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Abstract: Human—Machine Interfaces (HMIs) have gained popularity as they allow for an effortless
and natural interaction between the user and the machine by processing information gathered from a
single or multiple sensing modalities and transcribing user intentions to the desired actions. Their
operability depends on frequent periodic re-calibration using newly acquired data due to their
adaptation needs in dynamic environments, where test-time data continuously change in unforeseen
ways, a cause that significantly contributes to their abandonment and remains unexplored by the
Ultrasound-based (US-based) HMI community. In this work, we conduct a thorough investigation of
Unsupervised Domain Adaptation (UDA) algorithms for the re-calibration of US-based HMIs during
within-day sessions, which utilize unlabeled data for re-calibration. Our experimentation led us to
the proposal of a CNN-based architecture for simultaneous wrist rotation angle and finger gesture
prediction that achieves comparable performance with the state-of-the-art while featuring 87.92% less
trainable parameters. According to our findings, DANN (a Domain-Adversarial training algorithm),
with proper initialization, offers an average 24.99% classification accuracy performance enhancement
when compared to no re-calibration setting. However, our results suggest that in cases where the
experimental setup and the UDA configuration may differ, observed enhancements would be rather

small or even unnoticeable.

Keywords: Human-Machine Interfaces; ultrasound; hand-gesture recognition

1. Introduction

In recent years, Human—Machine Interfaces (HMI) have been introduced into numer-
ous applications, including prosthesis control, robotic arm control, exoskeletons, smart
wheelchair control, smart environment control, and exergaming [1]. The goal of an HMI
is to transcribe user movements or movements intention into the desired action, thus
allowing for an effortless and natural interaction between the user and the machine. There-
fore, several types of sensing modalities, both of invasive and non-invasive natures, have
been developed for monitoring user’s specific activities, such as hand, eye, limb, and joint
movements. These types of sensing modalities measure different kinds of physiological
signals that can be classified into three main categories: bio-potentials, muscle mechanical
motion, and body-motion signals [2]. In order to accomplish their goal, HMIs leverage a
wide variety of algorithms, ranging from simple thresholding to complex machine learning
algorithms, for processing these different sensing modalities.

In the medical field, HMIs are introduced in rehabilitation and assistive technologies.
Rehabilitative technologies aim to restore impaired motor function in individuals with
motor disabilities (within the limits of each individual’s disability) in order to gradually
enable re-participation in activities of daily living, whereas assistive technologies attempt
to allow an individual with motor disabilities to perform motor functions that are beyond
their motor capabilities. In medical HMIs, bio-potentials such as electroencephalogram
(EEG) [3], electromyogram (EMG) [4,5], and electroocullogram (EOG) [6]—generated by
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electrical sources within the human body and thus reflecting the function of organs by
means of electrical activity—have been extensively utilized. Furthermore, there is a ongoing
interest in signals that monitor gross muscle motion, such as force myography (FMG) [7]
and mechanomyography (MMG) [8], and muscle-tendon movement such as electrical
impedance tomography (EIT) [9] and medical ultrasound [10]. Hybrid HMIs have also
been developed [11-13], which exploit complementary information of different sensing
modalities and thus allow for improved control but come at the expense of increasing the
complexity of the HMI.

Regarding all biological signals, the most widely employed sensing modality is surface-
electromyography (sEMG) signals, a bio-potential that directly measures the electrical
activity generated during voluntary contraction, since they can be easily acquired non-
invasively and provide an intuitive control strategy to reproduce the function of a biological
limb [2]. On the other hand, Ultrasound-Based (US-based) HMIs remain vastly unexplored
compared to their sEMG counterparts, despite ultrasound sensing techniques providing
a non-invasive framework for monitoring deep tissues inside the human body with high
temporal resolution and sub-millimeter precision. In the context of US-based HMIs, two
sensing modalities are commonly employed, namely, B-mode ultrasound and A-mode
ultrasound [10]. Both modalities utilize a device, a transducer made from piezoelectric
crystals that is capable of both transmitting and receiving US waves [14]. In B-mode
ultrasound, phased-array transducers are utilized in order to synthesize a 2D image of the
human tissues through either the combination of simultaneous emission of acoustic beams
and software beam-forming or by sweep time control of the acoustic beam; whereas, in A-
mode ultrasound, the simplest US sensing technique—a single transducer element—scans
a line through the human body and the received echoes are plotted as a function of depth.
Currently, research interest has shifted towards A-mode ultrasound sensing as it has been
demonstrated that using a set of sparsely selected scanlines instead of the full imaging
array does not hinder the HMI'’s performance [15,16]. The benefits of utilizing a reduced
number of scanlines, such as reduced computational complexity and power consumption
as well as miniaturization of the instrumentation, have motivated the proposal of novel
US acquisition systems [17] and recent advancements in the development of flexible fully
printed transducers targeting medical applications [18].

The aforementioned characteristics of ultrasound as a sensing modality can intuitively
explain the superiority of US-based HMIs for simultaneous proportional control compared
to their sSEMG counterparts, as it has been shown in numerous works [19,20]. More recent
works include a semi-supervised framework, featuring a Sparse Gaussian Process model
and principal component analysis for operating a prosthetic device with two degrees of
freedom (hand grasp and wrist rotation) [21] and a novel portable US armband system
with 24 channels with a multiple receiver approach, which allowed for simultaneous and
proportional control of 3-DoF and 4-DoF in an online and offline setting, respectively [22].
Except from simultaneous and proportional control, a promising application of US-based
HMIs is hand gesture recognition. In [23], the authors used both a novel multi-task deep
learning framework and a multi-output Gaussian process for the simultaneous estimation
of wrist rotation angle and recognition of finger gestures. In a more recent work, Liu
et al. [24] proposed an algorithm based on a Long Short-Term Memory framework for
the recognition of handwritten digits (dynamic gesture recognition) based on A-mode
ultrasound sensing.

However, there are several drawbacks that hinder the application of the aforemen-
tioned HMIs in practical applications:

1. Collecting large datasets may by feasible in laboratory conditions but remains imprac-
tical for real-life scenarios, a strict requirement for conventional ML /DL algorithms
known for their data-hungry nature [25].

2. Itis both cost- and time-inefficient to collect representative datasets and, thus, most
datasets are well-suited only within a pre-defined context. For example, the perfor-
mance of a classifier significantly drops when tested on new arm positions [26,27].
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3. Itis assumed that dataset samples are i.i.d. sampled from the same distribution, but
in real-life scenarios, the test-time distribution quickly diverges from the distribution
with which the model was initially trained. Indicative causes are muscle fatigue [28]
and sensor donning and doffing [29].

