
Cloud-Native-Bench: an Extensible Benchmarking
Framework to Streamline Cloud Performance Tests

Michiel Van Kenhove , Merlijn Sebrechts , Filip De Turck and Bruno Volckaert
IDLab, Department of Information Technology

Ghent University - imec, Ghent, Belgium
michiel.vankenhove@ugent.be

Abstract—The shift to the cloud among organizations has
surged enormously over the last decade. As a result, an over-
whelming amount of new cloud-based technologies emerged,
making it increasingly more challenging to compare the different
technologies and to identify the ideal technology that aligns
best with a specific use case. The performance and resource
usage of a system or software technology can be assessed by
running benchmarks. Performing benchmarks has proven to be a
time-consuming and error-prone task, especially when executing
multiple consecutive tests on the same system. This sparked
curiosity in exploring the feasibility of automating this man-
ual benchmarking process. This paper proposes Cloud-Native-
Bench (CNB), a novel open source benchmarking framework
implemented as a Kubernetes operator that fully automates the
benchmarking cycle. The entire process, including benchmark
deployment, the consecutive execution of benchmarks in a queue,
results collection, and statistical data analysis, is fully automated.
The framework is designed to be extensible without the need to
adapt the operator itself, enabling users to develop fine-tuned
custom benchmarks according to their specific use cases. A
detailed evaluation shows the ease-of-use of Cloud-Native-Bench
and how it streamlines the process of running benchmarks in
cloud-native environments. Experiments show the importance
of running benchmarks on cloud technologies. For example,
employing a different web server technology can increase the
mean throughput by 252%.

Index Terms—Kubernetes, benchmarking, operators, con-
trollers, automated analysis

I. INTRODUCTION

Over the last decade, there has been a significant shift
among organizations towards adopting cloud-based solu-
tions [1], resulting in a remarkable growth of cloud infras-
tructure. This shift has led to the development of many
cloud technologies, like application containerization and cloud
orchestration platforms such as Kubernetes [2], with the goal
to improve the reliability of cloud-based solutions, while
trying to keep costs to a minimum. Today, the adoption of
containerization technologies to host applications has become
mainstream, as acknowledged by the Cloud Native Computing
Foundation (CNCF) [3].

In the current cloud-native landscape, a lot of technolo-
gies and tools are widely used and new technologies are
emerging constantly [4]. Every project or technology tries to
solve certain problems, e.g., throughput, resource optimization,
resilience, etc., and there is always some overlap between
different projects in one way or another. With this large
landscape of available technologies, all having their own

features and versioning system, it can become a tedious and
overwhelming task to determine when one should use a certain
technology or version over another.

To optimize their profit, organizations need to carefully
determine what their cloud needs are, because an incorrect
decision in cloud technologies can lead to immense costs, and
even worse, the loss of unhappy customers. Once an organiza-
tion has determined their needs, they need to map these needs
to available technologies and perform a comparative analysis
to make a final decision on what technologies and projects to
use. Besides choosing a technology stack when first moving
to the cloud, newly emerged technologies or software versions
need to be compared to the existing cloud solution using an
easy and efficient method. This involves running benchmarks
according to specific business needs, for example optimizing
the throughput of a system.

Running benchmarks is typically a time-consuming task,
that involves active monitoring of a currently running bench-
mark, gathering the results by downloading the data, and
finally, starting the next benchmark. Afterwards, the gathered
data needs to be parsed and analyzed, often by generating
charts that allow technology or software version comparison.

Although there has been a vast amount of research regarding
the performance and resource usage of different cloud tech-
nologies, only a limited amount of research regarding tools that
fully automate the process of benchmarking cloud systems has
been conducted. For example, CloudBench by Silva et al. [5]
and Smart CloudBench by Chhetri et al. [6] deploy applica-
tions on native cloud resources, instead of in a containerized
environment, and still need manual active monitoring of each
benchmark run. Other state-of-the-art solutions are either not
easily extensible or they do not fully automate the complete
benchmarking and analysis process.

This research paper proposes an open source1 [7] extensible
benchmarking framework that aims to answer the following
research questions:

RQ 1: How can the complete lifecycle of containerized
cloud benchmarks be automated in Kubernetes?

RQ 2: How can an automated benchmarking system be
dynamically extensible to enable users to define and run cus-
tom benchmarks that are fine-tuned to their specific business
needs?

