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Abstract: Interest in deploying deep reinforcement learning (DRL) models on low-power edge devices,
such as Autonomous Mobile Robots (AMRs) and Internet of Things (IoT) devices, has seen a significant
rise due to the potential of performing real-time inference by eliminating the latency and reliability issues
incurred from wireless communication and the privacy benefits of processing data locally. Deploying
such energy-intensive models on power-constrained devices is not always feasible, however, which has
led to the development of model compression techniques that can reduce the size and computational
complexity of DRL policies. Policy distillation, the most popular of these methods, can be used to first
lower the number of network parameters by transferring the behavior of a large teacher network to a
smaller student model before deploying these students at the edge. This works well with deterministic
policies that operate using discrete actions. However, many real-world tasks that are power constrained,
such as in the field of robotics, are formulated using continuous action spaces, which are not supported.
In this work, we improve the policy distillation method to support the compression of DRL models
designed to solve these continuous control tasks, with an emphasis on maintaining the stochastic nature
of continuous DRL algorithms. Experiments show that our methods can be used effectively to compress
such policies up to 750% while maintaining or even exceeding their teacher’s performance by up to 41%
in solving two popular continuous control tasks.

Keywords: policy distillation; model compression; DRL; continuous action spaces; soft actor-critic;
edge computing

1. Introduction

Deep reinforcement learning (DRL) methods have been shown to be highly effective at
solving discrete tasks in constrained environments, such as energy-aware task scheduling [1]
and offloading [2,3] in edge networks, 5G beamforming and power control [4], and network
function (NF) replica scaling [5] in software-defined networking (SDN). These tasks can be
solved by performing a sequence of actions that are chosen from a discrete set, such as whether
to offload a task or process it locally. However, many task solutions cannot be effectively
decomposed in such a way, such as fluid movement in robotics pathfinding that allows precise
control [6], the continuous control of drone steering [7], the amount of resources to allocate
in micro-grids [8], and multi-beam satellite communication [9]. These types of problems are
referred to as continuous control tasks.

In reinforcement learning, the action space refers to the set of possible actions an agent
can take in a given environment. Different types of DRL algorithms have been developed
that can learn this type of behavior by working with continuous action spaces. In contrast
to discrete action spaces, that take the form of a limited (usually fixed) set of actions to
choose from, these algorithms can perform actions using real-valued numbers, such as the
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distance to move or how much torque to apply. This distinction has significant implications
for the types of tasks and the models used to solve them.

Discrete actions are best suited for tasks that involve some form of decision-making
in an environment with less complex dynamics. Take for example a wireless edge device
that optimizes for a stable connection while roaming between several access points (APs).
When modeled as a discrete task, the agent can decide at each time step to which from a
set of known APs it should connect. This might not always be the one with the strongest
signal, as the predicted path of the agent could align better with another AP. There are other
ways, however, to optimize a connection with an AP before having to initiate handover that
require more granular control, such as adjusting the transmission power and data rates.
Such problems, which require continuous control and parameter optimization, are best
modeled using continuous action spaces.

Learning continuous behaviors is often more challenging than learning discrete actions,
however, as the range of possible actions to explore before converging on an optimal policy
is infinite. A common approach is, therefore, to discretize the continuous actions into a
fixed set of possible values [4], but this can lead to a loss of accuracy when using a large step
size or drastically increase the action space and therefore learning complexity [10]. It also
removes any inherent connection between values that are close to each other, making it more
difficult to converge to an optimal policy. Another solution is to learn a policy that samples
actions from a highly stochastic continuous distribution, which can increase robustness
and promote intelligent exploration of the environment. This method is employed by the
Soft Actor-Critic (SAC) algorithm [11] for example.

Since many tasks are carried out on battery-powered mobile platforms, additional
constraints apply in terms of computing resources and power consumption. This can make
it practically infeasible to deploy large models on low-power edge devices that need to
perform such tasks. Some methods have been introduced to combat this, by reducing
the size and therefore computational complexity of the deep neural networks (DNNs)
through which the DRL agent chooses its actions, without decreasing its effectiveness
at solving the task. In DRL, one of the most popular model compression techniques is
policy distillation [12]. Here, a Deep Q-Network (DQN) can be compressed by transferring
the knowledge of a larger teacher network to a student with fewer parameters. Com-
pressing DRL models enables low-power devices to perform inference using these models
on the edge, increasing their applicability, reducing cost, enabling real-time execution,
and providing more privacy. These benefits have recently been demonstrated in the con-
text of communication systems and networks for the compression of DRL policies that
dynamically scale NF replicas in software-based network architectures [5].

However, the original policy distillation [12] method was only designed for policies
from DQN teachers, which can only perform discrete actions. Most subsequent research
has also continued in the same direction by improving distillation for teachers with discrete
action spaces [5,13–15]. DQNs are also fully deterministic, meaning that, for a given
observation of the environment, they will always choose the same action. But policies for
continuous action spaces are generally stochastic, by predicting a distribution from which
actions are sampled. In this paper, we therefore:

1. Propose three loss functions that allow for the distillation of continuous actions, with a
focus on preserving the stochastic nature of the original policies.

2. Highlight the difference in effectiveness between the methods depending on the policy
stochasticity by comparing the average return and action distribution entropy during
the evaluation of the student models.

3. Provide an analysis of the impact of using a stochastic student-driven control policy
instead of a traditional teacher-driven approach while gathering training data to fill
the replay memory.

4. Measure the compression potential of these methods using ten different student sizes,
ranging from 0.6% to 100% of the teacher size.
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5. Benchmark these architectures on a wide range of low-power and high-power devices
to measure the real-world benefit in inference throughput of our methods.

We evaluate our methods using an SAC [11] and PPO [16] teacher on the popular
HalfCheetah and Ant continuous control tasks [17]. Through these benchmarks, in which
the agent needs to control a robot with multi-joint dynamics, we focus on an autonomous
mobile robotics use case as a representative example of a power-constrained stochastic con-
tinuous control task. However, our methods can be applied to any DRL task defined with
continuous action spaces, including the previously mentioned resource allocation tasks.