4. The musculoskeletal differences between individuals hinder the interoperability of
the HMI leading to only subject-specific solutions [30].

In an effort to enhance the robustness of a US-Based HMI, the authors of [31] examined
the potential of adaptive learning using A-mode ultrasound sensing on mitigating the per-
formance deterioration induced by muscle fatigue. Thus, they compared the performance
between conventional adaptive ML algorithms and an adaptive convolutional neural net-
work, in which, in contrast to the former, both the feature extractor and the classifier part
of the network had adaptability capabilities. In order to compare their performance, they
instructed subjects to perform 15 gestures (their selection was inspired by the prominent
NinaPro Database [32], extensively used as a benchmark by the sEMG-based HMI research
community) once, which corresponds to one repetition, for a total of 16 repetitions. All
16 repetitions were performed without any rest to enforce muscle fatigue. The first three
repetitions were used for training, the fourth repetition was used for testing, and each one
of the remaining repetitions was used as a separate testing phase. During each testing
phase, the predictions as well as the embeddings of the test samples were retained for
obtaining both pseudo-labels and mean class embeddings used for updating the feature
extractor and classifier of the network separately. By updating their network, they were
able to achieve a significant 26.79% improvement in accuracy during the late stage of
muscle fatigue. In their work, the classifier is updated in order to adapt to the test-time
distribution of the data, which differs from the data distribution that the classifier was
initially trained on.

This gap between training and test—time distributions is encountered in various do-
mains and is often referred as concept drift in the literature [33,34]. Regarding US-Based
HMISs, one can easily construct cases where the concept drift is expected to be substantially
larger than the others, i.e., multiple days of the HMI being unused, subjects with large
anatomical differences, and multiple donning and doffing of the sensors. All the aforemen-
tioned factors constitute a challenging environment for the development of robust US-based
HMlIs. Compared to the US-based HMI research community, the sSEMG-based HMI research
community has made significant efforts for mitigating the aforementioned optimality gap.
For example, Cote Allard et al. proposed a transfer learning (TL) framework—inspired by
progressive neural networks and multi-stream adaptive batch normalization—that could
take advantage of multiple small datasets, allowing models to generalize well to new sub-
jects by utilizing a single repetition from each gesture [35]. Unfortunately, TL techniques
require the user to manually annotate the data acquired for re-calibrating the HMI. A more
appealing scenario is to be able to re-calibrate an HMI by using newly acquired unlabeled
data. This possibility is offered by Unsupervised Domain Adaptation (UDA) algorithms
that take advantage of an initial labeled dataset in order to adapt a classifier to newly
unlabeled data that are sampled from a similar but different distribution.

UDA algorithms have achieved remarkable results in computer vision tasks, and
notable performance enhancements have also been demonstrated in inter-session re-
calibration of sSEMG-based HMIs by using Adaptive Batch Normalization (AdaBN) [36]
and by the incorporation of domain-adversarial training in a self re-calibrating neural
network [37]. Their aforementioned success and unique advantages make them a perfect
candidate for exploration in different sensing modalities. In this work, we investigate the
effectiveness of a wide variety of UDA algorithms in the re-calibration process of a US-
based HMI. The application of UDA in a particular domain is not a straightforward process
and requires experimentation for the optimization of UDA algorithms hyperparameters,
design of discriminator networks used in domain-adversarial training algorithms, and
even the network architectures themselves in order to fully leverage their capabilities. For
our purpose, we used the Ultra-Pro dataset [23], which, to the best of our knowledge, is the
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only publicly available dataset. Compared to the induced muscle fatigue study [31], the
Ultra-Pro dataset provides a challenging benchmark since all gestures are performed with
concurrent wrist rotation and there are no intermediate data to bridge the gap between
different sessions of the same subject. For assessing the performance of the UDA algorithms,
we introduce an adaptation scheme, resembling the adaptation schemes introduced in
the re-calibration of SEMG-based HMIs [37], where the newly acquired data arrive at two
different time frames, in a shorter and a larger one from when the original labeled data were
acquired, with the latter representing a more challenging scenario. Finally, we discovered
that with the appropriate initialization, several UDA algorithms are capable of enhancing
the performance of a US-based HMI compared to its non re-calibrated counterpart. How-
ever, in a realistic scenario, where the input modality, the data acquisition protocols, the
re-calibration period, or the pattern recognition algorithm may differ, it is more likely that
the performance enhancements would be rather small or not achievable at all.
The main contributions of the paper are the following;:

1. A thorough examination of unsupervised domain adaptation algorithms for the
re-calibration of US-based HMIs, where extensive guidelines for optimizing their
performance in the field of US-based hand gesture recognition are provided. We ex-
amine domain-adversarial algorithms such as Domain Adversarial Training of Neural
Networks (DANN) and its variant, Virtual Adversarial Domain Adaptation (VADA),
where cluster assumption violation is incorporated in its optimization objective, as
well as the non-conservative UDA algorithm, in which source domain performance
is ignored, such as decision boundary refinement training with a teacher (DIRT-T),
which uses VADA as initialization, and SHOT, which is also a source-data agnostic
algorithm. To the best of our knowledge, this is the first time UDA algorithms have
been applied to this field.

2. Anew CNN-based architecture, featuring 87.92% less parameters from the state-of-the
art model for US-based simultaneous estimation of wrist rotation angle and prediction
of finger gestures, suitable for a UDA setting without any performance degradation
on the primary task.

3. Abenchmark for performance comparison of different architectures on the Ultra-Pro
dataset, simulating a realistic scenario where the HMI will need to be operable shortly
after user data are collected.

4.  Insights about the performance of each UDA algorithm, with DANN (a domain-
adversarial training algorithm) offering a 24.99% average performance enhancement
and systematically improving the HMIs performance after re-calibration for all sub-
jects and sessions. Unfortunately, we discovered that all UDA algorithms examined
are unable to fully restore the HMI's operability, even though newly acquired data
for re-calibration were obtained from different within-day sessions, rendering them
inappropriate for re-calibration purposes.