1https://github.com/idlab-discover/Cloud-Native-Bench

https://orcid.org/0000-0003-3623-2754
https://orcid.org/0000-0002-4093-7338
https://orcid.org/0000-0003-4824-1199
https://orcid.org/0000-0003-0575-5894
mailto:michiel.vankenhove@ugent.be
https://github.com/idlab-discover/Cloud-Native-Bench


RQ 3: How to facilitate the comparison of benchmark results
with the wide variety of different benchmark output formats?

RQ 4: How much improvement in productivity does the
proposed framework bring compared to the traditional way of
running benchmarks?

The remainder of this paper is organized as follows. Sec-
tion II is a study on the state-of-the-art related to cloud
benchmarking, while section III goes over the required system
functionalities of Cloud-Native-Bench. Section IV presents the
design and implementation of the framework. The ease-of-use
and effectiveness of the framework is evaluated in section V,
while section VI discusses the current limitations and how
Cloud-Native-Bench can be improved in the future. Finally,
the paper is concluded in section VII.

II. RELATED WORK

In this section, several state-of-the-art benchmark automa-
tion tools are discussed. These tools are all designed to
work in containerized cloud environments. This shows that
a considerable amount of progress has been made over the
years, but there still lacks a modern solution to automatically
run repeatable benchmarks to evaluate different technologies
based on specific business needs.

Henning et al. [8], [9] created Theodolite [10], a framework
for benchmarking the scalability of distributed stream process-
ing engines in microservices. A strength of Theodolite is that it
is implemented as a Kubernetes operator, a modern solution to
automate complex tasks in Kubernetes. Theodolite automates
the process of deploying a system under test (SUT), generating
load on that SUT, and collecting performance metrics during
the benchmark execution. While Theodolite provides a good
framework that focuses on benchmarking the scalability of
cloud-native applications in Kubernetes, it does not allow for
custom benchmarks that can be fine-tuned to a specific use
case.

Benchmark-operator [11] by cloud-bulldozer, that was pre-
viously known as Ripsaw, is an Ansible [12] based Kuber-
netes operator to deploy common workloads in a Kuber-
netes cluster to establish a performance baseline. Benchmark-
operator only supports a limited, but common, list of built-
in workloads. A custom benchmark can only be added by
developing a new Ansible role and rebuilding the opera-
tor. Due to this approach, benchmarks are not generic and
every benchmark has implementation-specific configuration
that cannot be changed without rebuilding the operator. In
addition, benchmark-operator does not analyze the results by
default. However, benchmark-wrapper [13] is another project
maintained by cloud-bulldozer that provides a more convenient
way to launch benchmarks, gather the data, and perform a
detailed statistical analysis on the results, but it still requires
manual monitoring of the running benchmark.

Yoshimura et al. [14] created ImageJockey, a test frame-
work to continuously evaluate the performance of container
images. The primary goal of ImageJockey is to gain insight
into the impact of different container image types on the
performance of an application. Yoshimura et al. concluded,

among other things, that the latest available container im-
age does not guarantee the best performance and that the
functional portability of container images is not equivalent to
performance portability, thus reiterating the importance of con-
tainer application benchmarking. Unfortunately, ImageJockey
is not implemented as a Kubernetes operator, but instead
as a standalone service that periodically checks for image
updates, triggering an evaluation cycle. This makes it less
capable for benchmarking modern microservice-based cloud
applications that are often running in a cloud cluster managed
by Kubernetes. Lastly, ImageJockey seems to be unavailable
either in open source format or as a paid-for license at the
time of writing, thereby preventing that the tool can be used
by third parties.

Finally, Kubestone [15] by Xridge is a Kubernetes opera-
tor that automates the deployment of benchmarks. However,
Kubestone does not provide a way to easily deploy custom
benchmarks. To run custom benchmarks, an adaptation of the
operator itself is required, by means of implementing a custom
controller. Kubestone does not aggregate the data nor perform
automated analysis: the benchmarker is required to manually
retrieve the logs of a completed benchmark and perform
manual data cleaning in order to analyze the results. Although
Kubestone eases the task of running benchmarks, it does not
deliver in terms of extensibility and automated analysis. Lastly,
the websites of both Kubestone and Xridge seem offline at the
time of writing. As a result, the documentation has become
inaccessible. Based on the GitHub history and the fact that the
websites are inaccessible, there are indications that Kubestone
is no longer being actively maintained.

