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Abstract Wireless networks rely on a protocol stack for their operation. Not only
are the protocols at each layer configurable, potential interactions arise among the
protocol stack, operating system, hardware, and operating environment. Hence, there
is a vital need for screening, i.e., to determine the parameters and interactions
that significantly impact performance of a system. In this paper, we propose: (1)
the use of a locating array (LA) as the design of a screening experiment, and
(2) an algorithm to analyze the resulting measured performance data. Compared
to conventional designs, LAs grow logarithmically in the number of parameters
making them efficient for screening complex engineered networks. The analysis
uses a framework from compressive sensing and provides robustness to noise in
the system through a breadth-first search strategy. We apply LAs for screening
audio quality and radio frequency exposure in a Wi-Fi conferencing scenario in
the w-iLab.t wireless network testbed, and validate the results using the Dantzig
selector and Lasso regression methods.

1 Introduction

Experimentation is a cornerstone of scientific advancement. Through experimenta-
tion we gather evidence to either support or refute a hypothesis. A crucial question
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is:Which parameters should be selected for experimentation? Domain experts often
use their knowledge and experience to select these parameters. But when the system
is large and complex, a systematic method that could answer this question would
increase confidence in the experimental strategy.

In networking, interactions between protocols are known and these interactions
are not always between protocols in adjacent layers. For example, a two-way interac-
tion was discovered that involves the transport control protocol (TCP) interpreting
access delays in a wireless link due to poor signal quality as congestion, and hence
responds incorrectly with congestion control [4]. Many such cross-layer interactions
are known; see [1, 5, 9, 16, 34, 40] as examples. These are not always evident, even
to domain experts. If not certain that a parameter or interaction affects performance,
a knowledgeable domain expert may ignore it in order to reduce experimental cost.
Yet this guarantees that its impact on the performance is never observed.

In this paper, our interest is to use experimentation to identify the significant pa-
rameters and two-way interactions impacting wireless network performance. These
are termed screening experiments [27]. To cope with the complexity in engineered
network systems, screening should be an important first step before conducting the
intended experiment, such as to optimize system performance, or to improve the
robustness of the system to operating conditions.

In the field of designed experiments, it is considered impractical to experiment
with more than about 10 parameters [18, 27]. Most protocols at each layer of a
typical TCP/IP stack have at least 5-10 configurable parameters. Thus, there can be
25-50 parameters to vary in experimentation without considering wider aspects of
the system. Indeed, parameters of the operating system (e.g., kernel version, buffer
sizes, queuing disciplines), the hardware (e.g., chipset, drivers), and the operating
environment may also impact the network performance.

As we will see, for engineered network systems many traditional screening exper-
iments are infeasible. This is because the experimental design, an array describing
the runs in the experiment, is too large. While supersaturated designs (SSDs) can
screen efficiently, their focus is primarily on identifying main effects [12,19,27]. In
networking, ideally we are interested in a screening method that is also capable of
identifying two-way interactions, because some parameters may be significant only
as a result of their involvement in a significant interaction.

To address this need, we use a combinatorial design called a locating array (LA)
for screening. Locating arrays grow logarithmically in the number of parameters [7].
Therefore, they have the potential to screen efficiently a far larger number of param-
eters and two-way interactions than previous approaches. Not surprisingly, there is a
trade-off: One reason locating arrays are small is because they are often unbalanced.
Balance relates to how equally a parameter or interaction is measured in the design.
Most analysis tools, such as JMP [30], assume the underlying experimental design
is balanced, or nearly balanced. Because locating arrays may be highly unbalanced,
we are unable to apply the standard analysis techniques to recover the significant
parameters and interactions from the performance measurements.

Thus in addition to introducing locating arrays as a screening design, another
contribution of this paper is to propose a new analysis technique to accomplish
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the identification. We use the framework of compressive sensing to recover a model
whose terms correspond to the parameters and two-way interactions that significantly
impact the performance. However, because measurements of real systems are noisy,
any recovery approach could make an error in term identification, which could
impact the identification of subsequent terms. Rather than recover a single model,
we use a search tree to recover a number of alternative models, providing an analyst
with flexibility in understanding the performance of a complex system.