The rest of the paper is organized as follows. In Section 2, we introduce our methods,
which include the different domain adaptation algorithms examined as well as our per-
formance comparison benchmark on the Ultra-Pro dataset and the proposed adaptation
scheme for the re-calibration of US-based HMIs tailored for UDA algorithms. In Section 3,
we introduce our proposed CNN-based architecture and explain why modifications were
deemed necessary for its suitability in a UDA task. In Section 4, we describe our exper-
imental setup, which includes a brief description of the Ultra-Pro dataset and training
details about both single-task and multi-task settings. In Section 5, we provide our results
regarding the re-calibration performance of the UDA algorithms as well as our performance
comparison results of the proposed architecture with the state-of-the-art in both single- and
multi-task settings. Finally, in Section 6, we conclude our work.
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2. Methods
2.1. Essential Background
2.1.1. Domain Adaptation

Domain Adaptation (DA) refers to the problem of leveraging knowledge from a do-
main with abundance of data, referred to as source domain D;, to improve the performance
of a model in a sample-scarce domain, referred to as target domain D;. Samples drawn
from the target domain could be either labeled or unlabeled, which yields to a Supervised
DA (SDA) problem or an Unsupervised DA (UDA) problem, respectively, with the latter
being the hardest scenario and the subject of this paper. In a re-calibration setting, UDA
algorithms can be utilized through treating the first session of each subject as their initial la-
beled dataset (source dataset Ds) and the rest of their sessions as newly acquired unlabeled
data (target dataset D). The ability of UDA algorithms to perform re-calibration in an
unsupervised manner makes them more appealing than TL techniques as they completely
remove the burden of manual data annotation from the user. DA algorithms can be mainly
categorized as divergence-based or domain adversarial training based. Regardless of their
nature, all DA techniques rely on the theoretical background provided in the work of
Ben-David et al. [38], which suggests that for effective domain adaptation to be achieved,
predictions must be made based on features that are domain-indistinguishable.

2.1.2. Commonly Used Notation

Due to the fact that domain adaptation is strongly related to source and target domain
feature distribution alignment, it is convenient to think of the classifier as a composite of
an embedding function and an embedding classifier # = g o f. The embedding function
fo : X = Z maps the input data distribution X to a feature space Z, whereas the embedding
classifier gy : Z — C maps the embeddings to C, where C denotes the (K — 1) simplex.
Furthermore, it is common to denote with D; the joint distribution over input x and one-hot
label y, and with X, the marginal input distribution. Both D; and X; can be analogously
defined for the target domain.

2.2. Domain Adaptation Algorithms
2.2.1. Conservative DA

In Conservative DA, we assume that the optimal classifier is the one that achieves
a low generalization error in both the source and target domains. Domain adversarial
training algorithms are based exactly on this assumption. Initially proposed in [39], domain
adversarial training of Neural Networks (NN) allows to train a neural network to jointly
learn domain-indistinguishable features that also maximize NN’s discriminability on the
main task. This behavior is achieved by adding a domain classifier head to the feature
extractor part of the network fy, for domain discrimination based on its embeddings, and a
gradient reversal layer between the feature extractor and the domain head that reverses
the gradients flowing through fy, which enforces feature distribution alignment in an
adversarial manner. DANN was later extended to Virtual Adversarial Domain Adaptation
(VADA) [40] through the incorporation of cluster violation assumption in a UDA setting.
In DANN, the goal is to minimize the following objective:

nbin Ly(0;Ds) + AqL4(6; Ds, Dy) (1)

where £, and £; in Equation (1) represent the classification and the domain loss, respec-
tively. DANN's inability to achieve robust and reliable adaptation under several conditions
led to the incorporation of constraints that rely on the cluster violation assumption in
its optimization objective [40]. Cluster violation assumption states that the input data
distribution X contains clusters and that samples belonging to the same cluster also belong
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to the same class. Thus, the decision boundaries of the classifier should not cross data-dense
regions. This behavior can be achieved via the incorporation of conditional entropy:

»CC(O/ Dt) = _ExNDt [hﬂ(x) 108(h9(x))] (2)

which forces the classifier to be confident about its predictions and, thus, pushes the
decision boundaries of the classifier further away from the target data. However, the
approximation of Equation (2) breaks if the classifier is not locally-Lipschitz, which means
that the classifier is allowed to abruptly change its predictions in the vicinity of the training
samples. Thus, the authors decided to explicitly incorporate the locally-Lipschitz constraint
via Virtual Adversarial Training (VAT) [41] by including the following additional term to
the objective function:

Ly(0,D) =Exp max D (hg(x)[[he(r +€)) (3)

which enforces the classifier to be consistent about its predictions inside the norm-ball
neighborhood of €. VAT loss can be seen as a form of regularization; thus, it can be
applied in both the source and the target domains. The combination of domain adversarial
training with the semi-supervised objectives introduced as additional constraints in order
to incorporate the cluster violation assumption in a domain-adversarial training setting
yields the following optimization objective:

mein Ly(0;Ds) 4+ AgL4(0; Ds, D) + AsLy(6; Ds)
+AHLc(6; D) + Lo(0; Dy)] 4)

commonly referred to as VADA. The terms A4, A5, and A; are hyperparameters and state-of-
the-art performance has been achieved across a wide variety of tasks by setting their values
to 1072,1, and 102, respectively.

2.2.2. Non-Conservative DA

In non-conservative DA, we assume that the optimal classifier in the target domain
does not coincide with the classifier that achieves a low generalization error in both the
source and the target domain. The authors of VADA [40] assume that the optimal classifier
still violates the cluster assumption in the target domain and that this is what causes
the aforementioned optimality gap. Their suggestion is to use VADA as initialization
and further minimize the cluster assumption in the target domain. In order to make the
optimization process parameterization invariant, the optimization is performed subject to
the constraint of the Kullback-Leibler (KL) divergence between hy and g pp being small
for x ~ Dy, which yields the corresponding Lagrangian:

mein At [ﬁt (Gn)] + ﬁtEwat [DKL (henq (X) | |h9n (x))} (5)

and can be approximated by a finite number of stochastic gradient steps. The number
of refinement steps is referred to as refinement interval B. The term L; is referred to as
target-side cluster assumption violation loss, and it is simply the sum of conditional entropy
loss and VAT loss in the target domain. The model kg, is interpreted as the sub-optimal
(teacher) model for the student model hg,. This optimization problem is referred to as
decision-boundary iterative refinement training with a teacher (DIRT-T) and, following the
authors suggestions, we use ADAM with Polyak averaging for its optimization.