III. REQUIREMENTS

Executing complex benchmarks typically requires the setup
of multiple components that interact with each other. For
example, consider a scenario consisting of a load generator,
multiple systems that process a certain amount of generated
load, and a load balancer. This setup allows an evaluation
of the effectiveness of a load balancer that distributes a
certain amount of generated load, and the performance of the
various load processing systems. The traditional method to
evaluate this scenario involves manual deployment and active
monitoring of each component. The first step in deploying this
scenario to a Kubernetes cloud environment is the container-
ization of the workloads and all the related components. The
next step consists of writing Kubernetes manifest files that
define each component in a declarative way. Whenever the
benchmark needs to be executed, the benchmarker manually
deploys each component by communicating with the Kuber-
netes API. This is accomplished by providing the Kubernetes
API with the corresponding manifest files, usually by using
kubectl [16]. Kubectl is a command-line tool that allows an
administrator to invoke commands on the Kubernetes API, to
adapt the configuration or to retrieve information about certain
components.

To streamline the benchmark process, there is a need for
an automated benchmark framework that manages the com-



Fig. 1. System architecture overview of Cloud-Native-Bench.

plete benchmarking lifecycle. This system needs to be highly
and dynamically extensible, enabling users to define custom
benchmarks that are fine-tuned to their specific business needs.
Moreover, the system needs to be able to manage a large set
of benchmarks and automatically execute them consecutively
by means of a queuing system. The resulting data from each
benchmark needs to be persisted in a standardized format and
trigger an automated analysis system to gather initial statistical
insight, for example, by generating easily comparable charts.
Finally, the benchmarker needs to have straightforward access
to the data and analysis results.

IV. DESIGN AND IMPLEMENTATION

This section goes over the design choices and implementa-
tion details of Cloud-Native-Bench. First, an overview of the
system architecture is given, followed by an introduction to the
Benchmark custom resource. Implementation specific details
of the system are provided. Finally, a detailed introduction to
the operation of a Kubernetes operator and how Cloud-Native-
Bench employs such an operator is described.

A. Architecture Overview

The architecture of Cloud-Native-Bench is depicted in Fig. 1
and consists of four main components, i.e., the Operator
that is responsible for managing benchmarks, the Results
Database for persisting benchmark results, an Analysis Runner
to automatically perform a statistical analysis on the results of
a finished benchmark, and a Web Server to provide access
to benchmark results and their associated analysis. The ar-
chitecture in Fig. 1 also illustrates a Benchmark Pod that is
deployed and managed by the operator. A benchmark pod can
be a workload that performs a standalone benchmark test, or
perform tests, e.g., as a virtual user, on a segregated System
Under Test (SUT), that is also fully managed by the operator.

B. Benchmark Custom Resource

A custom resource (CR) [17] is an extension to the Ku-
bernetes API that describes a custom Kubernetes object. A
benchmark is defined in a Benchmark custom resource, that
describes the benchmark in a declarative way. The benchmark
CR contains a benchmark type, i.e., System, Network or

Fig. 2. Kubernetes control loop for Cloud-Native-Bench’s operator. Based
on [21].

Custom, and a list of all workloads and components involved
in the benchmark. A workload or dependent component can be
defined as a podTemplateSpec, the Kubernetes built-in resource
that describes a pod, or a helmSpec, a custom specification
that describes a Helm [18] chart. The ability to deploy a
workload or a SUT by means of a Helm chart allows for the
automated performance testing of complex microservice-based
systems. The benchmark CR also consists of a status, storing
the current state of the benchmark, i.e., Pending, Running,
Done or Completed, and the current queue position of the
benchmark.

C. Kubernetes Operator

To automate the deployment and management process of
benchmark workload components, a Kubernetes operator [19]
is implemented. An operator is a software extension to
Kubernetes that makes use of custom resources to manage
applications and components, and employs a control loop [20]
to adhere to Kubernetes principles. Fig. 2 depicts a high-level
overview of Cloud-Native-Bench’s control loop. The controller
of an operator is a long-running program that continuously
watches the desired state of a Kubernetes object, and compares
it to the effective state of the object in the system. If the desired
state deviates from the effective state, the operator schedules
a reconciliation to steer the effective state in the direction of
the desired state, using idempotent and atomic operations. If
a reconciliation is unsuccessful, the reconciliation is retried or
requeued, so the desired state should eventually be obtained,
following the eventual consistency principle.