These experiments demonstrate that we can effectively transfer the distribution from
which the continuous actions are sampled, thereby accurately maintaining the stochasticity
of the teacher. We also show that using such a stochastic student as a control policy while
collecting training data from the teacher is even more beneficial, as this allows the student
to explore more of the state space according to its policy, further reducing the distribution
shift between training and real-world usage. Combined, this led to faster convergence
during training and better performance of the final compressed models.

2. Background
2.1. Reinforcement Learning

Reinforcement learning (RL) is a machine learning technique in which an agent learns
a policy through trial and error by interacting with an environment, which is specified
using a Markov decision process (MDP). Unlike supervised learning, where models learn
from labeled examples, RL agents dynamically perform actions based on an observation of
the current state of the environment and receive feedback in the form of a numerical reward
signal [18] (as illustrated in Figure 1). By taking this action, the state of the environment
is updated to reflect the consequences. This mapping from states to actions is called
the policy, and the goal of the agent is to learn a policy that maximizes the (discounted)
cumulative reward over an episode, called the return. An episode is a sequence of states,
actions, and rewards that starts at the initial state and ends when a terminal state is reached.
In DRL, the policy takes the form of a neural network that takes the state as input and
outputs the action to be taken. This policy network is optimized using the reward signal
to encourage or discourage certain behavior.

RL Agent

Environment

Action

Observation

Reward

Figure 1. An illustration of the reinforcement learning loop.

MDPs can work with either discrete or continuous action spaces, depending on the
nature of the task. An illustration of both is given in Figure 2. For discrete tasks, the agent
can choose from a limited set of options, such as a cardinal direction to move in. In that case,
the neural network outputs a single value for each possible action and the policy consists
of either choosing the action with the highest value or sampling from the distribution of
these values. For continuous tasks, the agent can perform actions using a combination of
real-valued numbers, such as the distance to move or how much torque to apply. The goal
of this paper is to provide a method that can effectively compress such a policy network for
continuous action spaces.
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Figure 2. Discrete and continuous action spaces for stochastic DRL policies.

Continuous Action Spaces

DRL algorithms for continuous action spaces, such as PPO [16], A2C [19], SAC [11],
or TD3 [20], work by modeling the policy as a continuous probability distribution from
which actions are sampled. In practice, this almost always takes the form of a normal
distribution, as shown in Figure 2, so this will be our focus in this paper. The model then
predicts a mean value (µ) for each action, and the actual policy consists of sampling actions
based on this mean and a standard deviation (σ). This standard deviation can in effect be
used to control the trade-off between exploitation and exploration, using a lower or higher
value of σ, respectively. There are several methods for modeling σ, either algorithmically
or learned by the model. Depending on the implementation, either a representation is
learned that is dependent on the current state of the environment or one that simply
consists of a state-independent vector. In the state-dependent setting, the model can learn
to increase or decrease exploration for certain parts of the environment, depending on its
degree of uncertainty.

For most algorithms and environments, the learned σ should generally gradually
decrease during training as the certainty about the environment increases. Often, the de-
terministic policy that consists of always choosing the predicted mean action (with σ = 0)
will produce the best results during evaluation [11], but this is not always the case. For
environments that are either only partially observable (POMDPs), are non-deterministic,
or contain state aliasing, a stochastic policy can be optimal. Since the policy is trained
with this stochasticity in place, it is sometimes detrimental to remove it, as the policy has
learned to rely on it. This is especially true for SAC agents, which are trained to maximize
an entropy-regularized return and, therefore, to obtain the highest possible return while
also remaining as stochastic as possible.

2.2. Policy Distillation

The concept of knowledge distillation (KD) as a model compression method was
first introduced in the context of supervised learning [21] and later extended to deep
reinforcement learning (DRL) policies by Rusu et al. [12]. It works by compressing a deep
neural network (DNN) that is designated as the teacher and training a smaller student
network to emulate the output of the larger teacher. After training both on a more powerful
computing instance, the students can be deployed efficiently on low-power edge devices,
where the teacher would be too large to run effectively. Training data are collected by
recording the observations and the teacher’s network outputs in a replay memory (D)
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while interacting with the environment by choosing actions according to the teacher’s
policy. This replay memory is periodically refreshed to widen the distribution of states
encountered by the student.

The original policy distillation [12] method was teacher-driven, meaning that the policy
of the teacher is followed while collecting transitions to fill D. With a student-driven control
policy, the actions are chosen by the student while still storing the teacher outputs in D [13].
This reduces the distribution shift between the data the student is trained on and what it
encounters during testing, compared to the teacher-driven approach. Small inaccuracies
of the student policy can be an insignificant contribution to the distillation loss but have
a large impact on the task performance when this causes a transition to a part of the state
space that is not encountered when only following the optimal trajectories sampled from the
teacher policy. By following the student as the control policy instead, these mistakes will
also be encountered during training. This increases the distillation loss for those suboptimal
transitions and allows the student to learn how the teacher would recover from them. In
theory, those errors should not occur when the student is trained to accurately emulate the
teacher policy. But especially in the context of model compression, where the students are only
a fraction of the size of their teacher, this is a difficult objective to achieve without overfitting.
For some environments and teachers, this distribution shift is more pronounced than for
others, making the student-driven approach not necessarily automatically the best choice.
Sometimes, it can also lead to slower convergence because the first collected trajectories are
suboptimal, and it is more expensive during training since the network outputs of both the
teacher and the student are needed for each transition during data collection.

Instead of directly training a smaller network, the student only needs to learn how
to follow the final teacher policy, while the teacher still contains redundant exploration
knowledge about suboptimal trajectories [12]. This knowledge is necessary to find the
optimal policy but not to follow it, so it can be omitted from the student. In student-driven
distillation, the student also learns more exploration knowledge, but in practice, it will
still follow the final teacher policy relatively closely. Using overcomplete DRL models also
helps with alleviating optimization issues, such as becoming stuck in local minima, which
occur less when learning to emulate an existing network in distillation [12].