Recall that our original motivation is to screen, so that we can conduct a follow-on
experiment having confidence that wewill be varying the parameters and interactions
that affect performance significantly. Because of the efficiency of locating arrays we
do not need to reduce the number of parameters considered in screening a priori.
Our methodology is a systematic and efficient way to screen large design spaces,
thereby reducing the likelihood that significant parameters or two-way interactions
are missed in follow-up experimentation.

We apply our proposed design and analysis methodology to screen 22 parame-
ters and their two-way interactions, in a Wi-Fi conferencing scenario set up in the
w-iLab.t wireless network testbed [3]. The parameters are taken from the kernel’s
IP and UDP protocols, the Wi-Fi card driver, the audio codec, and a source of radio
frequency (RF) interference. The LA used as experimental design has only 73 runs;
this compares with ≈ 5.3 × 1012, an infeasible number of runs in a full-factorial de-
sign.We apply our analysis technique to the measurements collected from w-iLab.t
to identify the significant parameters and two-way interactions impacting the audio
quality and the RF exposure. The results are validated using the Dantzig selector [28]
and Lasso regression [37] methods.

To enable reproducibility of our results, we provide all the code, scripts, and
tools necessary to construct experimental designs based on LAs, and analyze the
measurements collected from experiments based on them [13,36].

The rest of this paper is organized as follows. §2 overviews traditional designs used
for screening and their analysis, and provides the definition of a LA. §3 presents the
proposed analysis methodology. This is followed by the details of the experimental
set-up in §4, and the results of applying the analysis methodology to the performance
measurements, and their validation, in §5. Finally, we conclude in §6, suggesting
several opportunities for future research.

2 Screening Designs

2.1 Definition of a Run, an Experiment, and a Design

Suppose that the system under study has k parameters, P1, . . . , Pk , and that each
parameter Pj has a set Vj = {vj,1, . . . , vj,`j }, of `j possible values. A run is an
assignment of a value fromVj to Pj , for each parameter j = 1, . . . , k. An experimental
design (or, design for short) is a collection of runs.
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When a design has size N , it is represented by an N × k array A = (ai j) in
which each row i corresponds to a run and each column j to a parameter; the entry
ai j specifies the value assigned to parameter j in the ith run. When executed on a
system, a run results in the measurement of one or more performance metrics. An
experiment consists of executing each run in the design.

2.2 A Running Example

We introduce an example to explain properties of experimental designs. Consider
a system with 4 parameters. Parameters A and B each have two values VA = VB =

{0, 1}, while parameters C and D each have three values VC = VD = {0, 1, 2}. For
short, we use the notation P` to denote parameter P set to the value equal to `. For
example, A1 denotes A set to 1.

2.3 Traditional Screening Designs

A full-factorial design has runs that include all possible combinations of values
of each parameter Pj across all k parameters [8]. Its size is equal to the product
of |Vj | for each parameter j = 1, . . . , k. For the running example, a full-factorial
design has 22 × 32 = 36 runs, and in general the number of runs grows exponentially
in the number of parameters. From an analysis of variance (ANOVA) of the data
collected from a full-factorial design all significant t-way interactions for t = 1, . . . , k
can be identified. Traditionally, identifying significant main effects and two-way
interactions, i.e., t = 1, 2, have been of primary interest, as higher-order interactions
tend to be rare and of lesser effect [21, 27].

More recently, supersaturated designs (SSDs) have been introduced to identify
significant main effects [12]. This focus comes from relying on an assumption of
strong heredity, the condition that a significant two-way interaction has its component
main effects also significant. However, strong heredity is not universally valid in real-
world experiments [21].

Many criteria are used to optimize supersaturated designs, e.g., to obtain more
confidence in the parameters that are identified [17]. One popular one, D-optimality,
minimizes the size of the joint confidence region for the model coefficients. Super-
saturated designs employ advanced analysis methods [19].