For example, when a new benchmark should be deployed,
the benchmarker creates a benchmark CR object by interacting
with the Kubernetes API. The controller notices the newly cre-
ated benchmark object and will assign the next queue position
to the benchmark CR. When a benchmark CR becomes first
in queue, the controller starts a reconciliation to create all the
necessary components of that benchmark. The reconciler then
interacts with the Kubernetes API to update the system state,



Fig. 3. Communication between operator and benchmark pod.

so the desired state can eventually be achieved. This effectively
automates the manual process of deploying and monitoring
benchmarks.

The decision was made to develop the operator using the
Rust [22] programming language as opposed to the Go [23]
programming language that is commonly used for Kubernetes
operators. Research shows that operators written in Rust can
reduce memory usage by 56.06% compared to the same
operator logic written in Go [24]. Rust is a highly performant
programming language without runtime or garbage collector.
Additionally, it is an inherent memory- and thread-safe lan-
guage, due to the rich type system and ownership model.
Instead of writing the communication with the Kubernetes API
from the ground up, the kube and k8s-openapi Rust crates are
used.

D. Communication Between Operator and Workload

The operator needs to be informed about the latest state of
the deployed benchmark workload to take actions according
to different states. The communication between the operator
and the workload is realized using gRPC [25]. gRPC is an
open source high performance remote procedure call (RPC)
framework used for inter-process or inter-service communica-
tion, without environmental restrictions. The communication
protocol schema is defined using Protocol Buffers [26] and is
easily adaptable. The communication between the operator and
a benchmark workload is shown in Fig. 3. Once the benchmark
workload pod has been deployed and enters the effective
running state, the workload sends a request to the operator,
informing that it is ready to perform the benchmark. The
operator will update the benchmark CR state from Pending
to Running and provide the workload with the result database
connection URL, that it can later use to store the results. Once
the workload has completed and the results are stored in the
database, the workload sends a request to the operator, that in
turn updates the CR state to Done, and the operator responds

with an acknowledge message. The operator performs a clean-
up procedure by removing all the components associated with
the benchmark, after which the CR state becomes Completed.

E. Storage

The benchmark results and the statistical analysis on these
results are stored in a PostgreSQL [27] database. PostgreSQL
is chosen due to its open source nature and broad feature set.
An SQL scheme is defined and the output of a benchmark
is parsed and transformed by the benchmark workload before
storing. This design choice is made to ensure that the system
remains highly extensible, creating the opportunity that custom
benchmarks can be executed without the need to adapt Cloud-
Native-Bench in any way. Without this design choice, each
additional custom benchmark would require an adaptation of
the components that are responsible for parsing and transform-
ing the output to the standardized format.

F. Analysis Runner

An important component of Cloud-Native-Bench is the
analysis runner. A comprehensive data analysis allows the
benchmarker to compare multiple benchmark results with each
other. Using a more traditional benchmarking method, gaining
insight into the results of finalized benchmarks would typically
require the benchmarker to manually gather all benchmark
results in order to perform a manual data analysis. This is a
repetitive and time-consuming task, that also can be error-
prone, for example, by accidentally interchanging multiple
benchmark outputs. The analysis runner fully automates this
process at the end of each benchmarking cycle by periodically
checking the results database for newly completed bench-
marks. When a newly completed benchmark is found, the
benchmark results are fetched and a Jupyter [28] notebook
is generated. This notebook contains the raw data of the
benchmark, as well as multiple statistical calculations, e.g.,
standard deviation and mean, and distribution charts, e.g.,
histograms and probability density function estimations using
kernel smoothing, that ease the comparison between bench-
mark results. As the final step in each benchmarking cycle, the
generated Jupyter notebook is stored in the results database by
the analysis runner.

G. Web Interface

To facilitate access to the benchmarking results by the
benchmarker, a web interface is created. This web interface
consists of a list of all completed benchmarks, and a dedicated
details page for each benchmark. An example of such a
benchmark details page is depicted in Fig. 4 and it allows
the benchmarker to download the benchmark’s raw data, as
well as the generated Jupyter notebook.

