parts.

Part 1. In this part of the evaluation, the questionnaire 
queried the participant’s socio-demographics. Moreover, 
questions were asked about their experience & familiarity 
with Linked Data & Semantic Web technologies, stream 
processing in general, Streaming MASSIF, and Kafka.
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Part 2. The second part of the evaluation presented a 
short text about the fictional evaluation use case, which 
was the use case of the demonstrator presented in the 
“Use case demonstrator”  section. It described the task 
that should be performed by the participant, which was 
about step 4 of the described scenario, i.e., the configura-
tion of a service filtering the alarming situation of a rising 
fever event for patient Rosa with the influenza diagno-
sis. More specifically, this text reads as follows: “In the 
patient room of the future, rooms are equipped with many 
sensors that capture their environment. These sensors 
allow to monitor both patients and the status of the room. 
Let’s consider the presence of a light, sound, and body tem‑
perature sensor present in the room. To process this data 
in a meaningful way, this data needs to be combined with 
background knowledge regarding the hospital and the 
patient that is being treated in the room. In this use case, 
we want to monitor to see if our patients are not being 
exposed to any alarming situation. For example, let’s 
assume our patient has influenza. The background knowl‑
edge about our patient will then describe that our patient 
with influenza should be monitored for body temperature 
values. Therefore we should monitor the body temperature 
sensors in the room, in order to detect alarming situations. 
In this case, an alarming situation occurs when the body 
temperature of our patient is rising too quickly in a lim‑
ited time span.”

After reading this text and following a short tutorial 
for both Streaming MASSIF and Kafka Streams, the par-
ticipants were requested to complete this task with both 
tools. To have a variation in which tool was used first 
for the task, the participants were randomly assigned in 
two groups of equal size. The correctness of perform-
ing the task with both tools was assessed by the present 
researcher.

Part 3. The third part of the evaluation consisted of a 
multiple-choice questionnaire assessing how well the 
participants understand Streaming MASSIF. The ques-
tions asked and their corresponding correct answer(s) 
were the following: 

1. How does one filter data in Streaming MASSIF? Cor-
rect answers: by defining a filter, by abstracting the 
data, by defining a Complex Event Processing pattern

2. How does one enrich events from the data stream 
in Streaming MASSIF? Correct answers: by defining 
a CONSTRUCT query in a filter, by abstracting the 
data through reasoning

3. How does one abstract the data in Streaming MAS-
SIF? Correct answer: by defining ontological patterns

4. How does one detect temporal dependencies in 
Streaming MASSIF? Correct answer: by defining a 
temporal pattern

Part 4. The final part was a post-assessment question-
ing the usability of both tools. First, the difficulty of per-
forming the use case task with the tools was rated on a 
7-point Likert scale from extremely difficult to extremely 
easy. Similarly, confidence in successful completion was 
rated on a 7-point Likert scale from strongly agree to 
strongly disagree. Second, the SUS-score was obtained 
for both tools. Third, the overall user-friendliness of the 
tools was rated on a 7-point Likert scale from awful to 
excellent.

Evaluation results Part 1. Eight participants were 
recruited. They were all male researchers and students 
from imec and Ghent University between 22 and 28 
years old, all but one holding a master’s degree. One 
participant considered himself a novice on Linked Data 
and Semantic Web technologies, five were developing 
knowledge in this domain, one was proficient, and one 
was an expert. Concerning stream processing in general, 
four participants were developing knowledge and four 
were novices. Six participants had already heard of both 
Streaming MASSIF and Kafka, of which two had already 
used the latter. The other two participants had never 
heard of both.

Part 2. All participants successfully completed the task 
on the presented use case with both evaluated tools.

Part 3. The questions about Streaming MASSIF were 
answered by all participants. For question 1, one par-
ticipant selected all three correct answers. Two partici-
pants selected two of them, and the other five selected 
one correct answer. For question 2, three participants 
selected both correct answers. The other five participants 
selected one correct answer. For question 3, five partici-
pants selected the single correct answer. Three people 
also selected an additional wrong answer. For question 4, 
the same happened for two participants, while all of them 
selected the correct answer.