Policy distillation [12] distinguishes itself from imitation learning by not simply learn-
ing the best action given a state of the environment but also valuable secondary ‘dark’
knowledge that is expressed in all the teacher network outputs [22]. Since policy distilla-
tion [12] was originally developed for DQN teachers, the other network outputs correspond
to the state-action (Q) values for all possible discrete actions. These Q-values represent
the expected (discounted) return when taking that particular action in the current state,
with the highest value indicating the best action. The student is trained using the Kullback–
Leibler divergence (KL) between the teacher (qT) and the student (qS) outputs, with θS
the trainable student parameters and τ a temperature used to sharpen or smoothen the
teacher outputs:

LKL(D, θS) =
|D|

∑
i=1

softmax(
qT

i
τ
) ln(

softmax( qT
i
τ )

softmax(qS
i )

) (1)

In this original definition of the policy distillation [12] loss for DQN teachers, the net-
work outputs (q) correspond to a list of Q-values, one for each possible action. The softmax
function is used to transform these Q-values into a probability vector over the actions, to be
used as input for the KL-divergence. This results in Algorithm 1 and Figure 3.
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Figure 3. An illustration of the policy distillation algorithm.

Other work has extended this approach for use in combination with actor-critic teacher
algorithms for discrete action spaces by applying a similar KL-divergence loss between the two
policies directly [15] and optionally including an additional term to learn the critic values [14].
In this paper, we look at how to adapt this loss for the distillation of continuous actions.

Algorithm 1: Policy Distillation

Input: Fully trained teacher Mt, RL environment env
Output: Fully trained student Ms
Randomly initialize θs of Ms ;
Create empty replay memory D with size SD;
D ← update_memory(Mt, Ms, SD) ;
Function update_memory(Mt, Mc, steps):

for i← 0 to steps do
if env.done() then

o ← env.reset() // o = state observation
end
qC = Mc(o) // Control policy for action selection: can be

either the teacher (Mt) or student (Ms) network.
qT = Mt(o) // Teacher outputs are recorded in the replay memory
D ← replace oldest D0 ∈ D with (o, qT) ;
a← argmax(qc) ;
o ← env.step(a) ;

end
while Ms has not converged do

for i← 0 to batch_size do
Sample Di ⊂ D, with size (SD/batch_size) ;
qS = Ms(Di) ;
θs ← gradient descent using LKL(Di, θs) and qS (from Equation (1));

end
if teacher-driven then

// Generate trajectories according to the teacher policy.
D ← update_memory(Mt, Mt, re f resh_steps) ;

else if student-driven then
// Follow the student policy to generate transitions.
D ← update_memory(Mt, Ms, re f resh_steps)) ;

end
end

3. Related Work

Several existing papers have already employed some form of model distillation in
combination with continuous action spaces, but most of these methods do not learn the
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teacher policy directly, so they would not strictly be classified as policy distillation. Instead,
the state-value function that is also learned by actor-critic teachers is used for bootstrapping,
replacing the student’s critic during policy updates. This has also been described by
Czarnecki et al. [13] for discrete action spaces, but they note that this method saturates early
on for teachers with suboptimal critics. Xu et al. [23] take this approach for a multi-task
policy distillation, where a single agent is trained based on several teachers that are each
specialized in a single task, to train a single student that can perform all tasks. They first
used an MSE loss to distill the critic values of a TD3 teacher into a student with two critic
heads. These distilled values are later used to train the student’s policy instead of using the
teacher’s critic directly as proposed by Czarnecki et al. [13]. Lai et al. [24] propose a similar
method but in a setting that would not typically be classified as distillation, with two
students and no teacher. These two students learn independently based on a traditional
actor-critic RL objective but use the peer’s state-value function to update their actor instead
of using their own critic if the peer’s prediction is more advantageous for a given state.

Our work differs from these methods by learning from the actual policy of the teacher
instead of indirectly from the value function. This more closely maintains student fidelity
to their teacher [25] and allows us to more effectively distill and maintain a stochastic
policy. The state-value function predicts the expected (discounted) return when starting in
a certain state and following the associated policy [26]. This provides an estimate of how
good it is to be in a certain state of the environment, which is used as a signal to update the
policy (or actor) towards states that are more valuable. It is not intrinsically aware of the
concept of actions, however, so it cannot model any behavior indicating which actions are
viable in a given state. The student therefore still needs to learn their own policy under
the guidance of the teacher’s critic using a traditional DRL algorithm, preferably the same
that was used to train the teacher. Often, the critic requires more network capacity than the
actor, so using the larger critic from the teacher instead of the student’s own critic could
be beneficial for learning [27]. However, the critic is no longer necessary during inference
when the student is deployed and can therefore be removed from the architecture to save
resources, eliminating any potential improvement in network size. The general concept
of distillation for model compression, where the knowledge of a larger model is distilled
into a smaller one, does not apply here. Instead, these existing works focus on different
use cases, such as multi-task or peer learning, where this approach is more logical. We
therefore focus on distilling the actual learned behavior of the teacher in the form of the
policy, as our goal is compression for low-power inference on edge devices.

Berseth et al. [28] also distill the teacher policy directly in their PLAID method, but by
using an MSE loss to only transfer the mean action, any policy is reduced to being deter-
ministic. Likewise, their method is designed for a multi-task setting, without including any
compression. We included this method as a baseline in our experiments and proposed a
similar function based on the Huber loss for teachers that perform best when evaluated
deterministically, but our focus is on the distillation of stochastic policies. Learning this
stochastic student policy also has an impact on the distribution of transitions collected in
the replay memory when a student-driven control policy is used, so we compare this effect
to the traditional teacher-driven method.

4. Methodology

We propose several loss functions for the distillation of continuous actions based on
a combination of the teacher’s mean (µ) and standard deviation (σ), with an overview
given in Figure 4. Such a loss function should accurately define the similarity between the
two policies, based on the action distributions predicted by both networks, with a lower
value corresponding to the student matching their teacher’s behavior more closely. The
expected effectiveness of the proposed losses depends on whether the teacher performs best
in a deterministic or stochastic evaluation and whether a teacher-driven or student-driven
setting is used.
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Figure 4. An illustration of the proposed distillation losses.