A problem with most traditional screening designs is that they do not ensure it is
possible to estimate the effects of all interactions, or even that they all occur in the
design. If a significant assignment of values to parameters is missing from a design,
it is impossible to determine this from the data collected in the experiment. Covering
arrays aim to address this issue.
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2.4 Covering Arrays

Covering problems have been studied extensively in combinatorial design theory
[35]. An assignment of values to any subset t ≤ k of the parameters is a t-way
interaction. A covering array (CA) of strength t, is an N × k array in which for every
N× t subarray, each t-way interaction is covered (i.e., occurs) in at least one run [14].
A covering array of strength two on the four parameters of the running example is
given in Table 1(a). Nine runs suffice to cover all 37 of the two-way interactions;
e.g., A0C2 is covered in run 5.

Table 1 For the running example: (a) A CA C of strength 2; (b) a (1, 2)-LA L

(a) (b)
Run A B C D Run A B C D

1 0 0 0 0 1 0 0 0 0
2 0 0 0 1 2 0 0 0 1
3 0 0 1 0 3 0 0 1 0
4 0 0 1 2 4 0 0 1 1
5 0 1 2 1 5 0 0 2 2
6 1 0 2 2 6 0 1 0 2
7 1 1 0 2 7 0 1 1 2
8 1 1 1 1 8 0 1 2 0
9 1 1 2 0 9 0 1 2 1

10 1 0 0 2
11 1 0 1 2
12 1 0 2 0
13 1 0 2 1
14 1 1 0 0
15 1 1 0 1
16 1 1 1 0
17 1 1 1 1
18 1 1 2 2

Covering arrays have recently been introduced as experimental designs into the
software tool JMP [30]. Analysis is simplified when a design is balanced. In general,
covering arrays can be close enough to balanced for the traditional approaches for
analysis to succeed.

While a covering array of strength t ensures coverage, it does not ensure that it
is possible to distinguish the influence of different t-way interactions. For example,
if the performance metric measured for run 5 is different from the other runs, it is
not possible to determine which of the three two-way interactions A0B1, A0C2, and
C2D1 is responsible, because each one appears only in run 5. Locating arrays extend
covering arrays to address this very issue.
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2.5 Locating Arrays

A (d, t)-locating array [7] is a covering array of strength t with an addituional
property: Any set of d interactions each involving t parameters can be distinguished
from any other such set by appearing in a distinct set of runs. If an array satisfies this
condition it has the (d, t)-locating property.

More precisely, for array A = (ai j) and t-way interaction T , define ρ(A,T) as the
set of runs (or, rows) of A in which T is covered. For a set T of t-way interactions,
ρ(A,T ) = ∪T ∈T ρ(A,T).

Let It be the set of all t-way interactions for an array, and let It be the set of all
interactions of strength at most t. Consider a t-way interaction T ∈ It of strength
less than t. Any t-way interaction T ′ of strength t that contains T necessarily has
ρ(A,T ′) ⊆ ρ(A,T). A subset T ′ of t-way interactions in It is independent if there
do not exist T,T ′ ∈ T ′ with T ⊆ T ′.

Definition 2.1 ((d, t)-Locating Array [7]) An array A is (d, t)-locating if whenever
T1,T2 ⊆ It and T1 ∪ T2 is independent, |T1 | ≤ d, and |T2 | ≤ d, it holds that
ρ(A,T1) = ρ(A,T2) ⇔ T1 = T2.

The covering array C in Table 1(a) does not have the (1, 2)-locating property
because the set T = {A0B1, A0C2,C2D1} has ρ(C,T ) = {5} for each T ∈ T , i.e.,
each of the two-way interactions in each set of interactions in T appears only in
run 5. However, the array L in Table 1(b) is (1, 2)-locating. Now, for each two-way
interaction in T there is a row that distinguishes it from the others: ρ(L, A0B1) =
{6, 7, 8, 9}, ρ(L, A0C2) = {5, 8, 9}, and ρ(L,C2D1) = {9, 13}.

Next we show how we use techniques from compressive sensing in analyzing
locating arrays.