Part 4. The difficulty of performing the use case task 
was rated higher for Kafka Streams compared to Stream-
ing MASSIF by seven participants. Five participants rated 
completing the task with Streaming MASSIF moderately 
or slightly easy, compared to only two for Kafka Streams. 
Moreover, regarding confidence in successful comple-
tion of the tasks, two participants revealed a higher con-
fidence when using Streaming MASSIF, while the others 
revealed equal confidence. This confidence was rated 
positively (slightly agree, agree or strongly agree) by 
seven participants for Streaming MASSIF. In addition, 
the average obtained SUS-score of Streaming MASSIF 
was 72.81, compared to 53.75 for Kafka Streams. Inspect-
ing the individual SUS-scores, they were higher for 
Streaming MASSIF for six participants, while both scores 
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were equal for the other two participants. Finally, the 
overall user-friendliness of Streaming MASSIF was rated 
higher than that of Kafka Streams by five participants, 
while the other three participants rated it equally well. All 
participants rated the overall user-friendliness of Stream-
ing MASSIF as good or excellent, compared to a rating of 
good or OK for Kafka Streams by six participants.

Discussion
This section discusses how the presented existing 
building blocks built upon Semantic Web technologies 
(“Building blocks”  section) can help solving the chal-
lenges related to every individual role in the instantiated 
reference architecture (“Reference architecture”  sec-
tion). To do so, relevant insights from designing the 
use case demonstrator (“Use case demonstrator”  sec-
tion) and evaluating our PoC implementation of this 
demonstrator (“Performance evaluation” and “Usability 
evaluation”  sections) are shared as well. This way, the 
hypotheses presented in the “Paper objective, contribu-
tion and organization”  section are validated. This vali-
dation is justified by the fact that the use case scenario 
of the demonstrator use case is representative to the 
real world within the continuous homecare domain. 
This domain is an actual, currently relevant application 
domain within healthcare, due to the shift to homecare, 
which is demonstrated in Flanders by the analysis and 
calculations made by the KCE.

Data providers
Semantic Web technologies offer the tools to data 
providers to formally describe different heterogene-
ous data sources in a uniform, common, machine-
interpretable format. This way, reusing data sources 
defined as Linked Data across organizations and appli-
cations becomes possible. Exposing data from various 
sources as Linked Data is possible through RML map-
pings. RMLMapper is a tool that can process such map-
ping rules and generate Linked Data. RMLStreamer 
is another tool that parallelizes the Linked Data gen-
eration process as much as possible. This reduces its 
memory footprint and thus allows efficiently generating 
Linked Data in streaming use cases as well [36].

The evaluation results with the use case demonstra-
tor prove that RMLStreamer can efficiently process and 
map JSON observations to RDF data. For a scenario 
where 14 observations per second are generated, the 
average processing time is only 13.5 ms.

To summarize, hypothesis (a) of this paper can be val-
idated by following the Linked Data approach and using 
technologies and tools such as RML and RMLStreamer.

Service providers
Service providers are responsible to build services 
upon the data exposed by the data providers. Differ-
ent semantic building blocks such as Streaming MAS-
SIF and DIVIDE in combination with engines such as 
C-Sprite or C-SPARQL allow moving away from the 
manual configuration and non-reusable services.

Both Streaming MASSIF and DIVIDE take the avail-
able background knowledge and contextual data of the 
patient profiles into account when performing seman-
tic reasoning. This way, they allow designing person-
alized services. Moreover, they are both designed to 
deal with high-volume and high-velocity data streams 
in many healthcare use cases. They are designed for a 
distributed, cascading reasoning architecture, where 
some data stream processing is already performed in 
the edge of the IoT network, for example on a device in 
the local environment of the patient. This is done in the 
selection layer of Streaming MASSIF, where different 
engines such as C-Sprite, C-SPARQL or another regu-
lar RSP engine can be employed. C-Sprite is especially 
useful when efficient reasoning needs to be performed 
with many hierarchical concepts.