4.1. Distilling the Mean Action

The first loss is the simplest, serving as a baseline that is mostly useful in combination
with deterministic teachers in the teacher-driven scenario or in case σ was not learned by
the model. It consists of only distilling the mean action that the student needs to follow,
resulting in a fully deterministic policy, similar to what is proposed by Berseth et al. [28].
The original policy distillation loss (Equation (1)) is based on the KL-divergence between
two probability vectors, which cannot be used for learning a single mean value for each
action [12]. Instead, we propose to use the Huber loss between the mean of the student (µS)
and the teacher (µT) for each action (a):

L(D, θS) =
|D|

∑
i=1

∑
a∈A

Huber(µS
i,a, µT

i,a, 1) (2)

Huber(a, b, δ) =

{
1
2 (a− b)2 for |a− b| ≤ δ,

δ ·
(
|a− b| − 1

2 δ
)

, otherwise.
(3)

We chose to make use of the Huber loss for this baseline instead of the MSE loss used
by Berseth et al. [28] since it is less sensitive to outliers and has a smoother slope for larger
values, resulting in it outperforming the MSE loss in our initial experiments.

4.2. Distilling the Mean Action and Its Standard Deviation

Some teachers perform better when actions are sampled stochastically, in which case
the student should also learn the value of σ to perform optimally. By learning when precise
action is required and when actions can be taken more stochastically, the agent can also
build a deeper understanding of its environment. This could be seen as a different form of
‘dark’ knowledge, similar to the distribution of alternative actions in policy distillation for
discrete action spaces [12]. Learning σ is even more important when using student-driven
policy distillation, as this allows the student to explore more of the state space to learn
multiple viable ways to obtain a high return, further enhancing its representation of the
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task dynamics. In effect, it enables the exploration–exploitation trade-off to apply in a
distillation context, where the mean action would focus purely on exploitation. This has
the potential to increase generalization and robustness against changes in the environment.
In turn, this enables the student to recover more gracefully from mistakes caused by the
remaining distribution shift, leading to increased task performance, as reflected by a higher
return. It can also help prevent the student from becoming stuck in local minima, where
the teacher is less knowledgeable and provides inaccurate behavior. By encouraging the
student to deviate more from this suboptimal strategy, it can move towards a region in the
state space where the teacher’s guidance is more effective.

If σ is state-independent, this vector can simply be copied from the teacher to the
student while continuing to train using Equation (2). Note that in this case, it would
likely be beneficial to train the teacher using a state-dependent standard deviation instead.
Otherwise, we include an additional term for distilling σ, with λ a scaling factor to ensure
that the loss for σ does not dominate over the one for µ or the other way around:

L(D, θS) =
|D|

∑
i=1

∑
a∈A

Huber(µS
i,a, µT

i,a, 1) + λ ·Huber(σS
i,a, σT

i,a, 1) (4)

Since we have access to both µ and σ, these can be used to once again define a
probability distribution. This also allows the student to sample actions based on N(µ,
σ), which was not possible when trained using Equation (2). The Huber loss is still not
optimally suited for defining a distance metric between two probability distributions
however; it simply defines a distance between the two values separately, without any
context of how they are used together.

4.3. Distilling the Action Distribution

In traditional policy distillation, the student is also trained using a probability distri-
bution over actions, where this is defined using the probability vector given by the teacher
outputs [12]. Instead of learning to reproduce the same precise values as the teacher, such
as what we proposed in Equation (2) for learning the mean action, the student outputs are
shaped to produce a similar probability curve. This is achieved through a derivation of the
KL-divergence for discrete probability distributions that is most often used in the context of
deep learning. In the context of continuous actions, the network outputs are not in the form
of probability vectors, so this loss cannot be applied to this setting. Instead, we derive the
KL-divergence between two absolutely continuous univariate normal distributions, starting
with the general definition of the KL-divergence for distributions P and Q of continuous
random variables:

KL(P, Q) =
∫

p(x) log
( p(x)

q(x)

)
dx (5)

In our setting, P and Q are normal distributions defined by µ and σ, for which the
probability density function is defined as follows:

f (x) =
1

σ
√

2π
e−

1
2

(
x−µ

σ

)2

(6)

To substitute this in Equation (5), we first focus on the log division:
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log
( p(x)

q(x)

)
= log p(x)− log q(x)

=
[

log
( 1

σp
√

2π
e−

1
2

( x−µp
σp

)2)
− log

( 1
σq
√

2π
e−

1
2

( x−µq
σq

)2)]
=

[
− 1

2
log (2π)− log (σp)−

1
2

( x− µp

σp

)2
+

1
2

log (2π) + log (σq) +
1
2

( x− µq

σq

)2]
=

[
log

( σq

σp

)
+

1
2
[( x− µq

σq

)2
−

( x− µp

σp

)2]]
The full equation then becomes:

KL(P, Q) =
∫ 1

σp
√

2π
e−

1
2

( x−µp
σp

)2[
log

( σq

σp

)
+

1
2
[( x− µq

σq

)2
−

( x− µp

σp

)2]]
dx (7)

We then rewrite this using the expectation with respect to distribution P:

KL(P, Q) = Ep

[
log

( σq

σp

)
+

1
2
[( x− µq

σq

)2
−

( x− µp

σp

)2]]
= log

( σq

σp

)
+

1
2σ2

q
Ep

[
(X− µq)

2]− 1
2σ2

p
Ep

[
(X− µp)

2]
= log

( σq

σp

)
+

1
2σ2

q
Ep

[
(X− µq)

2]− 1
2

Note that we could rewrite (X− µq)2 to:

(X− µq)
2 = (X− µp + µp − µq)

2

= ((X− µp) + (µp − µq))
2

= (X− µp)
2 + 2(µp − µq)(X− µp) + (µp − µq)

2

Substituting this results in:
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)
+

1
2σ2

q
Ep
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+
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Ep
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[
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2
)
− 1

2

= log
( σq
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)
+

σ2
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2σ2
q

− 1
2

Finally, we apply this for policy distillation of continuous action spaces:

LKL(D, θS) =
|D|

∑
i=1

∑
a∈A

log
σT

i,a

σS
i,a

+
(σS

i,j)
2 + (µS

i,a − µT
i,a)

2

2(σT
i,a)

2
− 1

2
(8)

This should allow for a smoother optimization objective than learning both values
using the Huber loss, similar to the distillation of discrete actions.