2.2.3. Source HypOthesis Transfer (SHOT)

A more recent work [42] suggests that robust adaptation can be achieved by using
solely a model trained on the source data. They rely on the assumption that the original
hypothesis learned from the source domain data is closely related to the optimal hypothesis
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in the target domain and, thus, should remain the same g; = ;. As a result, they propose
Source HypOthesis Transfer, which attempts to learn the target-specific feature extractor
module via minimizing the following objective:

L(ft; Xe,0t) = Lent(fr; Xt) + Lain(fr; Xt)

K
_‘BE(xt'?t)NXtXYt Z H[k:?t} 10g(h9(x) [k]) (6)
k=1

The first two terms combined form the Information Maximization (IM) Loss; the first
term is the conditional entropy, whereas the second term is referred to as the fair-diversity
objective L;;,, which enforces the classifier to predict all classes in the target domain with
equal probability:

K
Lyiv(hg; Xt) =Y Prlog px 7)
k=1
1
= Dk (p, K1K> —logK 8)

where p = Ey,cx, [hp(x)] is the mean output embedding vector. The final term (Equation (6))
introduces a self-supervised objective, and stems from the observation that the IM Loss
has the tendency to assign samples that result in low-confidence classifier predictions
to the wrong clusters. At the beginning of each epoch, class prototype embeddings are
computed and each sample is assigned with a pseudo-label based on the minimal distance
of its embedding from the class prototypes. Class prototypes are used for generating
pseudo-labels instead of the classifier predictions as they can be noisy due to domain shift.
Prototype embeddings are computed from the classifier’s prediction, but in the following
epochs, they are updated using the pseudo-labels obtained in the previous epoch in order
to obtain new pseudo-labels. In this work, pseudo-labels are updated for five epochs but,
according to the authors of SHOT, sufficiently good results can be obtained by updating
the pseudo-labels once.

2.3. Performance Comparison Benchmark

In order to allow for a fair performance comparison between our proposed architecture
and the current state-of-the-art (as implemented by us), we propose a benchmark. The
motivation behind providing results of our own implementation of the current state-of-the-
art is due to the limited training details provided in the respective work, which hinders
the application of a standardized benchmark. To begin with, in order to allow for a fair
comparison, we performed the same train—validation—test split and also treated each session
separately, following the original paper [23].

We also considered it crucial to train multiple models for each experiment, as con-
clusions drawn from a single trial can rather be pessimistic or optimistic. Thus, for each
architecture and task in hand, 10 different models were trained for each session of the
Ultra-Pro dataset using different random seeds. The seeds were sampled from a uniform
distribution with values ranging from 0 to 232 — 1 and were used for initializing python li-
braries in order to make the data shuffling and weight initialization processes deterministic.
The selected range captures all possible joint initialization values of the random number
generations of the utilized libraries, and a uniform distribution was used for their sampling
in order to avoid any bias. Since the seed number does not hold any physical meaning, the
selection of a uniform distribution is the most suitable choice. Finally, by using optimal
learning rates discovered for each architecture and task (see Appendix A), determined using
the validation datasets of the Ultra-Pro dataset, we followed the procedure described below
for comparing their task performance in each subject and session of the Ultra-Pro dataset:

1.  Tasks: repeat for each task (three in total) in hand.
2. Architecture: repeat for each architecture.
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Training details: Train 10 different models for each session of the Ultra-Pro dataset
by drawing seeds from the uniform distribution described previously in this section.
Each model is trained for 20 epochs using the following:

(a) A batch size of 16;

(b) ADAM as the optimizer;

(c) The predetermined learning rates (see Appendix A for details).

Evaluation:

*  Each trained model is tested on the corresponding test set.
*  Results are reported using the mean of the performance metric (depending on
the task) with standard deviation.

In this work, we are also interested in a performance comparison of the two architec-

tures in a multi-task setting, where a single model simultaneously infers the finger gesture
label as well as the wrist rotation angle. However, the proposed benchmark is not directly
applicable to the multi-task setting. Thus, in order to apply our benchmark to the multi-task
setting, we had to perform the following modifications to the overall procedure:

1.
2.

1-D Kernels: sizes= (51,23,8,

Architecture: Repeat for both architectures.

Multi-Task: Utilize both the class labels y. as well as the ground truth regression
values y, to train the architecture using the improved automatic weighting function.
For this part, a single neuron is connected in parallel to the classification head of the
network (see Figure 1) for the prediction of the wrist rotation angles.

Training details: Train 10 different models by sampling random seeds from the
uniform distribution described previously in this section. Each model is trained for
twenty epochs using the following:

(a) A batch size of 16;

(b) ADAM as the optimizer;

(c) The predetermined learning rates for the multi-task models (see Appendix A).
(d) Evaluation:

i Each model is tested in the corresponding test set. It is important to
note that in the multi-task setting, a model outputs both the gesture
label and the wrist rotation angle during inference.

ii. Results are reported using the mean of the performance metric with
standard deviation.

ya,
r d

L
[m]
=

Softmax 0
O
[ ]
]

FC with BN
Softmax

23, Max Pooling operators: size=(1,5), stride=(1,5) (B1,B2,B3)
for B1, B2, B3 and B4,

size=(1,2), stride=(1,2) (B4)

Figure 1. Our proposed CNN architecture, consisting of 4 distinct blocks, a fully connected layer,
and a Softmax layer. Each block consists of a convolutional layer, followed by a pre-activation batch
normalization layer; a max pooling layer; and, finally, a regular dropout layer with a forget rate of
p = 0.1. For each setting, modifications were made only after the last fully connected layer of the
network. Finally, leaky ReLU with a negative slope of 0.1 was used as the activation function.
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This standardized benchmark allows us to effectively compare the performance of
different architectures on the Ultra-Pro dataset without making use of the validation sets
and, thus, simulate a more realistic scenario while also avoiding any bias. However, it
is important to note that the validation sets were utilized for determining the optimal
learning rates for each architecture and task in hand. Furthermore, we also provide the
optimal learning rates for the current state-of-the-art model, which are not provided in the
respective paper [23]. Regarding the performance metrics of each task, we used classification
accuracy for evaluating the model’s performance on the task of finger gesture recognition
and the coefficient of determination R? for evaluating the model’s performance on the task of
wrist rotation angle estimation. The selection of the aforementioned metrics was based on
their use in relevant existing works [21-23].