3 Analysis of Locating Arrays

3.1 The Screening Design and Model Matrix

A (1, 2)-locating array is proposed as the screening design for two reasons. The
coverage and locating properties of such an array are essential for separating one-
and two-way effects. As §3.2 describes, the proposed analysis method recovers the
‘strongest’ main effect or two-way interaction, one iteration at a time.

For the model matrix, a ±1 compressive sensing matrix is proposed. A similar
idea has been used for recovery of sparsifiable signals in communications and storage
systems [2]. A compressive sensing (CS) matrix for an N × k (1, 2)-locating array
A has as many rows as A, and columns corresponding to the candidate terms [6].
Specifically, the CSmatrix M = (mi j) has N rows and

∑
a `a+

∑
a,b `a`b+1 columns

where mi j = +1 if effect j is covered in the ith run of A, and mi j = −1 otherwise. A
column of all +1 is required for the intercept. Table 2 shows the CS matrix for the
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locating array L in Table 1(b); for compactness of representation, we write ± instead
of ±1 in the table and the column for the intercept is excluded. For example, the
interaction BC can take on six values because B has two levels and C three; the third
column of BC corresponds to the two-way interaction B0C2. Because this two-way
interaction is present only in runs 5, 12, and 13 in the locating array, the column
value in the compressive sensing matrix is set to +1 only in these rows. The reason
for using a ±1 matrix instead of a binary matrix is to ensure that negating a column
does not change the absolute value of its dot product with the residuals.

Table 2 LA with corresponding compressive sensing matrix for the running example

Locating Array
Run A B C D
1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 1 1
5 0 0 2 2
6 0 1 0 2
7 0 1 1 2
8 0 1 2 0
9 0 1 2 1
10 1 0 0 2
11 1 0 1 2
12 1 0 2 0
13 1 0 2 1
14 1 1 0 0
15 1 1 0 1
16 1 1 1 0
17 1 1 1 1
18 1 1 2 2

Compressive Sensing Matrix
A B C D AB AC AD BC BD CD
0 1 0 1 0 1 2 0 1 2 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 2 2 2

0 1 0 1 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
+ - + - + - - + - - + - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - - - -
+ - + - + - - - + - + - - - + - - - - - - + - - - - + - - - - - - + - - - - - + - - - - - - -
+ - + - - + - + - - + - - - - + - - - - + - - - - - - + - - - - + - - - - - - - - + - - - - -
+ - + - - + - - + - + - - - - + - - - - - + - - - - - + - - - - - + - - - - - - - - + - - - -
+ - + - - - + - - + + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - - - - - - - +
+ - - + + - - - - + - + - - + - - - - - - - + - - - - - - + - - - - - - - + - - + - - - - - -
+ - - + - + - - - + - + - - - + - - - - - - + - - - - - - - + - - - - - - + - - - - - + - - -
+ - - + - - + + - - - + - - - - + - - - + - - - - - - - - - - + - - - + - - - - - - - - + - -
+ - - + - - + - + - - + - - - - + - - - - + - - - - - - - - - + - - - - + - - - - - - - - + -
- + + - + - - - - + - - + - - - - + - - - - - - - + + - - - - - - - + - - - - - + - - - - - -
- + + - - + - - - + - - + - - - - - + - - - - - - + - + - - - - - - + - - - - - - - - + - - -
- + + - - - + + - - - - + - - - - - - + - - - + - - - - + - - - + - - - - - - - - - - - + - -
- + + - - - + - + - - - + - - - - - - + - - - - + - - - + - - - - + - - - - - - - - - - - + -
- + - + + - - + - - - - - + - - - + - - - - - + - - - - - + - - - - - + - - + - - - - - - - -
- + - + + - - - + - - - - + - - - + - - - - - - + - - - - + - - - - - - + - - + - - - - - - -
- + - + - + - + - - - - - + - - - - + - - - - + - - - - - - + - - - - + - - - - - + - - - - -
- + - + - + - - + - - - - + - - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - -
- + - + - - + - - + - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - - - - +

3.2 The Screening Method

To achieve a small run-size, locating arrays often exhibit highly unbalanced struc-
ture. This requires the development of a method for screening that can cope with
imbalance.

