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Abstract: This paper presents a hybrid modelling approach that combines physics-based electro-
migration modelling (PEM) and statistical methods to evaluate the electromigration (EM) limits of
nano-interconnects in mesh networks. The approach, which is also compatible with standard Place
and Route (P&R) tools and practises, takes into account the positive impact of network redundancy
on EM current limits. The numerical simulations conducted in this study show that conventional
methods underestimate the EM current limits of a power delivery network (PDN) unit-cell by 80%
due to their lack of consideration for redundancy. Additionally, the time-to-failure (TTF) distributions
of a PDN unit-cell obtained by the developed modelling framework adhered to a lognormal distri-
bution, where the lognormal sigma, σlogn, exhibits a 55% reduction compared to that of the single
constituent interconnects. The study also found the negative voltage (i.e., ground or Vss) grid to be
more susceptible to EM than the positive voltage, i.e., Vdd grid. In the examined grid unit-cell design,
both the number of interconnect sites prone to voiding and also the magnitude of the peak tensile
stress within the nano-interconnects were found to be two times as high in the Vss case compared
to Vdd. The lognormal sigma of TFF for the grid unit-cells, σlogn−tile, show a marked reduction
compared to the lognormal sigma of the constituent single interconnects, σlogn, with a 50% and 66%
decrease compared to single interconnects, for downstream (Vss) and upstream (Vdd), respectively. In
addition, σlogn−tile was three times higher for downstream (Vss) compared to upstream (Vdd), whilst,
in contrast, this difference was only 2-fold at the single interconnect level. TTF50% was predicted to
be 4.13-fold higher at the grid unit-cell level for the upstream compared to downstream operation,
which was also more pronounced than in the single interconnect level where the difference was only
2-fold. This research provides valuable insights into the EM ageing of nano-interconnects in mesh
networks and could pragmatically enhance the accuracy of EM compliance evaluation methods.

Keywords: nano-interconnects; reliability; electromigration (EM); redundancy; mesh networks;
power delivery network; physics-based modelling; statistical electromigration budgeting (SEB); PDN
unit-cell-based/tile-based SEB

1. Introduction

The rapid integration of electronics into daily applications, such as the automotive
industry and the Internet of Things (IoT), underscores the need for research and innovation
in design-for-reliability paradigms more than ever. In the realm of Very Large Scale
Integration (VLSI) reliability, the use of overly conservative approaches, which involve
large reliability margins and safety factors, restricts the design space, thereby affecting
chip performance and power consumption. Given the anticipated computing energy
demands associated with the rise and prevalence of artificial intelligence (AI) [1], along
with the complex consequences of materials and manufacturing processes, these overly
pessimistic reliability paradigms are at odds with global sustainability requirements and
the sustainability obligations of the semiconductor sector.

One of the key (VLSI) reliability challenges concerning metal interconnections is
electromigration (EM). EM is a phenomenon where metal atoms are displaced due to the
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momentum transfer from conducting electrons [2,3]. This displacement can lead to the
formation of voids in interconnects, causing circuit failures. The failure occurs by void
nucleation and growth at the cathode end of interconnects, which results in an increase
in interconnect resistance, impairing circuit operation. For instance, it can induce timing
errors and eventually lead to open circuit failures. The impact of EM on the reliability of
VLSI circuits has been a topic of extensive research as a central concern of interconnect
reliability [4,5].

In standard EM tests, interconnects are characterized by determining their time-to-
failure (TTF) under constant direct current (DC) tests with flux divergence points at their
two ends. An interconnect is considered to have failed when its resistance increases beyond
a target value, often a 10% resistance shift (R Shift). Tests are conducted at accelerated
conditions by increasing the current density and temperatures. Multiple interconnects
are tested under different temperatures and current conditions and the mean time-to-
failures (MTTF) at different conditions are used to determine the activation energy, Ea,
and the current density exponent, n, of Black’s equation [2,6–8]. TTFs follow a lognormal
distribution, whereas the lognormal and Black’s equation parameters are used to derive an
EM current density limit, jmax, for a target EM failure probability and lifetime [9,10]. The
current density limit, jmax, is usually reported in the process design kits (PDKs) provided
by the foundry to be employed by the designer for EM compliance checks in the Place and
Route (P&R) phase.