DIVIDE is responsible for configuring the queries 
that are evaluated on the local RSP engine. Through the 
defined generic query templates, it performs semantic 
reasoning to derive the specific RSP queries that are rel-
evant with the given environmental context, every time 
this context (e.g., the medical profile) changes. The evalu-
ation results show that the query derivation for the use 
case demonstrator takes a little over 7 seconds. This is 
relatively high, however, it is only performed upon con-
text changes, of which the frequency is a few orders of 
magnitudes smaller than the frequency of the RSP query 
evaluation. DIVIDE ensures that only the relevant data is 
filtered, and that no real-time reasoning is required dur-
ing the query evaluation. Hence, this query evaluation is 
very efficient. This is shown in the C-SPARQL evaluation 
results, which report an average query execution time of 
only 26.4 ms for a data stream containing 14 RDF obser-
vations per second. It should be noted that the query 
evaluation is also performant on low-end devices with 
few resources, which often occur in the IoT edge, even 
for data streams with a higher data velocity  [37]. This 
allows for improved system performance, scalability, and 
local autonomy.

Moreover, by embedding DIVIDE into the refer-
ence architecture, privacy by design is enabled to some 
extent  [69]. Multiple foundational principles of privacy 
by design are partly addressed this way, such as visibility 
& transparency, user-centric design and proactiveness, 
helping installers to design applications with the user 
data privacy in mind. Thus, this leaves an additional 
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responsibility to installers, which implies the need for 
proper education and supporting GUIs for user-centric 
privacy management. Nevertheless, the use of DIVIDE 
in the distributed reference architecture system of course 
does not guarantee privacy as such. To achieve optimal 
privacy, it should be combined with additional privacy 
measures, both generic (e.g., strong cryptography) and 
use case specific measures. To this end, much existing 
research can be consulted [70]. Moreover, privacy meas-
ures should also consider other aspects than the trans-
mission of data, such as privacy of data stored on devices.

In its abstraction and temporal reasoning layer, Stream-
ing MASSIF allows defining functionality through new 
semantic axioms and rules in a relatively simple way [see 
Additional file  1]. Similarly for the services instructed 
on top of these layers, simple queries can be declared to 
describe the functionality of the service. This allows them 
to be reused in a user-friendly way. Streaming MASSIF 
also delivers performant semantic services, as is shown 
through the evaluation results on the use case demon-
strator. On average, it takes a little over 1.5 seconds to 
generate the correct notification corresponding to a fever 
event received from the selection layer. Considering this 
processing includes expressive semantic reasoning on 
the full ontology with all medical domain knowledge and 
Rosa’s profile information, this is a performant result.

Based on this discussion, it can be concluded that 
hypothesis  (b) of this paper can be validated by using 
the DIVIDE and Streaming MASSIF building blocks in a 
distributed, cascading reasoning architecture. More spe-
cifically, Streaming MASSIF validates sub-hypothesis (i), 
while using DIVIDE allows validating sub-hypothesis (ii).

Integrators
Integrators compose workflows that fulfill a particular 
functionality. AMADEUS uses semantics to move away 
from generic, static, manually constructed workflows 
that cannot easily be coordinated across organizations. It 
performs semantic reasoning to compose possible work-
flows using the semantic description of all context and 
profile information, possible workflow steps, functional-
ity of services, and quality parameters offered by them. 
This way, the resulting workflow always offers the desired 
functionality and meets quality constraints dynamically 
chosen by the end user.

To make this more tangible, the use case demonstra-
tor focuses on an example where workflows represent 
medical treatment plans for a disease. In this example, 
potential steps in the treatment of diseases represent pos-
sible workflow steps. The semantic description of a step 
defines when applying this step is useful (e.g., for which 
diseases, given which preconditions), what the impact 
on the state and context is (e.g., how much does it cure 

the patient’s disease), what the quality parameters of this 
step are (e.g., what is the patient comfort or the treatment 
cost), and what possible contraindications exist for this 
step (e.g., what other diagnoses cannot be present to take 
this step). This makes it possible to create personalized, 
dynamic treatment plans that take into account particu-
lar quality constraints about the treatment.

An additional advantage of using AMADEUS is its 
ability to perform automatic conflict detection between 
workflows. In the use case demonstrator, a possible con-
flict is a contraindication for a new treatment plan. This 
detection is particularly interesting in cross-organiza-
tional environments, like in the use case scenario. The 
original colon cancer treatment plan was constructed by 
a hospital doctor, while the new influenza treatment plan 
was created by Rosa’s GP. Hence, this demonstrates how 
AMADEUS can help improving the communication and 
coordination of workflows across the different organiza-
tions and stakeholders involved in Rosa’s caregiving.