The proposed screening method has two steps. First, a breadth-first search (BFS)
algorithm is developed to identify a user-specified number of models that are the
‘best’ explanations of a response using orthogonal matching pursuit (OMP) [38].
Secondly, using the models produced in the BFS search, the screening algorithm
aggregates main effects and two-way interactions to identify the candidate important
effects and factors. The ‘many-model’ method [15] also retains a fraction of best
models based on error sum of squares, but their method does not appear to scale to
large numbers of factors.
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3.2.1 The Breadth-First Search (BFS) Algorithm

TheBFS algorithm is parameterized by three user-specified variables: nmodels giving
the number of fitted models that the algorithm returns, nnew giving the fan-out (i.e.,
number of children) of each node in the BFS tree, and nterms giving the number
of effects in each of the final fitted models. In the BFS tree, the nodes at level `
correspond to fitted models with ` effects. The algorithm generates a tree of height
nterms .

The BFS algorithm is given in Algorithm 1. The root of the tree is a single model
consisting of the mean response and a score initialized to zero. A BFS expands
each node at level ` to nnew nodes at level ` + 1 (line 8). For efficiency, the search
tree is stored implicitly, with each model of length ` stored in priority queue q` ;
we retain only the top fifty models ordered by R2, the proportion of the variability
in the data explained by the mode [27]. Each child expands the fitted model of its
parent by adding the ith most important effect for 1 ≤ i ≤ nnew using OMP (line 9).
Specifically, the ith most important effect corresponds to the ith effect in the ranking
of the absolute values of the dot products or correlations of each column in the CS
matrix with the current residual vector. Ordinary least squares (OLS) [31] is used
to update coefficient estimates, after which the residuals and score of the added
effect are updated (lines 10-14). (OMP for logistic regression [23] can be used if the
response measured in experimentation is binary.)

The increment in R2 of the expanded model that results from adding the ith effect
is used as the score of the effect. The model, its residuals, its R2 and adjusted R2

(a variation of the the ordinary R2 statistic that reflects the number of terms in the
model [27]), and its scores are then inserted into the priority queue of length ` + 1
(line 15). These steps are repeated until a stopping criterion is met. To simplify the
algorithm it stops when each model has nterms effects (line 5). The model matrix,
stopping criterion, and scoring method of the BFS algorithm could each be chosen
differently.

When only main effects and two-way interactions are considered, a (1, 2)-locating
array suffices. All effects are separable under such a design, i.e., all columns in the
compressive sensing matrix are different. For binary factors, the absolute values for
the two main-effects columns are equal, and either can be selected. The dot product
is easy to compute, and ranks effects based on absolute correlation with residuals of
the current model.

It is possible for duplicate fitted models to arise in q` , e.g., when the same terms
are selected but in a different order. While only unique fitted models are kept in
the queue, duplicates are accounted for by adding scores of each effect from the
duplicate. Thus duplication is not ignored, and more distinct models are explored.

3.2.2 The Screening Algorithm

In screening, the interest is in identifying a few important main effects and two-
way interactions. One approach is to examine the scores of the effects in the list of
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Algorithm 1 BFS(effects, M, data, nmodels, nterms, nnew )
Input: List of candidate effects, compressive sensing matrix M , response vector data, number of

fitted models nmodels to return, number of effects in each final fitted model nt erms , fan-out
of the BFS tree nnew

Output: List of nmodels best fitted models ranked by R2 with nt erms terms each
1: modelnew ← mean of data
2: residualsnew ← data −modelnew
3: scoresnew ← 0
4: enqueue( q1, (modelnew, residualsnew, R

2, adjR2, scoresnew) )
5: for ` ← 1, . . . , nt erms do
6: while q` has models do
7: (model, residuals, R2, adjR2, scores) ← dequeue(q` )
8: for i ← 1, . . . , nnew do
9: effectsk ← arg maxi |Mi · residuals |
10: modelnew ← OLS(effects(model) ∪ effectsk, data)
11: residualsnew ← data − modelnew
12: R2

new ← R2 value of modelnew
13: adjR2

new ← adjusted R2 value of modelnew
14: scoresnew ← append increment in R2 attributed to effectsk to scores
15: enqueue( q`+1, (modelnew, residualsnew, R

2
new, adjR2

new, scoresnew) )
16: end for
17: end while
18: end for
19: return list of nmodels fitted models from qnt erms ranked by R2 value

fitted models produced, and select those with higher scores. Instead, the approach
in Algorithm 2 aggregates over effects of all nmodels models without explicitly
considering levels.