Fundamentally speaking, EM is correlated with the cohesive energy of metals and
therefore also correlated with their meting point. Many widely used metals in CMOS
technology such as Al and Cu suffer from EM. In contrast, for metals with a high melting
temperature such as Ru, Mo and W, EM is not a major reliability concern [11,12]. Many
material and process-related factors are implicated in EM, including interfacial properties,
e.g., adhesion [13], Cu microstructure (i.e., grain size distribution) [14–19], mechanical
and fracture properties of the metal, confining materials and dielectrics and residual
stresses [20–26]. Thereby, technological solutions involve material and process innovations,
such as using dopants (e.g., AL and Mn) that segregate into Cu grain boundaries, and also
the implementation of liners and metal capping, e.g., Co cap [27–29], each with their pros
and cons in terms of resistivity and cost [30,31].

With an increase in current densities and the drastic decline of EM robustness due
to the miniaturization of interconnects [16,32–34], EM is considered to be a significant
reliability challenge for ongoing scaling [35]. As scaling progresses, delay shifts attributed
to EM are anticipated to overshadow other ageing mechanisms such as hot carrier injection
(HCI) and bias temperature instability (BTI) [36]. Despite the advent of EM-robust alter-
native metals such as Mo, and Ru projected for use in angstrom nodes [11,12], resistivity
considerations restrict their application to wires narrower than ~12 nm linewidths [37].
Thus, the back-end-of-line (BEOL) will continue to display a hierarchical architecture where
wider metal levels will be Cu-based given its cost and resistivity benefits [37]. Moreover,
the rise of back-side power delivery networks (BS-PDNs), where the PDN is processed on
the opposite side of the wafer [38,39], justifies the use of Cu in back-side power delivery
applications given available spacing for more relaxed linewidths. In this scenario, transistor
heat generation and interconnect joule heating in the absence of effective chip cooling
options [40] will raise Cu interconnect temperatures and temperature gradients, thereby
intensifying EM ageing [41,42]. Evidently, EM will persist as a reliability concern as we
venture into the angstrom technology era.

The standard design-for-reliability approaches widely employed for EM by the in-
dustry are as follows: (i) the limit-based approach (LBA), which predicts system failure
when the average DC current density, j, exceeds jmax, for any interconnect, ignoring the
statistical nature of EM [10,43] and (ii) statistical EM budgeting (SEB), which employs the
weakest link statistics considering the distribution of the j/jmax ratio of all single intercon-
nects [10,43]. Thereby, in these methods, failure is predicted when jmax is violated in any
single interconnect or the failure probability is predicted based on a first-to-fail interconnect
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criterion, respectively. This assumption is plausible for circuits where interconnects are
connected in series. However, the PDN, which is most prone to EM because of the high
average magnitudes of unipolar currents, has a grid-like architecture with many parallel
interconnect paths. Thereby, if one interconnect suffers from EM, the current will be redi-
rected to redundant parallel paths. Clearly, application of the conventional EM compliance
evaluation methods to PDN may be overly pessimistic, as the formation of the first void
alone does not necessarily cause a system failure [44].