5. Experimental Setup
5.1. Evaluation Environments

We evaluate the effectiveness of the loss functions proposed in Section 4 in two contin-
uous control environments (Ant-v3 and HalfCheetah-v3) that are part of the Gymnasium
project [29], shown in Figure 5. These environments were chosen as they are arguably the
two most prevalent benchmarks in the MuJoCo suite, the de facto standard for continuous
control tasks in DRL research. This allowed us to apply our methods to compress publicly
available state-of-the-art DRL models, making it straightforward to compare to existing
work and strongly increasing reproducibility.
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(a) HalfCheetah-v3 (b) Ant-v3
Figure 5. A graphical render of the environments used in this paper.

Environments in this suite have complex, high-dimensional continuous state and
action spaces and require sophisticated control strategies [29]. This takes the form of a
physics simulation of a robot with a specific morphology and complex dynamic interaction
between multiple joints that need to be efficiently coordinated. Distilling a policy that
consists of multiple coordinated continuous actions allows us to verify that our proposed
loss functions are robust to even the most complex policy architectures. The relationship
between actions (torques) and the resulting state of the creature (positions, velocities,
angles) is non-linear, making it challenging to learn a compact policy that captures these
complex dynamics effectively. The difficulty of these tasks should result in a pronounced
difference in the average return obtained by students of different sizes, allowing us to
compare the impact of the compression level for each of the proposed methods. By relying
on a physics engine that accurately models advanced dynamics [30], these environments
are representative of many real-world continuous control tasks, such as robotics and drone
control that require low-power operation at the edge.

The goal in the two chosen environments is to achieve stable locomotion of the robot
by applying torques to its joints to move through the environment as quickly as possible.
In HalfCheetah-v3, this robot takes the form of a 2D bipedal creature with six controllable
joints and therefore six separate continuous values in the action space that need to be
distilled. The observation space consists of 17 continuous variables, including the positions
and velocities of its limbs and the angles of its joints. Being inspired by a cheetah, the goal of
the agent is to run as fast as possible, even if this means sacrificing stability. The movement
of the 3D quadrupedal creature with eight controllable joints in Ant-v3 needs to be more
sophisticated to achieve a high return. In addition to being rewarded for efficient forward
movement, it needs to balance itself by keeping its torso within a certain height range. If
it falls over, the episode is terminated early. It also has a higher-dimensional observation
space of 111 continuous variables that now also includes the contact forces applied to the
center of mass of each of the body parts. Combined, these tasks require an effective balance
between exploration and exploitation to learn how to optimally coordinate the different
joints to move quickly while maintaining stability to not fall over. A stochastic policy can be
beneficial for both these aspects by exploring the state space more effectively and increasing
the robustness to recover from unstable configurations.

5.2. Model Architectures

To use as teachers for training our students and as baselines for uncompressed models,
we make use of two state-of-the-art DRL algorithms: SAC [11] and PPO. For increased
reproducibility, we make use of publicly available pre-trained agents from the Stable
Baselines3 project [31] for our teacher networks. These teachers have different behaviors
when evaluated either deterministically or stochastically. Although both are trained to
learn a stochastic policy, a PPO agent often performs better during final evaluation when
the mean action is chosen, whereas an SAC agent performs better when actions are sampled



Sensors 2024, 24, 4876 12 of 22

stochastically. This can be seen in Table 1, which shows the average return and standard
deviation for 200 episodes using our teacher models on the used environments and for
both evaluation methods.

Table 1. Average return and standard deviation for our PPO and SAC teachers on the chosen
environments using either stochastic or deterministic action selection.

Network Ant-v3 HalfCheetah-v3

SAC Stochastic 4682 ± 1218 9010 ± 113
SAC Deterministic 1797 ± 993 8494 ± 186
PPO Deterministic 1227 ± 483 5735 ± 723
PPO Stochastic 1111 ± 453 5553 ± 791

The Stable Baselines3 project uses a different network size for these teachers depending
on the environment, as shown in Table 2. Note that we did not include the critic head for the
teacher sizes in this table, as this is not required for inference. It also shows the parameter
count for one of our student architectures (with ID 6) in all its configurations. This student
was used to compare our proposed loss functions and the chosen control policy, as this was
the smallest architecture where the number of parameters was not yet a limiting factor.

Table 2. The number of parameters in our student networks, SAC, and PPO teacher.

Network Ant-v3 HalfCheetah-v3

Student 6 (µ only) 16,008 9862
Student 6 (µ and σ) 16,528 10,252
SAC Teacher 98,576 73,484
PPO Teacher 23,312 142,348

The impact of the compression level is further evaluated using ten different student
architectures, for which the number of layers, neurons per layer, and total number of
parameters are shown in Table 3. This ranges from 0.67% to 189% of the size of the SAC
teacher. In case a loss function is used that includes the standard deviation, the last layer
will have two heads: one for the mean actions and one for the standard deviations.

Table 3. Architectures used for students with varying levels of compression.

Network ID Layers Neurons per Layer Parameters

1 2 16 492
2 2 32 972
3 3 32 2028
4 4 32 3084
5 3 64 6092
6 4 64 10,252
7 6 64 18,572
8 4 128 36,876
9 3 256 73,484
10 4 256 139,276

5.3. Training Procedure

Each experiment runs for 200 training epochs, with 1 epoch being completed when
the student has been updated based on all 100,000 transitions in the replay memory D.
Transitions are sampled in random order from D in sets of mini-batches with size 64.
After each epoch, the student is evaluated for 50 episodes while collecting the average
return, with the action selection being stochastic or deterministic, based on which performs
best for this teacher model (see Table 1). The oldest 10% of the transitions in D are then
also replaced by new environment interactions after each epoch. These environment
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interactions are either student-driven or teacher-driven, based on the current configuration
of the experiment. Each experiment configuration is repeated for five independent runs,
resulting in the mean and corresponding standard deviations of the return and entropy at
each epoch discussed in Section 6.

We compute the entropy of the action distribution predicted by our students during
testing to more tangibly evaluate how well the stochasticity of the teacher is maintained as
part of the distillation process. Since these are continuous univariate normal distributions,
we compute this using:

H(x) =
1
2

log(2πσ2) +
1
2

(9)

For a random variable x ∼ N(µ, σ), i.e., the action prediction. This entropy is then
averaged over all steps in a trajectory.