Algorithm 2 Screening( effects, qnt erms , nmodels , nterms )
Input: List of all candidate effects, the list of fitted models qnt erms and corresponding scores from

Algorithm 1, the number of fitted models nmodels in the list, the number of effects nt erms

in each fitted model
Output: A list of effects in non-increasing order by score
1: Initialize the score of each effect to zero
2: Store the nmodels and their corresponding scores in a priority queue q
3: for i ← 1, . . . , nmodels do
4: (modeli, scoresi ) ← dequeue(q)
5: for j ← 1, . . . , nt erms do
6: k ← index of effects corresponding to term j in modelij
7: effect-scorek = effect-scorek + scoresij
8: end for
9: end for
10: return list of effects ranked by effect-score

Effects are reported in non-increasing order by their aggregate scores to support
user-interpretation of the results. Screening results are usually reported considering
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heredity, therefore if an interaction effect X × Y is reported as active, then X and Y
are also considered active [22].

4 Experimental Set-up

4.1 The w-iLab.t Testbed

w-iLab.t is an advanced testbed that is used to perform heterogeneous wireless ex-
perimentation [3]. It is pseudo-shielded from external interference and is equipped
with various wireless technologies, including IEEE 802.11, IEEE 802.15.4, Blue-
tooth dongles, Software Defined Radios (SDRs), LTE femto cells, and others. The
w-iLab.t testbed is part of Emulab and uses the cOntrol Management Framework
(OMF) for resource allocation, hardware and software configuration, and the orches-
tration of experiments. Finally, measurement data from each run is collected over a
wired control network and stored in a central database for further processing.

4.2 Wi-Fi Conferencing Scenario

As a representative use case, a large-scale wireless conferencing scenario is consid-
ered. A high-level representation of the Wi-Fi conferencing scenario created in the
w-iLab.t testbed is shown in Fig. 1. It is composed of a speaker node broadcast-
ing voice traffic over a Wi-Fi network and listener nodes receiving and playing the
transmitted packets. The speaker can configure 22 different parameters (described
in §4.3) that may influence the transmissions. The listeners continuously calculate
audio quality and RF transmission exposure.

20.5
m

66m

6m

3.6
m

Fig. 1 The Wi-Fi conference scenario as mapped to the wireless testbed. Listener nodes are in the
first 4 rows and the speaker node is positioned at the bottom center.
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To orchestrate the experiment, an OMF script processes the experimental design
given by the LA and iteratively executes each run. For the execution of each run,
the system is first brought to a known state by resetting all wireless interfaces and
caches of each node, followed by configuration of the parameters as specified by the
run. After a warm-up period to avoid transient effects, measurements are collected.
Table 3 shows the list of resources used for the Wi-Fi conferencing scenario.

Table 3 Experiment resource description

Resource Description

Wi-Fi chipset Atheros Sparklan WPEA-110N/E/11n
Wi-Fi driver ath9k
OS Ubuntu 14.04 LTS
kernel Linux 3.13.0-33-generic

4.3 Selected Parameters and Values

The testbed nodes can be configured by uploading an image containing the operating
system and application to run. We selected 22 parameters from the kernel’s IP and
UDP protocols, the Wi-Fi card driver, the audio codec used in our application, and a
source of interference implemented via a dedicated SDR. Each parameter has from
2 to 5 values. Categorical parameters included all settings as levels, while numerical
(i.e., continuous) parameters had their levels spaced exponentially to avoid giving
preference to a particular scale. For each parameter, we also ensure that the default
assigned by the Linux kernel and/or user-space tools is present. The full list of
parameters and values is provided in Table 4.