The evaluation results of AMADEUS on the demon-
strator show that it can efficiently generate its dynamic 
workflows. All possible treatment plans for both the 
colon cancer and influenza diagnoses are generated in 
less than 200 ms on average. The conflict detection takes 
on average a little above 1.3 s, which is still acceptable 
given the fact that AMADEUS should not be deployed in 
a real-time data processing pipeline.

To summarize, it can be concluded that the design and 
performance of AMADEUS allows validating hypoth-
esis (c) of this paper.

Installers
Installers are people responsible for configuring all data 
provisioning tools, services, and workflows. For the first 
two aspects, GUIs for the semantic tools are available.

Defining RML mapping rules for the Linked Data gen-
eration is a tedious and time-consuming work, as map-
pings need to be created for each type of input data 
source to the semantic ontology model. To make this 
process much easier, either the RMLEditor or Matey can 
be used. These tools have an optimized GUI to easily gen-
erate, visualize and export mapping rules and/or Linked 
Data. Matey is most suited for developers who do not 
have knowledge about Semantic Web technologies, while 
the RMLEditor is most useful for data owners who are no 
developers. Specifically focusing on RMLEditor, previ-
ous research has shown that using the RMLEditor and its 
graph-based MapVOWL representation has a high usa-
bility compared to alternatives [57].

In addition, a GUI allows installers to declare the 
axioms, rules and queries that define the services in 
Streaming MASSIF, without having to bother with the 
underlying technological details. However, additional 
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research is still needed to design a GUI to properly con-
figure DIVIDE and its generic query templates. The usa-
bility evaluation of Streaming MASSIF in the “Usability 
evaluation of Streaming MASSIF”  section proves that 
configuring semantic services with Streaming MASSIF is 
considered relatively easy and user-friendly by almost all 
participants. The average SUS-score of 72.81 of Stream-
ing MASSIF translates to a usability rating of good  [65]. 
With a proper introduction and a small tutorial, users 
can confidently and successfully use Streaming MAS-
SIF and mostly correctly assess how it works. Altogether, 
these are positive results.

To conclude, the available GUIs validate hypothesis (d) 
of this paper.

In addition, it should be noted that the usability of two 
other building blocks, DIVIDE and AMADEUS, has not 
been formally evaluated within the scope of this paper. 
Therefore, it is important to zoom in on the required 
configuration workload of these tools for installers.

Looking at DIVIDE, its configuration workload 
mainly consists of defining the generic query tem-
plates. To do so, it should be noted that the DIVIDE 
implementation includes a parser that can automati-
cally translate SPARQL queries into the required inter-
nal representation format of generic query templates 
used by DIVIDE  [37]. This way, end users can config-
ure DIVIDE in a straightforward way, without having to 
know its internal representation format. To define these 
SPARQL queries, existing SPARQL query configuration 
UI tools could possibly be employed as well, to further 
reduce the configuration workload. During its runtime, 
no manual (re)configuration of DIVIDE is required, as its 
internal algorithm will automatically ensure that the cor-
rect stream processing queries are deployed at all times. 
In addition, the configuration of DIVIDE also includes 
defining a set of properties that can overwrite its default 
values, which is easily possible through properties files. 
To make this configuration more easy, a simple UI tool 
could be designed on top of these properties files. Thus, 
altogether, the configuration workload of DIVIDE is 
relatively small compared to the configuration workload 
of the other components. This workload is significantly 
higher for configuring the RML mappings for RML-
Streamer, and will typically become more extensive for 
the rules and queries for the different layers of Streaming 
MASSIF as well.

Zooming in on AMADEUS, it should be noted that 
the biggest part of the AMADEUS configuration actu-
ally represents medical domain knowledge, and should 
thus be captured in the used ontology. This includes 
the definition of policies, all possible workflow step 
descriptions, and additionally relevant medical domain 
knowledge such as preconditions of certain steps or 

contraindications. This knowledge should thus be cap-
tured from the involved domain experts in the ontology 
design process, for which existing ontology editors such 
as PoolParty or Topbraid Composer can be used [71, 72]. 
This configuration should only be done once for a given 
use case domain. In addition, the state description used 
by AMADEUS is captured through the current use case 
context in the knowledge base. Hence, the only use case 
specific configuration element is the goal of the work-
flow generation. This configuration is limited to a single 
rule for a given type of workflow, implying a small con-
figuration workload for AMADEUS. In terms of end user 
interaction after the workflow generation process, an end 
user is required to select one of the proposed workflows 
to add it to the user’s set of workflows in the knowledge 
base and trigger the conflict detection. The design of the 
web application involves a use case specific UI element 
that specifically focuses on this selection and the presen-
tation of possible workflows and conflicts (Fig. 6b and d). 
This part of the web application could serve as a starting 
point to design a generic UI tool for AMADEUS.