V. EVALUATION RESULTS

This section shows the ease-of-use of Cloud-Native-Bench
and how its automated benchmarking workflow compares to
a manual benchmarking workflow. The resource usage of the
system is evaluated and a demonstration shows the necessity
of performing benchmarks in cloud environments.



Fig. 4. Example of the web interface that displays a detailed overview of a
benchmark result.

Fig. 5. Schematic overview of a typical benchmarking workflow. Cloud-
Native-Bench automates four out of the seven activities involved in the process
of executing benchmarks.

A. Benchmarking Workflow Evaluation

A typical benchmarking workflow is depicted in Fig. 5 and
shows the activities that are fully automated by Cloud-Native-
Bench in green. After a benchmarker develops a benchmark, it
needs to be containerized. To be able to deploy the benchmark
using the traditional manual method, all the different Kuber-
netes manifest files, for each component involved in the bench-
mark, need to be defined. Using Cloud-Native-Bench, only
one Benchmark custom resource manifest file is necessary.
An example of such a benchmark custom resource manifest
file is given in Fig. 6. Prior to deploying the benchmark in
the manual setting, the benchmarker should verify that no
other benchmarks are currently running, to prevent that the
next benchmark is started before the current benchmark is

Fig. 6. An example of a benchmark custom resource manifest file. This
example will deploy a “virtual user” pod, simulating user behavior by
performing certain actions on a SUT.

completed. Running two or more benchmarks simultaneously
can cause incorrect or misleading results, due to the influence
that benchmarks may have on each other, and should therefore
be avoided. Cloud-Native-Bench monitors the current running
benchmark’s state and automates the consecutive execution of
benchmarks through the use of a queuing system. New bench-
marks are placed at the end of the queue. The time-consuming
task of collecting all the results and a statistical analysis is
also automated. Cloud-Native-Bench proves to streamline the
traditional benchmarking workflow by automating all time-
consuming and error-prone tasks.

B. Resource Overhead

To ensure the wide applicability of Cloud-Native-Bench,
particularly in low-resource environments such as edge com-
puting, the idle resource usage of each component is shown
in Table I. The total idle memory footprint of the system
is 88 MiB with a negligible idle CPU usage. It shows that
the components written in Rust have the least amount of
overhead, with an idle memory usage of 6MiB and 2MiB for
the operator and web server respectively. The complete Cloud-
Native-Bench system proves to have no significant resource
usage overhead.

TABLE I
IDLE RESOURCE USAGE OF CLOUD-NATIVE-BENCH’S COMPONENTS

Technology Memory (MiB) CPU (milliCPU)
Operator Rust (kube) 6 1
Result DB PostgreSQL 27 3
Web server Rust (axum) 2 0
Analysis runner Python 53 1



Fig. 7. KDE chart that estimates the PDF of the throughput for httpd:2.4.57,
with a resource limit of 512MiB of memory and 75 milliCPU. The vertical
line indicates the mean throughput. This chart is one of the automatically
generated Jupyter notebook charts by the analysis runner.

Although the resource usage of Cloud-Native-Bench is
negligible, it is still advisable to run the operator on a separate
dedicated node to prevent any influence on the benchmark
results. In scenarios where benchmarks need to be performed
on highly constrained low-resource environments, such as edge
computing clusters, Cloud-Native-Bench has the capability
to be deployed on separate hardware to interact with the
Kubernetes API, rather than being deployed within the cluster
itself. Furthermore, it is possible to deploy certain components
in the cluster while deploying others to dedicated machines.

C. Demonstration

To demonstrate the usability of Cloud-Native-Bench, the
throughput of three different HTTP web server technologies
are benchmarked. Gaining insight into the throughput of dif-
ferent web server technologies enables the ability to choose the
most suitable web server technology for a specific use case, de-
pendent on the resource availability and environment. The first
tested web server is httpd, the Apache HTTP server [29], that
is being used by 31.5% [30] of the publicly available websites
as of writing. NGINX [31], the second tested web server, is
currently the most wildly adopted web server technology, used
by 34.2% [32] of all websites. The last tested web server, Static
Web Server [33], developed by Jose Quintana in Rust [22], is a
project that has significantly less popularity compared to httpd
or NGINX, due to its more limited functionality. Static Web
Server can be considered as a use-case-specific web server as
it is designed to be extremely lightweight and easy-to-use.