6. Results and Discussion

In this section, we investigate the effectiveness of the three loss functions proposed in
Section 4 under various circumstances. We start by performing an ablation study to isolate
the effects of the chosen loss function, the control policy, and finally the teacher algorithm.
This will provide us with a better understanding of how each of these components in our
methodology impacts the training process and how they interact with each other to culmi-
nate in the final policy behavior. This is measured in terms of the average return, but we
also analyze the entropy of the action distribution to evaluate how well the stochasticity
of the teacher is maintained as part of the distillation process. Afterward, we perform
a sensitivity study of our methodology for different compression levels to evaluate the
impact of the student size on the final policy performance. Finally, we analyze the runtime
performance in terms of inference speed of each of the student architectures to gain a better
understanding of the trade-offs between the different student sizes.

6.1. Distillation Loss

To isolate the impact of the chosen distillation loss, we compare the average return of
students trained using each of the three proposed loss functions, with the same SAC teacher
and a student-driven control policy. Distilling a stochastic policy (learning σ) and using this to
collect training data will increase exploration and therefore widen the state distribution in the
replay memory. If the student is trained using Equation (2) instead, the replay memory will
only contain deterministic trajectories, which are not always optimal (see Table 1).

As a baseline, we start by comparing the MSE-based loss originally proposed by
Berseth et al. [28] between mean actions µ to our Huber-based loss functions ((2) and (4)),
as well as an analogous MSE loss with both µ and σ. The results of this are shown in
Figure 6. The students trained using our baseline Huber-based loss converge much more
quickly and obtain an average return that is 18% higher on average. This confirms the
benefit in the context of distillation of the Huber loss being less sensitive to outliers and
having a smoother slope for larger values. However, it is also notable that learning the
state-dependent value of σ through an auxiliary MSE or Huber loss does not yield any
noticeable benefit; instead, this results in a comparable average return to when only the
mean action is distilled in this experiment.
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Figure 6. The average return obtained using either an MSE or Huber-based distillation loss.
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Looking at Figure 7, we do see that our proposed loss based on the KL-divergence
(Equation (8)) to transfer the action distribution performs significantly better than those
based on a Huber loss. This does align with our hypothesis that the loss landscape when
shaping the probability distribution of the student to match that of the teacher more closely is
smoother than learning the two concrete values independently, leading to a better optimization.
Learning these values separately, as was the case in Figure 6, precisely enough to accurately
model the distribution might also require more capacity, resulting in this approach suffering
more heavily from the limited capacity of the student. We test this conclusion more extensively
in Section 6.4 by comparing these results with different student sizes.
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Figure 7. The average return of 5 students trained using student-driven distillation on the
HalfCheetah-v3 environment with an SAC teacher.

6.2. Control Policy

Using a student-driven control policy will result in a different distribution of transi-
tions in the replay memory compared to when using a teacher-driven control policy, where
the distribution shift between the training and testing data is more pronounced. In the
student-driven setting, the initial distribution will be less accurate and more exploratory
but will gradually converge to the teacher distribution as the student learns. To test this
hypothesis for continuous actions, we ran the same experiment as in the previous section,
but this time with a teacher-driven control policy.

6.2.1. Impact on Average Return

The effects of this distribution shift can be seen in Figure 8, which shows the average
return for both control policies and all loss functions on the HalfCheetah-v3 environment.
The experiments with a teacher-driven action selection perform significantly worse than
their student-driven counterparts. This also results in far more variance in performance
between epochs, and it takes much longer to converge. As the distillation loss becomes
smaller, the students will behave more similarly to their teacher and the distribution shift
will eventually reduce, but never disappear completely. Eventually, the students in the
teacher-driven configuration converge on a similar obtained average return, regardless of
the used loss function. However, there is a clear order in how quickly the students reach
this convergence point, with the agents trained using our loss based on the KL-divergence
(Equation (8)) being considerably more sample efficient, followed by the agent trained
using the Huber loss for both µ and σ (Equation (4)) and finally the agent that only learns
a deterministic policy in the form of the mean actions µ (Equation (2)). This suggests
that even though learning a stochastic policy is beneficial in this setting, the remaining
distribution shift eventually becomes the limiting factor that causes all students to hit the
same performance ceiling. We find that for this environment, the difference between the
used control policy is more pronounced than the difference between the used loss functions
but that the KL-divergence loss is still the most effective choice.
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Figure 8. The average return during training for student and teacher-driven distillation on the
HalfCheetah-v3 environment and an SAC teacher.

Figure 9 also shows the average return for all configurations, but this time on the
Ant-v3 environment instead. The distribution shift is less pronounced in this environment,
resulting in the gap between student and teacher-driven action selection disappearing for
all but the students trained using our KL-divergence distillation loss, where using a student-
driven control policy still has a noticeable benefit. These are also the two configurations
that stand out from the others, with a significantly higher return on average, confirming
the same conclusion as on the HalfCheetah-v3 environment that this loss function is the
best out of the three considered options for the distillation of continuous actions with a
stochastic teacher. Note that the variance of the average return between epochs is much
higher for this environment, so we show the exponential running mean with a window
size of 10 in these plots to gain a clearer impression of the overall performance when using
each of the loss functions.
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Figure 9. The exponential running mean of the average return during training for student and
teacher-driven distillation on the Ant-v3 environment and an SAC teacher.

6.2.2. Impact on Policy Entropy

We hypothesize that this difference in performance between the distillation losses is
mainly due to the maintained accuracy of the policy stochasticity. This has particular im-
portance to reach a high degree of fidelity with teachers such as SAC, which are optimized
to maximize an entropy-regularized return [11]. To verify this, we measure the entropy of
the action distribution predicted by the students during testing, as can be seen in Figure 10.
This clearly shows that the relative order of the experiments is the same as for the average
return, but in reverse. The student trained using our KL-divergence-based distillation loss
indeed matches the entropy of the teacher the closest, and the more similar the entropy is
to the teacher, the higher the average return that is obtained. However, it seems that the
entropy is overestimated when using the other losses, resulting in more actions being taken
that deviate too much from the teacher policy.
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Figure 10. The average entropy measured for students trained using a loss that includes σ on the
HalfCheetah-v3 environment and an SAC teacher.