We also used transmission power assignments 6 dBm lower for 2.4 GHz than for
5 GHz so that propagation effects would be approximately equal for the different
bands, due to the free-space path loss difference between these frequency bands [24].

4.4 Performance Metrics

Two performance metrics we measured during experimentation: audio quality and
radio frequency (RF) exposure. The audio quality is quantified using an aggregate
mean opinion score (MOS) [26] over the complete audio transmit path. The audio
quality is first affected by the encoding process at the transmitter side and further
reduced when transmitted over the air (see Fig. 2).

Within the encoder unit, the first quality loss is introduced as a function of the
encoder bitrate, type of encoder, and audio class used. Afterwards, the audio is
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Table 4 Parameters and values used in the scenario (default values in bold)

Parameter Identifier Values

Band band 2.4, 5 GHz
Channel channel 1, 6, 11 (in 2.4 GHz band);

36, 40, 44 (in 5 GHz band)
Wi-Fi bitrate bitrate 6, 9, 12, 24, 36 Mbps
Transmit power txpower 1, 2, 4, 7, 10 dBm (2.4 GHz);

7, 8, 10, 13, 16 dBm (5 GHz)
MTU mtu 256, 512, 1024, 1280, 1500 bytes
Transmit queue length txqueuelen 10, 50, 100, 500, 1000 packets
Queuing discipline qdisc pfifo, bfifo, pfifo_fast
IP fragment low threshold ipfrag_low_thresh 25%, 50%, 75%, 100%

of high threshold
IP fragment high threshold ipfrag_high_thresh 16384, 65536, 262144, 1048576,

4194304 bytes
UDP receive buffer minimum udp_rmem_min 1.9231%, 10%, 50% of maximum
UDP receive buffer default rmem_default 0%, 25%, 50%, 75%, 100%

from minimum to maximum
UDP receive buffer maximum rmem_max 2304, 10418, 47105, 212992 bytes
UDP transmit buffer minimum udp_wmem_min 1.9231%, 10%, 50% of maximum
UDP transmit buffer default wmem_default 0%, 25%, 50%, 75%, 100%

from minimum to maximum
UDP transmit buffer maximum wmem_max 4608, 16537, 59349, 212992 bytes
UDP global buffer minimum udp_mem_min 25%, 50%, 75% of maximum
UDP global buffer pressure udp_mem_pressure 0%, 33.338%, 50%, 75%, 100%

from minimum to maximum
UDP global buffer maximum udp_mem_max 95, 949, 9490, 94896 pages
Audio codec codec Opus, Speex
Audio codec bitrate codecBitrate 7600, 16800, 24000, 34000 bit/s

(or nearest allowed by codec)
Frame length aggregation frameLen 20, 40, 60
Interference channel occupancy intCOR 10%, 25%, 50%, 75%, 90%

Fig. 2 The audio quality degradation is calculated in two phases: once after the encoder unit and
later after the wireless transmission.

transmitted over the air and a second quality loss is introduced due to packet loss,
jitter, and latency impairments.

Radio frequency (RF) transmission exposure calculates the electromagnetic en-
ergy absorbed by a human body due to uplink and downlink wireless transmis-
sions [25]. The RF exposure index (EI) is measured in specific absorption ratio
(SAR) units of a given amount of power (Watts) over a given mass of human body
(kg). The formula for exposure by Varsier et al. [39], generalized in Mehari [24],



An Efficient Screening Method for Identifying Parameters and Interactions 13

covers a wide range of categories (i.e., population, environment, radio access tech-
nologies, load profile, posture) but specific to our scenario, the formula used is

EISAR =
1
T

[
NT∑
t

(
dULPTX

)
+ dDLSinc

]
.