Conclusion
The impact and contribution of this paper is the design 
of a reference architecture for a semantic healthcare plat-
form that can be leveraged to optimize continuous home-
care provisioning use cases. To this end, the distributed, 
cascading reasoning architecture is instantiated with dif-
ferent existing building blocks, built upon Semantic Web 
technologies. This architecture allows solving the chal-
lenges associated to the different roles involved in contin-
uous care solutions. For data providers, the architecture 
allows exposing data as Linked Data to services and other 
organizations in reusable fashion, using declarative map-
ping rules. This Linked Data can be efficiently generated 
in use cases dealing with high-velocity streaming data. 
Concerning service providers, the architecture allows 
designing dynamic, use case specific, data-driven, per-
sonalized, reusable services. These services are defined by 
declaratively expressing their functionality and meaning 
as semantic definitions, and operate on the data abstrac-
tions and insights generated by stream reasoning queries. 
These queries efficiently process the generated Linked 
Data in a cascading reasoning pipeline, which allows for 
improved system performance, scalability, local auton-
omy, and data privacy to a certain extent. Moreover, 
considering service integrators, the architecture allows 
constructing dynamic workflows of different services 
or specific functionality described through declarative 
semantic descriptions. Conflicts can be automatically 
detected between constructed workflows, improving 
their coordination across organizations and stakeholders 
involved in the care provisioning of patients. By chaining 
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all building blocks, a closed feedback loop is created: 
knowledge generated through services and workflows 
can result in context changes, which are automatically 
reflected in the adaptive, context-aware stream reasoning 
queries. Finally, for installers, different GUIs are available 
to easily expose Linked Data and build dynamic services 
in a user-friendly way. This allows installers to configure 
the system without requiring knowledge about technical 
details, minimizing the manual effort and risk of configu-
ration errors. Through the performance evaluation on a 
PoC implementation of a realistic use case demonstrator 
in homecare, the paper has also shown that the platform 
can be successfully realized, and that the different build-
ing blocks of the instantiated reference architecture can 
perform their tasks in an efficient way.

Future work could involve multiple different pathways. 
First, since the solutions presented in this paper are tar-
geted towards continuous homecare provisioning, a real-
world production environment of the presented semantic 
healthcare platform should further address the involved 
privacy and security requirements. More specifically, for 
privacy, it is necessary to implement a set of additional 
privacy measures. These may include traditional meth-
ods like robust cryptography and access control mecha-
nisms. In addition, other privacy solutions should be 
tailored to meet specific requirements of the use case. 
Second, to improve the overall usability of the presented 
semantic healthcare platform for the installers of the sys-
tem, additional measures should be implemented. More 
specifically, UI tools should be designed for DIVIDE to 
more easily configure DIVIDE and its different generic 
query templates. In addition, the part of the web appli-
cation built to configure AMADEUS for the demon-
strator use case could be further generalized towards 
a generic UI tool for AMADEUS. The usability of these 
new and existing UI tools involved in the platform should 
be further evaluated as well, including their effective-
ness and efficiency. Third, individual improvements of 
the different building blocks in the presented reference 
architecture, such as DIVIDE, Streaming MASSIF and 
AMADEUS, could further extend their applicability to 
different use cases and the available support for specific 
types of services and workflows. For concrete pointers 
on how to improve them, we refer to the specific publi-
cations about these individual building blocks. Fourth, 
future work should include the application and valida-
tion of the presented reference architecture on other 
healthcare use cases that exhibit requirements similar to 
homecare, such as system performance, local autonomy,  
data privacy, automation, dealing with dynamic environ-
ments, and cross-organizational workflows. Moreover, it 
might as well be interesting to investigate its generalization 

towards other IoT applications domains, such as smart 
cities or smart home and automation. This would allow 
to further evaluate the platform’s performance and usa-
bility on other use cases as well.
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