So, the KL-divergence loss strikes a good balance between learning a stochastic policy,
which our results confirm is optimal for this teacher, while staying closer to the teacher pol-
icy by not overestimating the entropy either. In the student-driven experiments, the entropy
is initially higher, before gradually converging to the teacher entropy. This is beneficial for
training, as the data collected during the first epochs will contain more exploratory behavior
and thus results in faster learning and reducing once the control policy is stabilizing. These
values are also a lot more stable and have much less inter-run variance compared to the
teacher-driven experiments, which only seem to become worse over time.

6.3. Teacher Algorithm

In this section, we evaluate how generic our proposed methods can be applied with
different teacher algorithms, focusing on the two most commonly used for continuous
control tasks: SAC and PPO. The SAC algorithm tries to optimize a policy that obtains the
highest return while staying as stochastic as possible. With PPO, on the other hand, the en-
tropy generally decreases over time, as it converges on a more stable policy. This translates
into the PPO teacher achieving a higher average return when evaluated deterministically,
while the SAC teacher performs better when actions are sampled stochastically, as shown
earlier in Table 1. We have demonstrated in the previous sections that the KL-divergence
loss is the most effective for distilling a stochastic policy, but it remains to be seen if this
benefit remains for more deterministic teachers.

Therefore, we present the distillation results with a PPO teacher in Figure 11 on the
HalfCheetah-v3 environment and in Figure 12 on the Ant-v3 environment. This shows
virtually no difference in the used loss functions or the used control policy for action
selection. Since the PPO teacher performs best when evaluated deterministically, there
appears to be no benefit in learning the state-dependent value of σ if it is no longer used
at evaluation time. By following a deterministic policy, the student is also less likely to
end up in an unseen part of the environment, thereby reducing the difference between a
student-driven and teacher-driven setting.
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Figure 11. The average return during training for student and teacher-driven distillation on the
HalfCheetah-v3 environment and a PPO teacher.
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What is more notable about the PPO results however is that the students outperform
their teacher on the Ant-v3 environment. In the context of policy distillation for discrete
action spaces, this phenomenon has also been observed and attributed to the regularization
effect of distillation [12]. These students (Figure 12) reach a peak average return after being
trained for around 37 epochs, but this slowly starts to decline afterward, while their loss
continues to improve. A lower loss generally indicates that the students behave more
similarly to their teacher, which in this case is detrimental, resulting in regression.
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Figure 12. The exponential running mean of the average return during training for student and
teacher-driven distillation on the Ant-v3 environment and a PPO teacher.

This outcome relates to the work by Stanton et al. [25], who have shown in a super-
vised learning context that knowledge distillation does not typically work as commonly
understood where the student learns to exactly match the teacher’s behavior. There is a
large discrepancy in the predictive distributions of teachers and their final students, even
if the student has the same capacity as the teacher and therefore should be able to match
it precisely. During these experiments, the generalization of our students first improves,
but as training progresses, this shifts to improving their fidelity.

The students that were trained based on an SAC teacher performed slightly worse
compared to their teacher on the HalfCheetah-v3 environment, and a more significant
performance hit was observed on the Ant-v3 environment. This is likely due to the level of
compression being significantly higher compared to the PPO distillation for this environ-
ment, as the student architecture is kept constant in this section to isolate the impact of the
loss function choice.

6.4. Compression Level

We investigate the compression potential of our methods by repeating the experiments
in Section 6.1 for a wide range of student network sizes, as listed in Table 3. In Figure 13, our
loss based on the KL-divergence (Equation (8)) was used, while Figure 14 shows the results
when using the Huber-based loss for both µ and σ. Using our KL-based loss, we can reach a
compression of 7.2× (student 6) before any noticeable performance hit occurs. The average
return stays relatively high at up to 36.2× compression (student 3), before dropping more
significantly at even higher levels of compression. When going from student 3 to student
2, we also reduce the number of layers in the architecture from 3 to 2, which becomes
insufficient to accurately model the policy for this task. The convergence rate noticeably
decreases at each size step, with student 2 still improving even after 600 epochs.
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Figure 13. The average return for 10 student sizes during training using Equation (8) (KL).

The impact of the student size is much higher when using the Huber-based distillation
loss. There is still a noticeable difference between the average return obtained by the largest
(10) and second largest (9) student, even though this largest student is actually 2× larger
than their teacher for this environment. This makes this loss particularly unsuited for
distillation, as it requires more capacity than the original SAC teacher algorithm to reach
the highest potential average return. The largest student (10) here still performs slightly
worse than the fourth-largest student (7) when trained based on the KL-divergence loss,
but the performance gap does almost disappear for networks that approach the teacher
in size. This means that our Huber-based distillation loss can still effectively transfer the
teacher’s knowledge to the student, but it requires considerably more capacity to learn
two values (µ and σ) independently, making it infeasible for compression purposes. The
convergence rate of these students is also slower, making it more computationally expensive
at training time.
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Figure 14. Average return for 10 student sizes during training using Equation (4) (Huber).

Therefore, we conclude that both proposed loss functions can be effective at distilling
the stochastic continuous behavior of the teacher, but the efficiency in terms of required
network size and number of samples is significantly higher for our loss based on the KL-
divergence, to the extent that the Huber-based loss becomes impractical for compression.

6.5. Runtime Performance

Finally, we analyze how this compression to the various student architectures (see
Table 3) translates to benefits in terms of real-world performance. Note that we focus on the
inference performance of the final student models, as the training procedure is not intended
to run on these low-power devices. This is measured on a range of low and high-power
devices by sequentially passing a single observation 10,000 times through the network,
which is then repeated 10 times using a random order of network sizes to ensure that any
slowdown due to the prolonged experiment does not bias the results of a particular size.
We then report the average number of steps per second, as shown in Table 4. Note that
student 9 uses the same architecture as the SAC teacher, and student 10 is similar in size to
the PPO teacher, so these are used as a baseline.
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Table 4. Average steps per second for the student sizes and various low and high-power devices.