2.4. Adaptation Scheme

As mentioned previously in Section 4.1, the Ultra-Pro dataset features three separate
sessions for each subject. Between consecutive sessions, the subjects were allowed to
rest for a reasonable amount of time, although not pre-determined as examining the
robustness of the HMI across multiple within-day sessions was not on the dataset’s creators’
initial intentions, in order to prevent muscle fatigue. In this work, in order to assess the
performance of UDA algorithms for the re-calibration of US-based HMIs, we introduce the
following adaptation scheme. First and foremost, we treat the first session of each subject
(only training data with labels) as its source dataset Dg; = D; and then treat the rest of
the subject’s sessions (only training data) as our newly acquired unlabeled data used to
re-calibrate the US-based HMI. This scheme allows us to create two adaptation scenarios
for the re-calibration of the HMI. In our first scenario, we attempt to re-calibrate the HMI
using data solely from the second session, whereas in our second scenario we attempt to
re-calibrate the HMI by using data solely from the third session. The latter represents a
more challenging scenario, since the time interval between the acquisition of the first and
the third session is larger and will consequently result in a larger domain shift.

This particular adaptation scheme will allow us to understand to what extent the UDA
algorithms could improve the performance of the HMI based on the time interval between
the moment the original labeled dataset was collected and the moment the acquisition of
newly unlabeled data for re-calibration occurred. Due to the within-day data acquisition
of all sessions, we will not be able to provide insights about the effect of UDA on the
re-calibration of an HMI for long-term enhancements, as previously demonstrated in
sEMG-based research [37]. However, the proposed adaptation scheme is sufficient for
obtaining insights about their performance enhancement capabilities and understand
if more research effort would be worthwhile. Finally, in order to establish a baseline
performance, i.e., when no unlabeled data are available for re-calibration, we used the
trained CNN-based modules (with the details provided in Section 4.3) of each subject’s
first session, i.e., our source dataset, and evaluated their performance on the rest of each
subject’s sessions. Thus, the results of the non re-calibrated HMIs on sessions 2 and 3 will
be referred to as non re-calibration results.

3. Proposed CNN Architecture

In this work, a new CNN architecture is proposed for the task of simultaneous wrist
rotation angle estimation and finger gesture prediction as well as for each task individually.
The CNN architecture for the classification task is illustrated in Figure 1. The architecture
consists of four distinct blocks, a fully connected layer (acting as a bottleneck), and a
Softmax layer. Furthermore, each block B consists of a convolutional layer, followed by a
pre-activation batch normalization layer [43], a max pooling layer, and a dropout layer
with a forget rate of p = 0.1 [44]. It is important to mention that pre-activation batch
normalization is also included in the fully connected layer of the network. Finally, we used
Leaky ReLU with a negative slope of 0.1 as the activation function [45].
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Following the work of [23], we also apply 1-D kernels, operating along the width
dimension, with a stride equal to the size of the kernel in the width dimension and a stride
of 1 in the height dimension. The sizes of the kernels for the convolutional layers of blocks
B1, B2, B3, and B4 are 51, 23, 8, and 4, respectively. Similarly to all other DNN architectures,
the trainable parameters of our network are learned in the training process by updating
them using gradient-based methods and backpropagation of error algorithm. The error is
associated with a loss function, which is estimated multiple times during training from a
reduced subset of the initial dataset, referred to as the batch, instead of the whole dataset in
order to accelerate the training process. Finally, the addition of batch normalization layers,
whose transformations rely on batch statistics, allows faster convergence of our network to
desirable weights for a wider range of learning rates.

The motivation behind the proposal of a new architecture is twofold; first and foremost,
we believe that by adopting design trends from models utilized in a UDA setting we will
encourage the formation of class-discriminative clusters and thus facilitate source- and
target-distribution alignment [42]. The need of class-discriminative features is highlighted
by the fact that discrepancy between the two domains can be minimized by simply mixing
samples from different classes, which will inevitably lead to degradation of the classification
performance [46]. The trends that we adopted in our network were the use of Leaky ReLU
as well as dropout layers in the feature extractor part of the network, which are commonly
used in network architectures regarding UDA in various fields [37,40]. The proposed
architecture’s ability to learn class-discriminative features is illustrated in Figure 2. Lastly,
we believe that by enhancing the model’s discriminative ability on the main task, i.e., the
classification of finger gestures, we will also be able to achieve better adaptation results.

t-SNE Visualization of extracted CNN features (Subject: 4 Session: 1)

Proposed architecture State-of-the-art architecture
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Figure 2. t-SNE visualization of the features learned from our network and the current state-of-the-art.
Our network adopts class-discriminative features, which help alleviate the domain shift in a UDA
setting, in contrast with the state-of-the-art model, which projects the samples to an 8192-dimensional
feature space and adopts more generic features. Thus, the state-of-the-art model is more prone to
mixing different class labels when learning domain-indistinguishable features in a UDA setting.

3.1. Improving the Original CNN Model

Our experimentation with the original CNN model [23] allowed us to identify two
main setbacks on its design. First and foremost, the original network is characterized by
a small receptive field, which influences the quality of the extracted spatial features, and
secondly, the connections from the extracted spatial features to the first fully connected
layer contribute most of the network’s learnable parameters. The dimensionality of the
original feature space is equal to 8192 (32 filters x 8 height x 32 width), and the first fully
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connected layer—in which neurons are trained to distinguish patterns of the extracted
spatial features—features 48 neurons. Each neuron in the fully connected layer is connected
to each individual feature and their importance is expressed through a corresponding
weight. Additionally, each neuron in the first fully connected layer also includes a bias
term. This results in a total of 393.264 learnable parameters (8192 features x 48 neurons
plus the corresponding 48 bias terms).

Based on our observations, we decided to experiment with the depth of the network.
This design choice was based on the fact that it is well known that deeper convolutional
neural network architectures are capable of capturing rich and more complex features of
the data [47]. Increasing the depth of the network was also deemed beneficial due to the
high resolution of our input data in the width dimension. Furthermore, by increasing the
depth of the network, we also managed to address the second setback we identified, as
the total number of learnable parameters in the first fully connected layer is significantly
reduced since the dimensionality of the proposed model’s feature space (a 256-dimensional
feature space compared to the 8192-dimensional feature space of the original model) is
significantly reduced. By increasing the depth of the network and experimenting with
different sizes of kernels and max pooling operators, we determined the appropriate depth
and layer parameters for our network by training all the different models on the sessions of
the Ultra-Pro dataset and evaluating their performance on the corresponding validation
sets. Finally, the derivation of the proposed model was finalized by the incorporation of
the aforementioned design techniques commonly employed in a UDA setting.