To this end, many studies have been dedicated to the investigation of EM in grid-
like networks using both experimental and simulative approaches. Zhou et al. (2018)
used a test chip to study EM effects in PDNs, and observed mechanical stress-dependent
failure locations in grids and self-healing due to redundant current paths [45]. Using
a similar on-chip approach, Pande et al. (2019) captured several EM effects including
abrupt and/or progressive failures, temporary healing effects and circuit–interconnect
interplay, which may not be observed through single interconnect characterization [46].
Lin et al. conducted systematic experiments on the impact of redundancy by using test
structures with a different number of parallel interconnects, and proposed a statistical
model to predict the TTF of parallel interconnect networks based on the TTF of the last
failing interconnect [47]. As the latter model was purely statistical, the physical dynamics,
e.g., the current redirection and accelerated ageing of the late-failing interconnects, could
not be captured. Yet the approach explained many of the key EM characteristic trends
of parallel systems such as the decrease in the lognormal sigma, σlogn, with an increase
in redundancy [47]. With the increasing complexity of grid architecture, however, their
model predictions diverged from experimental findings, possibly due to neglecting the
time-dependent physical cascade of phenomena such as current and stress redistribution
within the grids. In this context, an understanding of the distribution of EM-induced
hydrostatic stress within the grid has been shown to be the pre-requisite to determine the
EM failure locations [48]. EM voids occur in locations of high tensile stress which do not
strictly coincide with locations of peak current within a grid and require grid-level stress
analysis [48]. To this end, physics-based modelling of EM has seen significant advances
in recent years considering the transient simulation of all stages of EM ageing where
models have become more technology and microstructure aware [32,49–59]. However, the
application of such exhaustive models to grids with billions of segments entails significant
computational costs. This is mainly because the simulation of the post-voiding cascade of
events requires transient coupled electrical-EM analysis to capture current redistribution
within the grid. To minimize such computational costs, model order reduction together
with filtering algorithms that confine the analysis to critical interconnect segments have
been adopted in the literature [60–63]. Furthermore, due to their computational expense,
complexity, and parametric uncertainty, the statistical aspect of EM is frequently overlooked.
This often results in models failing to deliver the crucial chip-level failure probability. In
addition to the need for electronic design automation (EDA) software packages capable
of resolving the transient mechanical stress distribution across the entire chip before and
after void-nucleation, the adoption of stress-based approaches necessitates the provision
of mechanical stress limits (i.e., critical stress) from the foundry. These limits can only be
indirectly inferred, for instance, through model-based approaches. Therefore, despite their
inherent limitations, current-based EM compliance evaluation methods continue to be the
industrial benchmark.

To overcome the described practical constraints and account for grid redundancy in
chip-level reliability predictions, we recently introduced the concept of a PDN-tile-based
EM compliance check; see Figure 1. This method derives current limits for the unit-cells (or
tiles) of the PDN. This approach is practical because PDNs are architecturally composed of
repeating grid unit-cells, each consisting of parallel interconnect paths. Consequently, the
redundancy impact is inherently captured in the current limits determined at the tile-level
characterization. Further, tile-based SEB is be applied, where PDN tiles are considered as
the fundamental elements for the weakest link statistics, instead of single interconnects;
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see Figure 1. This allows for a scalable EM assessment of PDNs, considering the impact of
PDN redundancy [64].
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the standard approach.

2. Key Contributions and Outline

This paper presents a predictive numerical modelling framework and specifically an
efficient method for simulating variability propagation from the single interconnect level
to PDN unit-cell level. This development further consolidates the PDN unit-cell-based
EM compliance checks that we proposed in [64]. However, in [64], the TTF variability was
only attributed to the variability in time-to-nucleation by considering the critical stress as
the main variable. In this study, the variabilities and their propagation from the single
interconnect level to PDN unit-cell level are treated more rigorously. Variabilities in both
nucleation and void growth phases are considered using an efficient order-reduced model
that can also capture the impact of void dynamics. As such, the variabilities stemming
from void shape and location which are postulated to be the main cause of differences in
upstream and downstream EM can be captured. The latter enabled the model to decipher
fundamental differences between EM in the negative supply voltage grid (Vss grid), and the
positive supply voltage grid (Vdd grid), at the PDN unit-cell level. This is an advancement
with respect to the existing probabilistic models of EM in PDN such as in the study
by Mishra and Sapatnekar (2017) [65]. The modelling framework is used to provide
quantitative predictions of TTF distributions for a PDN unit-cell. This unit-cell features
a complex multi-layer architecture, making it relevant for advanced technology nodes.
The model offers invaluable insights into the quantitative impact of grid redundancy and
operation mode (i.e., Vdd vs. Vss grid). Furthermore, it contextualizes the reliability metrics



Micromachines 2024, 15, 956 5 of 23

derived from the PDN unit-cell by comparing them with metrics derived from the single
interconnect level.

The structure of the paper is summarized as follows:
Section 3.1: A description of the developed physics-based numerical modelling frame-

work that is devised to model the ageing of PDN unit-cells is provided. The frame-
work is developed by coupling an EM physics-based modelling module with a circuit
solver module.

Section 3.2: The EM modelling module is described. This module simulates EM in
every interconnect of the PDN, within each simulation time step.

Section 3.3: An efficient approach to model EM variability propagation from the single
interconnect level is provided. This enables the prediction of reliability metrics for complex
PDN unit-cells based on metrics obtained from standard single interconnects.

Section 4.1: The modelling framework is corroborated by comparing the model pre-
dictions with experimental findings for a simple double redundancy interconnect system
consisting of two parallel interconnects working in concert.