Device 1 2 3 4 5 6 7 8 9 10

AMD Ryzen 3900X (CPU) 11,284 11,246 10,051 9112 9993 9038 7631 8794 9369 8154
Nvidia RTX 2080 Ti (GPU) 3753 3726 3322 3022 3340 3050 2559 3019 3332 3049
Nvidia A100 (GPU) 3544 3552 3247 2516 3246 2998 2609 2992 3237 2994
Nvidia GTX 1080 Ti (GPU) 1804 1813 1612 1452 1612 1453 1213 1450 1605 1448
Nvidia Jetson TX2 (CPU) 946 947 840 755 825 736 603 680 679 486
Nvidia Jetson TX2 (GPU) 285 298 271 247 270 247 210 247 270 246
Raspberry Pi 3B (CPU) 702 700 620 562 603 540 452 478 428 335

An important observation is that although the model performance in terms of average
return scales with the number of parameters in the model, the story is more complicated
when looking at the runtime performance. Notably, student 7 is the slowest network for
most devices, even though it is only 13% as big as the largest network. It does however
have the most network layers, being six compared to only four for student 10. This was
chosen to keep a consistent increase of about 2× parameters when going from one size
to the next while keeping the number of neurons per layer as a power of 2. A similar
result can be seen for student 4, which also has one more layer than the surrounding ones.
Having a deeper network limits the potential for parallelization on devices with many
computational units, such as GPUs or multi-core CPUs, while we did not notice a clear
benefit of using more than three layers on the average return. On the lowest-power device
we tested (Raspberry Pi), this difference due to the number of layers is less pronounced
and the total network size becomes more important.

For high-power devices or ones designed for many parallel operations, the effective
speed gain obtained by compressing these models is relatively minor, improving by only 9%
worst case for a reduction to a mere 0.6% of the original size. In these cases, the overhead
involved in simply running a model at all becomes the bottleneck, independent of the model
itself up to a certain size. The highest improvement can therefore also be seen on the lowest-
power device, the Raspberry Pi 3B, in which we can see a maximal runtime improvement of
64% compared to the SAC teacher or 109% compared to the PPO one. At this size, however,
the model is no longer able to solve the task nearly as well as the teacher, so a comparison to
student 3 with a runtime improvement of 44% and 85%, respectively, is more reasonable.

It is also worth noting that there is more to runtime performance, for which you might
want to apply model compression than purely the achieved number of steps per second.
Often, when running on embedded devices, there are additional constraints in terms of
memory or power consumption, or on devices with hardware acceleration for neural
network inference there can be a limit to the number of supported layers or parameters. In
this setting, model compression can enable the use of more advanced models on devices
that would otherwise not be capable of running them due to memory constraints. There,
the model size in bytes becomes an important metric that impacts portability rather than
performance. This can simply be derived for our models by taking the parameter count
reported in Table 3 and multiplying it by 4. The popular Arduino Uno R3 microcontroller,
for example, has only 32 kB of available ROM [32], which is only enough to store up to
student 5, with a size of 24 kB.

Measuring the direct impact of policy distillation on power consumption improve-
ments is less straightforward, as this is more a property of the hardware than the individual
model. You can force the device to periodically switch to a lower power state by artificially
limiting the frame rate, but this difference is usually negligible compared to a switch in
hardware class [33]. Instead, to optimize for this, we suggest searching for the hardware
with the lowest power consumption that can still run the compressed model at an acceptable
speed. For example, with a target of 600 steps per second, the Raspberry Pi 3B consumes
around 4.2 W [33] and student 3 is a valid option. It will consume the same power when
running the original model but at half the inference speed. If the target is 800 steps per
second, however, a jump to an Nvidia Jetson TX2 running at 15 W [34] becomes necessary.
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We conclude this section by arguing the importance of carefully designing the architecture
of the model with your target device in mind, performing benchmarks to evaluate the best
option that meets your runtime requirements, and applying our proposed distillation method
based on the KL-divergence to achieve the best model for your use case. Optionally, a trade-off
can be made between the average return and steps per second to achieve the best result.

7. Conclusions

Deploying intelligent agents for continuous control tasks, such as drones, AMRs, or IoT
devices, directly on low-power edge devices is a difficult challenge, as their computational
resources are limited, and the available battery power is scarce. This paper addressed this
challenge by proposing a novel approach for compressing such DRL agents by extending
policy distillation to support the distillation of stochastic teachers that operate on continu-
ous action spaces, whereas existing work was limited to deterministic policies or discrete
actions. Not only does this compression increase their applicability while reducing asso-
ciated deployment costs, but processing the data locally eliminates the latency, reliability,
and privacy issues that come with wireless communication to cloud-based solutions.

To this end, we proposed three new loss functions that define a distance between the
distributions from which actions are sampled in teacher and student networks. In particular,
we focused on maintaining the stochasticity of the teacher policy by transferring both
the predicted mean action and state-dependent standard deviation. This was compared
to a baseline method where we only distill the mean action, resulting in a completely
deterministic policy. We also investigated how this affects the collection of transitions
on which our student is trained by evaluating our methods using both a student-driven
and teacher-driven control policy. Finally, the compression potential of each method was
evaluated by comparing the average return obtained by students of ten different sizes,
ranging from 0.6% to 189% of their teacher’s size. We then showed how each of these
compression levels translates into improvements in real-world run-time performance.

Our results demonstrate that especially our loss based on the KL-divergence between
the univariate normal distributions defined by µ and σ is highly effective at transferring
the action distribution from the teacher to the student. When distilling an SAC teacher, it
outperformed our baseline where only the mean action is distilled on average by 8% on the
HalfCheetah-v3 environment and 34% on Ant-v3. This effect is especially noticeable in the
student-driven setting, but we were also able to observe a significant increase in sample
efficiency in the teacher-driven setup. When a less stochastic PPO teacher was used, all
our proposed methods performed equally well, managing to maintain or even outperform
their teacher while being significantly smaller. This also confirms that the regularization
effect of policy distillation that was observed in the setting for discrete action spaces still
holds for the continuous case.

In general, we recommend a student-driven distillation approach with our loss based
on the KL-divergence between continuous actions as the most effective and stable com-
pression method for future applied work. Through this method, DRL agents designed to
solve continuous control tasks were able to be heavily compressed by up to 750% without a
significant penalty to their effectiveness.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Access Point
AMR Autonomous Mobile Robot
CPU Central Processing Unit
DNN Deep Neural Network
DQN Deep Q-Network
IoT Internet of Things
DRL Deep Reinforcement Learning
GPU Graphics Processing Unit
KD Knowledge Distillation
KL Kullback–Leibler
MSE Mean Squared Error
PD Policy Distillation
POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization
SAC Soft Actor-Critic
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