Multiple tools are available to test the throughput of a web
server, for example wrk [34] and ab [35], where the latter
is also known as ApacheBench. ApacheBench only supports
HTTP/1.0 and consequently requires a separate connection
for each request, adding a large amount of overhead. This
limitation is not present in wrk, and is therefore the chosen
load generator used in this demonstration.

Fig. 8. Comparison of the throughput of three HTTP web servers. All three
web servers have a limit of 512MiB of memory and 75 milliCPU.

To test the throughput of each web server, three container
images, one for each web server, are built. The base im-
ages used to build the three web servers are httpd:2.4.57,
nginx:1.25.1, and joseluisq/static-web-server:2.19. Each web
server uses their respective default configuration and hosts an
identical 1KiB static HTML file. To generate HTTP load on
the web servers, wrk uses ten concurrent connections spread
over two threads. To discover and compare the behavior of
the web servers under different environmental constraints, the
set of benchmarks is repeated under different memory and
CPU limits, by using Kubernetes resource limits. Each load
test runs for one minute and is repeated 100 times to be
statistical representative. The total runtime of all benchmarks
combined was ten hours, where a new benchmark needed to be
started every 100 minutes. This process was fully automated
by Cloud-Native-Bench without any human intervention. This
proves that the complete benchmarking process is streamlined
by using Cloud-Native-Bench.

Fig. 7 shows one of the charts that was automatically
generated by the analysis runner, and depicts a kernel density
estimation (KDE) chart that estimates the probability density
function (PDF) of the throughput of httpd:2.4.57 with resource
restrictions of 512MiB of memory and 75 milliCPU. The mean
throughput under these conditions is about 181 requests per
second.

A throughput comparison of the three web servers, with
their respective throughput distribution, is shown in Fig. 8. The
mean throughput for httpd, NGINX and Static Web Server is
about 181.5, 439.8 and 639.6 requests per second respectively.
These results show that using NGINX over httpd in this
particular use case improves the mean throughput by about
142%, and using Static Web Server even improves the mean
throughput by about 252%. Using Static Web Server would
thus require significantly less cloud resources for the same
amount of traffic and can therefore drastically decrease the
cost of hosting an application. This is proven by Fig. 9: it



Fig. 9. Comparison of the throughput of three HTTP web servers when the
CPU usage limit is increased from 25 milliCPU to 75 milliCPU.

shows that Static Web Server can provide about the same
throughput as httpd, with 1/3 of allocated CPU. These results
are especially insightful to choose a suitable web server
technology on highly constrained devices, such as cloud edge
nodes.

VI. FUTURE WORK

Despite Cloud-Native-Bench being an effective system that
addresses a lot of the traditional benchmarking problems, the
system can always be improved in the future. Below is a list
of features that are to be investigated to improve the overall
usability of Cloud-Native-Bench.

• Real-time resource usage: the system can be extended
with Prometheus [36] and Grafana [37] as a supplemen-
tary data storage and visualization tool, to extend the data
analysis possibilities and to get real-time resource usage
insights.

• Tracing tools: additional tracing tools or frameworks
can support the benchmarker in gaining insight into
benchmark results and discovering bottlenecks in large
scale applications. It should be investigated which tracing
tools are useful in the context of Cloud-Native-Bench and
how such tracing tools can be integrated with the system.

• Failed benchmark diagnostics: the system currently as-
sumes that benchmarks will not fail. This assumption
is fine in most scenarios, but there is always the pos-
sibility that a certain benchmark fails. The system cur-
rently ignores these failed benchmarks and starts the
next benchmark in the queue, without informing the
benchmarker that something went wrong. In the future
it can be useful to retry failed benchmarks and provide
the benchmarker with adequate diagnostics to debug the
issue when repeated failures occur beyond a specified
number of attempts.

• Priority based queue: the benchmark execution queue
is currently implemented as a First-In-First-Out (FIFO)
queue. As a result, it is only possible to influence the
execution sequence by applying the benchmark CRs to

the Kubernetes API in the order the benchmarks should
be executed. This can be solved by introducing a priority
based queuing system that allows the benchmarker to
prioritize certain benchmarks over others.

This paper proposes Cloud-Native-Bench with the main
focus being on the requirements, design and prototype im-
plementation of the system itself. In the future, the framework
will be used for large-scale comparative studies on different
cloud-native technologies and systems.