3.2. Computational and Time Complexity Analysis

The growing interest of DNN-based solutions is mainly due to two reasons: (a) ad-
vancements made in hardware, which allow us to train and deploy, and (b) the availability
of data. However, recent research efforts have focused on deriving optimal architectures
under user-defined constraints and, furthermore, deploying them in resource-constrained
devices such as mobile phones, drones, and robots [48-50]. Thus, we provide results
for commonly used metrics such as the number of floating point operations, multiply—
accumulate operations, and direct memory accesses to evaluate its computational efficiency
as well as the corresponding memory requirements for deployment (see Table 1). Further-
more, we also provide the same results for the original model.

Table 1. Computational efficiency and memory resources requirements for the proposed architecture.

Model MFLOPs MMACs MDMACs |nferenceTime Inference Time o 0 vp)
(ms) CPU (ms)
Proposed Model 87.77 43.97 4451 0.58 1.21 0.193
Original model 85.34 42,64 43.62 0.25 0.191 1.598

According to [48], our proposed CNN architecture is suitable for deployment in
resource-constrained devices since the number of floating point operations required for a
forward pass lies within the range of 10-150 MFLOPs. Furthermore, the inference time of
0.58 ms on our GPU and 1.21 ms on our CPU is suitable for the targeted applications since
latency for prosthetic control is suggested to be within the range of 100 to 250 ms [51]. With
our modifications, we are able to significantly reduce the model’s size, though at the cost of
increasing the number of floating-point operations, multiply—accumulate operations, and
direct memory accesses.

3.3. Real-World Applications of the Proposed CNN Architecture

Based on our computational complexity and memory resources analysis, our proposed
architecture is rendered appropriate for applications targeting recourse-constrained devices.
Thus, the possibility of potential integration to a prosthetic socket or a wearable armband is
offered. The proposed CNN architecture could be integrated in an assistive technology, by
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assisting amputees through transcribing their indented motions to commands and control
signals for operating a prosthetic arm, and in a rehabilitative technology, by enabling people
with motor disabilities (e.g., neuromuscular disorders) to gradually restore motor functions
within the limits of their disabilities through interactive means such as exergaming.

4. Experimental Setup
4.1. Ultra-Pro Dataset

The ultrasound-based adaptive prosthetic control (Ultra-Pro) dataset [23], is a publicly-
available dataset that features US RF data as well as SEMG and Inertial Measurement Unit
sensor data from the upper limb of four subjects (all transradial amputees), targeting the
task of simultaneous estimation of the wrist rotation angle and recognition of finger gestures.
The US RF data were captured using a customized armband, featuring eight evenly spaced
transducers operating at 5 MHz, driven by a customized ultrasound system [17]. Each
subject participated in three separate sessions. In each session, the subjects were instructed
to perform six finger gestures—namely, Rest (RS), Fine Pinch (FP), Key Grip (KG), Tripod
Grid (TG), Index Point (IP), and Power Grip (PG)—and each gesture was performed for
50 s with concurrent wrist rotation at a frequency of approximately 0.5 Hz. During the
execution of the instructed movements, the data streams generated from all sensors were
synchronously captured using custom specialized software. For a detailed description of
the dataset, we encourage readers to refer to the original paper [23].

4.2. Data Prepossessing

For preprocessing the RF US signals, we followed the standard procedure of time-gain
compensation, bandpass filtering, envelope detection, and log compression, adopting the
procedure and the hyperparameters provided in [52] with the exception of replacing the
commonly used Gaussian filter with a 101-tap bandpass FIR filter designed using the
window method (hamming window). The filter is characterized by a low and a high cutoff
frequency of 2 and 8 MHz, respectively. Following the work of [23], we used the processed
ultrasound signals as the input modality to all networks.

4.3. Training Details

For hand-motion recognition, i.e., a classification task, we compared the performance
of categorical cross-entropy loss and its variant with label smoothing [53]. For wrist rotation
angle estimation—i.e., a regression task—mean squared error loss was used. Furthermore,
we acknowledge the tedious process of determining optimal weights for each task in-hand
in a multi-task learning setting and, thus, we automatically update their weights by using
the loss function proposed in [54] for simultaneous hand motion recognition and wrist
rotation angle prediction. The selected loss function also considers the homoscedastic
uncertainty of each task [55], but the regularization term of each task 7 is modified to
R: = In(1 + ¢2). The updated term enforces positive regularization values and, as a
consequence, prevents loss from becoming negative during training.

5. Results

We considered it crucial to determine a fixed set of hyperparameters that can ensure
near-optimal performance across subjects and sessions in order to simulate a realistic
setting, where the HMI will need to be operable shortly after user data are collected. The
optimal hyperparameters were determined using Optuna [56] for each combination of
architectures (both ours and current state-of-the-art architectures [23]) and tasks in hand
(see Appendix A).

5.1. Results on Single-Task Models

In this set of experiments, we compared the performance between our proposed
architecture and the current state-of-the-art (our implementation) across all subjects and
sessions of the Ultra-Pro dataset on the tasks of wrist rotation angle estimation and finger
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gesture recognition individually. For the performance comparison, we used the benchmark
we proposed in Section 2.3. The results for finger gesture recognition (using cross entropy
and its variant with label smoothing as the loss function) and wrist rotation angle estimation
can be seen in Figures 3, 4, and 5, respectively.

Comparison of classification performance (different subjects - sessions)
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Figure 3. Comparison of finger gesture recognition performance in terms of accuracy between the
proposed CNN-based model and the model proposed by Yang et al. [23] in a single-task setting. The
red colored error bars represent standard deviations that exceed 2%.

Comparison of classification performance (w LS)(different subjects - sessions)
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Figure 4. Comparison of finger gesture recognition performance (with label smoothing) in terms of
accuracy between the proposed CNN-based model and the model proposed by Yang et al. [23] in a
single-task setting. The red colored error bars represent standard deviations that exceed 2%.

Comparison of regression performance (Multi-Task) (different subjects - sessions)

Model
ours
40 Yang

Coefficient of Determination R? (%)

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3
Subject - Session

Figure 5. Comparison of wrist rotation angle estimation performance in terms of coefficient of
determination R? between the proposed CNN-based model the model proposed by Yang et al. [23] in
a single-task setting. The red colored error bars represent standard deviations that exceed 2%.
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According to our results, it is evident that our modifications to the original network,
which were deemed necessary in order to improve its performance in the UDA setting, do
not hinder its performance in either of the two tasks. In some cases—for example, the first
session of the second subject—we notice a 7.88% overall improvement in the task of finger
gesture recognition. However, we have noticed cases where the performance of our model
is inferior, for example, the second session of the third subject.