During a given time frame T , where NT is the number of periods within the
time frame, a transmitting antenna induces an exposure to a speaker proportional to
the transmitted power PTX and also induces an exposure to far away listeners that
is proportional to the incident power density Sinc. After that, the electromagnetic
energy absorption per kilogram of bodymass is calculated by applying the uplink and
downlink absorption parameters dUL = 0.0070 W/kg for 1W of transmitted power
and dDL = 0.0028 W/kg for 1W/m2 of received power density respectively [29].

5 Results

Seidel et al. [33] discuss two randomized algorithms for constructing locating arrays
based on the Stein-Lovász-Johnson paradigm, and the Lovász Local Lemma. The
implementation of these algorithms, as well as the implementation of the analysis
method is publicly available [32]; these were used to generate the LA and analyze
the results collected that are described here.

Using the proposed analysis method based on a 73-run (1, 2)-locating array,
Table 5(a) shows the top five effects and their scores for the audio quality when
nterms = 9; in this case, the fitted models have 0.74 ≤ R2 ≤ 0.76. For nterms = 21,
all the fitted models have R2 ≥ 0.96 and the top five effects and their scores are
shown in Table 5(b). The proposed screening method identifies txpower and the
interaction intCOR × band as having a significant impact on the response of audio
quality.

Table 5(c) lists the top five effects and their scores for RF exposure when nterms =

10; these fitted models have R2 ≥ 0.96. The proposed screening method identifies
txpower and band as the important factors for the RF exposure.

Table 5 Top five terms and their score for audio quality when (a) nt erms = 9; (b) nt erms = 21;
and for (c) RF exposure when nt erms = 10, in the Wi-Fi conferencing experiment

(a) (b) (c)
Term Score Term Score Term Score

intCOR×band 325.51 txpower 24961.10 txpower 1489.92
txpower 320.00 intCOR×band 18237.70 band 1035.76
intCOR 68.29 intCOR 14748.40 bitrate 589.91
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We also analyze the data from the wireless network experiment using two addi-
tional methods: The Dantzig selector method [28] and Lasso regression [37]. For
each method, we use two different coding schemes: Dummy coding and orthogonal
polynomial coding.

For theDantzig selectorwe use theRpackageflare [20].We scale the columns of
themodelmatrix, and set theminimumvalue for the tuning parameter δDantzig = 0.1
and the number of δDantzig to 11; see [28] for how to choose these parameters.We fix
γ (a threshold between signal and noise) at zero so that we can keep all the selected
effects. In Lasso regression, we use the R package glmnet for analysis [10, 11].

Table 6 summarizes the terms found by the proposed screening method, the
Dantzig selector method, and Lasso regression. There is good agreement on the
screening results for both responses when the polynomial model is used. However
with dummy-coding, neither the Dantzig selector nor the Lasso regression method
appears to be as accurate.

Table 6 Screening results for the Wi-Fi conferencing experiment listed by the method used

Method Audio Quality RF Exposure

Proposed method
txpower txpower
intCOR band
band bitrate

Dantzig selector (polynomial coding)
txpower txpower
intCOR band
band bitrate

Dantzig selector (dummy coding)

txpower band
band txpower
rate
udp_mem_pressure
ipfrag_high_thresh

Lasso regression (polynomial coding)
txpower txpower
intCOR band
band rate

Lasso regression (dummy coding)
band txpower
bitrate band
txpower

6 Conclusions and Future Work

In this paper, a locating array is used to screen parameters and two-way interac-
tions affecting MOS and RF exposure in a Wi-Fi conferencing experiment run in
w-iLab.t, a complex engineered wireless network. It, together with our compres-
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sive sensing based analysis method, is able to screen out most of the parameters
and two-way interactions as insignificant. The results are validated by the Dantzig
selector and Lasso regression methods.

Because our analysis method can fail to yield a good model if the residuals end
up farther from the term that should be selected than from some other term, it may
be possible to produce a locating array that has better analysis properties by guiding
the choices so as to maximize the minimum distance between any pair of terms’
associated vectors. An investigation of alternate stopping criteria is also of interest.

An additional direction for future extension is to handle parameters that can be
measured but not controlled, such as temperature or background interference, and
potentially even to detect indirectly the presence of parameters that have a significant
effect but cannot be directly measured.
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