VII. CONCLUSION

Running a large set of benchmarks is typically a time-
consuming task, that involves manual interventions and active
monitoring of running benchmarks. In this paper, an open
source extensible benchmarking framework, Cloud-Native-
Bench, is proposed. This framework is implemented as a
Kubernetes operator and completely automates the process
of running benchmarks, gathering its data, and performing
statistical data analysis to enable the comparison of different
benchmarks. Deploying and configuring benchmarks is done
in a declarative way, and a queuing system manages consec-
utive execution of benchmarks without the need for human
interaction during the complete benchmark execution cycle.

Cloud-Native-Bench is a highly extensible benchmarking
system, that enables users to run standardized and custom
benchmarks that are fine-tuned to their specific business needs
and that fully integrate with the system without the need to
adapt the system in any way. The automated data analysis
greatly reduces the time spent to gather and parse different
benchmark outputs, and enables the benchmarker to gain
useful insights more swiftly.

The proposed system proves to have a negligible amount of
resource overhead in most scenarios, with a total idle memory
consumption of 88 MiB. This result is achieved by using the
Rust programming language instead of the Go programming
language that is more typically used to build Kubernetes
operators.

A set of tests show the ease-of-use of Cloud-Native-Bench
and the necessity of running benchmarks in cloud environ-
ments. Using the Rust based Static Web Server, developed
by Jose Quintana, proves to improve the mean throughput by
about 252% compared to httpd, the Apache HTTP server.

ACKNOWLEDGMENT

This work was partially supported by the Flemish Govern-
ment through FWO SBO (Strategic Basic Research) project
MOZAIK S003321N.

REFERENCES

[1] “Gartner Forecasts Worldwide Public Cloud End-User Spending 2023.”
[Online]. Available: https://www.gartner.com/en/newsroom/press-
releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-
user-spending-to-reach-nearly-600-billion-in-2023

[2] “Kubernetes.” [Online]. Available: https://kubernetes.io/
[3] “CNCF Annual Survey 2022 — Cloud Native Computing Foundation.”

[Online]. Available: https://www.cncf.io/reports/cncf-annual-survey-
2022/

https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
https://kubernetes.io/
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://www.cncf.io/reports/cncf-annual-survey-2022/


[4] “Cloud Native Landscape.” [Online]. Available: https://landscape.cncf.
io/

[5] M. Silva, M. R. Hines, D. Gallo, Q. Liu, K. D. Ryu, and D. Da Silva,
“CloudBench: Experiment automation for cloud environments,” in IEEE
International Conference on Cloud Engineering, IC2E, 2013, pp. 302–
311.

[6] M. B. Chhetri, S. Chichin, Q. B. Vo, and R. Kowalczyk, “Smart
cloudbench-Automated performance benchmarking of the cloud,” in
IEEE International Conference on Cloud Computing, CLOUD, 2013,
pp. 414–421.

[7] M. Van Kenhove, “idlab-discover/Cloud-Native-Bench: v0.1,” 6 2023.
[Online]. Available: https://doi.org/10.5281/zenodo.8101912

[8] S. Henning, B. Wetzel, and W. Hasselbring, “Reproducible Benchmark-
ing of Cloud-Native Applications With the Kubernetes Operator Pattern,”
in Symposium on Software Performance, SSP, 2021.

[9] S. Henning and W. Hasselbring, “Demo Paper: Benchmarking Scalabil-
ity of Cloud-Native Applications with Theodolite,” in IEEE International
Conference on Cloud Engineering, IC2E. Institute of Electrical and
Electronics Engineers Inc., 2022, pp. 275–276.

[10] “Theodolite.” [Online]. Available: https://www.theodolite.rocks/
[11] “cloud-bulldozer/benchmark-operator: The Chuck Norris of cloud

benchmarks.” [Online]. Available: https://github.com/cloud-bulldozer/
benchmark-operator

[12] “Ansible is Simple IT Automation.” [Online]. Available: https:
//www.ansible.com/

[13] “cloud-bulldozer/benchmark-wrapper: Python Library to run
benchmarks.” [Online]. Available: https://github.com/cloud-bulldozer/
benchmark-wrapper

[14] T. Yoshimura, R. Nakazawa, and T. Chiba, “ImageJockey: A frame-
work for container performance engineering,” in IEEE International
Conference on Cloud Computing, CLOUD, vol. 2020-October. IEEE
Computer Society, 10 2020, pp. 238–247.