5.2. Results on Multi-Task Models

In this set of experiments, we evaluated the performance of our proposed architecture
for the task of simultaneous wrist rotation angle prediction and finger gesture classification.
The results for simultaneous finger gesture recognition and wrist rotation angle estimation
for the multi-task variants can be seen in Figures 6 and 7, respectively.

Comparison of classification performance (different subjects - sessions)
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Figure 6. Comparison of finger gesture recognition performance in terms of accuracy between the
proposed network and the network proposed by Yang et al. [23] in a multi-task setting using the
improved automatic weighting loss function. The red colored error bars represent standard deviations
that exceed 2%.

Comparison of regression performance (Multi-Task) (different subjects - sessions)
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Figure 7. Comparison of wrist rotation angle performance in terms of coefficient of determination R?
between the proposed network and the network proposed by Yang et al. [23] in a multi-task setting
using the improved automatic weighting loss function. The red colored error bars represent standard
deviations that exceed 2%.

As we can see in Figure 7, there is a substantial difference between the performance
of our model compared to the performance of the original model on the wrist rotation
angle estimation when using the improved loss function for automatic weighting of each
task. These results indicate the need for an additional hyperparameter <y, introduced in
the original paper [23], included in the automatic weighting loss function for favoring
the regression task (wrist rotation angle estimation) over the classification task. The need
for a hyperparameter violates the whole purpose of using an automatically weighed loss



Sensors 2024, 24, 5043

15 of 21

function. Instead, our model is able to achieve a better balance between the two tasks
without the need of any additional hyperparameter.

5.3. Results on UDA

In the last set of our experiments, we evaluated the performance of all different domain
adaptation algorithms on the two adaptation scenarios, introduced in Section 2.4. We have
established our baselines for the non re-calibration cases, i.e., where no newly acquired
data are available for re-calibration of the HMI, by inferring the best first-session models
from our single-task experiments to the test dataset of the rest of each subject’s sessions.
For the experimentation phase, we used the validation sets of the corresponding adaptation
scenarios and monitored each individual loss term as well as the validation accuracy in
order to evaluate different configurations and hyperparameters for the UDA algorithms.
This was deemed crucial due to the UDA algorithm’s sensitivity to initialization. During
our experimentation with domain-adversarial-based algorithms, i.e., DANN and VADA,
we derived three important conclusions:

1.  We found that the default hyperparameters, suggested by the corresponding authors,
were the optimal hyperparameters for our case (See Appendix A). Furthermore, after
several experiments with mini-batch gradient descent and its variants, we discovered
that the recommended optimization algorithms with our pre-determined learning
rates (for the single-task models) yielded the best results.

2. The process of jointly learning domain-indistinguishable features from both source
and target domains was benefited by the use of complex discriminator networks.
Through experimentation with different domain discriminator networks, we discov-
ered that the optimal discriminator network for re-calibration of a US-based HMI
featured three hidden layers, with 32, 24, and 16 neurons each.

3. We found that considering domain adversarial training with what is traditionally
known as the feature extractor part of the network in CNN-based architectures, i.e.,
the network’s layers before the fully connected layers, leads to sub-optimal results
and it is beneficial to perform domain adversarial training in order to enforce feature
distribution alignment in the first fully connected layer of our network (see Figure 1).
The selection of the first fully connected layer as the feature space yielded a 48-
dimensional space. The consideration of a lower-dimensional feature space can also
be observed in the experimental setup of SHOT [42].

For our SHOT experiments, we selected the first-session best models trained using
label smoothing from our single-task experiments for initialization, as recommended by the
authors of SHOT [42]. Furthermore, we discovered that the optimal learning rates used for
learning the target-specific feature extractor module coincide with the learning rates used
to train the initialization modules. Moreover, we followed the authors’ suggestions and
adopted mini-batch gradient descent with a Nesterov momentum of 0.9 and a weight decay
of 1073 for updating the weights using backpropagation. At this point, it is important to
note that due to our concerns about the optimization objective of SHOT, we considered
two different cases. In the first case, we treat the SHOT optimization objective as the sum
of information maximization loss and a self-supervised objective, whereas in the second
case, we treat each term of the SHOT’s objective function independently, since they can
represent self-sufficient objectives (for hyperparameters and details, see Appendix A).

In our last set of experiments, we decided to include the normalized first principal
components of the source and target’s domains samples as supervisory signals in the
optimization objective of DANN. The selection of the normalized principal component as
a supervisory signal was based on the fact that it is linearly related to the wrist rotation
angle and can also be obtained easily in an unsupervised manner [57]. Our motivation
was to investigate if the performance of DANN could be augmented by the incorporation
of two auxiliary tasks, i.e., estimating the wrist rotation angle in both the source and the
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target domains. The incorporation of the two auxiliary tasks in DANN yields the following
optimization objective:

n‘\gn »Cy (9} Ds) + A [»Crfsource (0; Ds) + »Crftarget (6; Dt)] + )\d»cd (6} D, Dt) (9)

where A, is a hyperparameter for controlling the influence of the two regression objectives
during domain-adversarial training, which was set to 0.35. We also performed experiments
using the ground truth regression labels; in this case, the hyperparameter was set to 0.45.
We will refer to the results of DANN with self-supervision and ground truth wrist rotation
angles as DANN SS and DANN GT, respectively. Finally, since the normalized principal
component is an approximation of the true wrist rotation angle, we used mean absolute
error instead of mean squared error in order to mitigate the influence of possible outliers.

Finally, model selection for each UDA algorithm was performed by selecting the
weights that minimized its corresponding training loss. The accuracy results of the different
UDA algorithms are presented in Table 2.

Table 2. Re-calibration accuracy results of Unsupervised Domain Adaptation algorithms.

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3
No Re-calibration 0740 0238 0264 0879 0291 0202 0.684 0291 0349 0482 0482 0.336
DANN - 0.287  0.402 - 0.395  0.247 - 0.316  0.396 - 0.580  0.428
DANN (w LS) - 0293  0.322 - 0.258  0.231 - 0342 0415 - 0.588  0.397
VADA - 0.313  0.380 - 0224 0.182 - 0316 0.371 - 0542  0.398
VADA (w LS) - 0.266  0.376 - 0356  0.235 - 0337 0415 - 0.611  0.408
DIRT-T - 0282  0.428 - 0.340 0.235 - 0.317  0.396 - 0.644 0435
SHOT (original) - 0.200  0.295 - 0242 0,178 - 0302  0.297 - 0529  0.378
SHOT (ours) - 0213 0.311 - 0.240  0.180 - 0.307  0.303 - 0.531  0.382
DANN-GT - 0262  0.367 - 0322 0.200 - 0362 0.438 - 0571  0.371
DANN-SS - 0.256  0.287 - 0.407 0.238 - 0.341 0.442 - 0.351 0.442

Bold entries indicate the best re-calibration results for each adaptation scenario.