[15] “kubestone/kubestone: Performance benchmarks for Kubernetes.”
[Online]. Available: https://github.com/kubestone/kubestone

[16] “Command line tool (kubectl) Kubernetes.” [Online]. Available:
https://kubernetes.io/docs/reference/kubectl/

[17] “Custom Resources Kubernetes.” [Online]. Available: https://kubernetes.
io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

[18] “Helm.” [Online]. Available: https://helm.sh/
[19] “Operator pattern Kubernetes.” [Online]. Available: https://kubernetes.

io/docs/concepts/extend-kubernetes/operator/
[20] “Controllers Kubernetes.” [Online]. Available: https://kubernetes.io/

docs/concepts/architecture/controller/
[21] “kube.” [Online]. Available: https://kube.rs/
[22] “Rust Programming Language.” [Online]. Available: https://www.rust-

lang.org/
[23] “The Go Programming Language.” [Online]. Available: https://go.dev/
[24] M. Sebrechts, T. Ramlot, S. Borny, T. Goethals, B. Volckaert, and

F. De Turck, “Adapting Kubernetes controllers to the edge: on-demand
control planes using Wasm and WASI,” in Proceedings of the 2022 IEEE
Conference on Cloud Networking, CloudNet. Institute of Electrical and
Electronics Engineers Inc., 2022, pp. 195–202.

[25] “gRPC.” [Online]. Available: https://grpc.io/
[26] “Protocol Buffers Documentation.” [Online]. Available: https://protobuf.

dev/
[27] “PostgreSQL: The world’s most advanced open source database.”

[Online]. Available: https://www.postgresql.org/
[28] “Project Jupyter.” [Online]. Available: https://jupyter.org/
[29] R. T. Fielding and G. Kaiser, “The Apache HTTP Server Project,” IEEE

Internet Computing, vol. 1, no. 4, pp. 88–90, 1997.
[30] “Usage Statistics and Market Share of Apache.” [Online]. Available:

https://w3techs.com/technologies/details/ws-apache
[31] “NGINX - Advanced Load Balancer, Web Server, & Reverse Proxy.”

[Online]. Available: https://www.nginx.com/
[32] “Usage Statistics and Market Share of Nginx.” [Online]. Available:

https://w3techs.com/technologies/details/ws-nginx
[33] “static-web-server: A cross-platform, high-performance and asyn-

chronous web server for static files-serving.” [Online]. Available:
https://github.com/static-web-server/static-web-server

[34] “wg/wrk: Modern HTTP benchmarking tool.” [Online]. Available:
https://github.com/wg/wrk

[35] “ab - Apache HTTP server benchmarking tool.” [Online]. Available:
https://httpd.apache.org/docs/2.4/programs/ab.html

[36] “Prometheus - Monitoring system and time series database.” [Online].
Available: https://prometheus.io/

[37] “Grafana: The open observability platform — Grafana Labs.” [Online].
Available: https://grafana.com/

https://landscape.cncf.io/
https://landscape.cncf.io/
https://doi.org/10.5281/zenodo.8101912
https://www.theodolite.rocks/
https://github.com/cloud-bulldozer/benchmark-operator
https://github.com/cloud-bulldozer/benchmark-operator
https://www.ansible.com/
https://www.ansible.com/
https://github.com/cloud-bulldozer/benchmark-wrapper
https://github.com/cloud-bulldozer/benchmark-wrapper
https://github.com/kubestone/kubestone
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://helm.sh/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/architecture/controller/
https://kube.rs/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://go.dev/
https://grpc.io/
https://protobuf.dev/
https://protobuf.dev/
https://www.postgresql.org/
https://jupyter.org/
https://w3techs.com/technologies/details/ws-apache
https://www.nginx.com/
https://w3techs.com/technologies/details/ws-nginx
https://github.com/static-web-server/static-web-server
https://github.com/wg/wrk
https://httpd.apache.org/docs/2.4/programs/ab.html
https://prometheus.io/
https://grafana.com/

	Introduction
	Related Work
	Requirements
	Design and Implementation
	Architecture Overview
	Benchmark Custom Resource
	Kubernetes Operator
	Communication Between Operator and Workload
	Storage
	Analysis Runner
	Web Interface

	Evaluation Results
	Benchmarking Workflow Evaluation
	Resource Overhead
	Demonstration

	Future Work
	Conclusion
	References