From the obtained results, we drew the following conclusions:

1.  The algorithms that rely on domain adversarial training, i.e., DANN and VADA,
perform better than SHOT, which is a source-data agnostic UDA algorithm. This
means that in the case where the domain shift is large, it is beneficial to jointly learn
domain-indistinguishable features and maximize classifier’s discriminability on the
primary task.

2. Itis beneficial to use DIRT-T to further minimize target-side cluster assumption in
cases where the domain shift is small—for example, both adaptation scenarios of
subject 4—but does not always guarantee better results.

3.  Compared to all the UDA algorithms, DANN offers the greatest performance en-
hancements with an average improvement of 24.99%. Unfortunately, re-calibration
using SHOT can even have a negative impact on the performance of the HML

4.  Incorporation of the wrist rotation angle as a supervisory signal in the DANN objec-
tive, either by using the ground truth values or by obtaining them in an unsupervised
manner by utilizing the normalized first principal component, does not lead to better
results than re-calibrating the HMI by solely using DANN.

6. Conclusions and Future Work

Inspired by sSEMG-based HMI research, we investigated the possibility of re-calibrating
US-based HMIs using unlabeled data from different within-day sessions by employing
state-of-the-art UDA algorithms. This is a more challenging task than making a classifier



Sensors 2024, 24, 5043

17 of 21

adapt to muscle fatigue [31], where no continuous stream of data is available for continual
adaptation, in a more demanding dataset featuring concurrent wrist rotation. For our
experiments, we introduced an adaptation scheme on the publicly available Ultra-Pro
dataset, which allows us to investigate the performance enhancements of UDA algorithms
through two adaptation scenarios based on the time interval between the initial label
dataset that was collected and the acquisition of unlabeled data used for re-calibration.
Our experimentation also led to the proposal of a new architecture, featuring 87.92% less
parameters than the current state-of-the-art. For effective performance comparison of the
two architectures, we introduced a benchmark that simulates a realistic scenario while
also avoiding any bias, where no validation set will be available and the HMI will need
to be operable shortly after user data are collected. Furthermore, we provide extensive
guidelines for the re-calibration of US-based HMIs using UDA algorithms and draw
important conclusions on their drawbacks and performance. According to our findings,
our proposed CNN-based architecture achieves similar performance with the current state-
of-the-art [23] while featuring only 50,582 trainable parameters instead of 401,382. Also,
by using DANN, a domain-adversarial based algorithm, we achieved a 24.99% average
performance enhancement and systematically improved the classification performance
of a US-based HMI compared to its non re-calibrated counterpart for all subjects and
sessions. However, our results indicate that in cases where the data acquisition process,
the re-calibration period, and the network architecture may differ and proper initialization
of the UDA algorithms may not be feasible, the observed enhancements would be rather
small or even not noticeable.

We believe that the findings of our work raise several research questions that need
to be addressed. To begin with, UDA algorithms require careful initialization in order
to fully leverage their capabilities and cannot fully restore the operability of a US-based
HMI. These results indicate the need for a online learning learning algorithm, capable of
adapting in dynamic environments where test-time data continuously change in unforeseen
ways. Furthermore, it is important to ensure that important information will not be lost
during the dynamic adaptation of the model, a common issue that is often referred to as
catastrophic forgetting [58]. To continue with, most of the aforementioned techniques rely
on backpropagation of error algorithm to update the network’s parameters, a non-local
and computationally intensive learning rule. Based on our observations, our main research
focus would be the development of an online continual learning algorithm, capable of
adapting to dynamic environments using local learning rules. Finally, we plan to collect
data in order to construct a representative dataset, featuring hand movements performed
in activities of daily living and multiple sessions for a better evaluation of the re-calibration
performance of different algorithms.
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Abbreviations
The following abbreviations are used in this manuscript:
HMI Human-Machine Interface
UDA Unsupervised Domain Adaptation
us Ultrasound
CNN Convolutional Neural Network
DANN Domain-adversarial Training of Neural Networks
EEG Electroencephalogram
EMG Electromyogram
EOG Electroocullogram
FMG Force Myography
MMG Mechanomyography
EIT Electrical Impedance Tomography
sEMG Surface-electromyography
ML Machine Learning
DL Deep Learning
NinaPro  Non-Invasive Adaptive Hand Prosthetics
TL Transfer Learning
AdaBN Adaptive Batch Normalization
Ultra-Pro  Ultrasound-based Adaptive Prosthetic Control
DA Domain Adaptation
SDA Supervised Domain Adaptation
VADA Virtual Adversarial Domain Adaptation
ADAM Adaptive Moment Estimation
VAT Virtual Adversarial Training
DIRT-T Decision Boundary Iterative Refinement Training with a Teacher
SHOT Source Hypothesis Transfer
SGD Stochastic Gradient Descent
Appendix A. Hyperparameters
Table A1l. Optimal learning rates for single-task models.
Task Finger Gesture Figure Gesture Wrist Rotation Angle
Recognition w/o LS Recognition w LS Estimation
Proposed model 0.0026 0.0035 0.0008
Original model 0.00011 0.00018 0.000079

Table A2. Optimal learning rates for multi-task models.

Learning Rate
Proposed model 0.0014
Original model 0.00012

Table A3. Hyperparameters for DANN-VADA configurations.

UDA Algorithm D°mai;‘dw'3ight Ixegfgez:‘;“ VAT Source As Ti;ﬁﬁt;tsiieff
DANN 0.1 - - -
DANN SS 0.1 0.36 - .
DANN GT 0.1 0.45 - -

VADA 0.1 - 1 102
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Table A4. Hyperparameters for SHOT.

UDA Algorithm Information Maximization Loss Self-Supervised Objective (B)
SHOT 1 0.1

Table A5. Hyperparameters for SHOT (our variant).

UDA Algorithm Conditional Entropy Fair Diversity Self-Supervised Objective (B)

SHOT 1.0 0.7 0.1
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