Section 4.2: The modelling framework is used to predict the TTF distributions for a
PDN unit-cell with a highly complex multi-layer architecture relevant for advanced nodes.

Section 4.3: A running example is provided which quantitatively demonstrates the im-
pact of considering redundancy in a PDN unit-cell on reliability metrics such as maximum
permissible standard cell currents.

3. Method and Materials
3.1. Network-Aware Modelling Framework

A network-aware EM modelling framework was devised and developed by coupling
a circuit solver module with a Korhonen-type [49] EM modelling module described in
Section 3.2. The Korhonen model has the advantage of being a simple 1D physics-based
model that can efficiently resolve the EM-induced mechanical stress distribution along
interconnects. Thereby, it can accurately predict void nucleation based on critical stress
criteria. The electrical current in each interconnect segment of the network was derived
using the circuit solver and communicated to a 1D partial differential equation solver
which solved the Korhonen EM model over each interconnect to determine the evolution
and distribution of hydrostatic stress along its segments. Once a critical tensile stress was
reached at a location along the interconnects, void nucleation was considered and a compact
resistance evolution model determined the increase in the interconnect segment’s electrical
resistance. The resistance increase was considered in the subsequent simulation time step
to determine current redistribution through the network due to EM voids. In terms of
numerical implementation, the electrical circuit solver module and the EM solver module
were coupled by sharing log files in every time step of an explicit solution approach. The
minimum stable time step was determined through sensitivity analyses. The simulation
framework was implemented within MATLAB® 2022a environment using Simscape in
Simulink for electrical circuit analyses and the PDEPE partial differential equation solver
for the solution of the Korhonen-type EM model, where the communication and coupling
of the modules were conducted using custom-developed programmes.

The electrical circuit was modelled as a resistive network, where the resistance of each
line segment, each via and their connectivity were pre-assigned per interconnect design
and technology assumptions. The operation of the circuit was simulated with ideal current
sources representing the standard cells or stress current injectors, where the circuit operated
under upstream (US) or downstream (DS) conditions by changing the direction of the ideal
current sources. The algorithmic diagram is demonstrated in Figure 2.
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3.2. Electromigration Model

During EM, the electron wind force depletes the ions in the direction of the electron
flow while a back stress develops and drives ions in the opposite direction, so that [49]

J = − DC
kBT

(
Z*eE − Ω

dσ
dx

)
(1)

where J represents the flux of Cu ions, D is the diffusivity, C is the concentration, kB
is Boltzmann’s constant, T is temperature, Z* is the effective charge number, e is the
fundamental electronic charge, E = ρ× j is the electric field where ρ is the resistivity of Cu,
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j is the current density, Ω is the atomic volume, and dσ
dx is the hydrostatic stress gradient

along the line.
Self-diffusion takes place within the boundaries of each interconnect domain as con-

fined by the dielectric and metallic diffusion barriers used in the damascene technology. In
this context, diffusion barriers block Cu self-diffusion across the interconnect boundaries,
whereas self-diffusion dominantly takes place along Cu interfaces and grain boundaries [15].
Therefore, EM was modelled within interconnect domains isolated by the diffusion bar-
riers, separately. Such domains may be composed of multiple segments with distinct
electrical currents.

Electromigration ageing can be subdivided into two main phases: (i) the pre-nucleation
phase, where tensile stress builds up at the cathode end of interconnects until a critical
stress required for void nucleation is reached and (ii) the post-nucleation phase, where the
nucleated voids enlarge and evolve, increasing interconnect resistance.

Considering the mass balance equation and using Equation (1), Korhonen derived a
1D partial differential equation (PDE) that describes the evolution of hydrostatic stress, σ,
along an interconnect during EM [49]:

∂σ

∂t
= − d

dx

[
DBΩ
kBT

(
Z*eE

Ω
− dσ

dx

)]
(2)

where B is the effective elastic bulk modulus of the interconnect determined by considering
the impact of confining layers and the dominant diffusion paths, i.e., the interfaces and the
grain microstructure of the metal [24].

The physical input parameters for the EM model depend on interconnect dimen-
sions, the type of dielectrics, and the barrier/liner/capping schemes [33]. The line width-
dependent values of these parameters were previously reported in [33] and were employed
in this study, as summarized in Table 1. As Equation (2) was solved numerically, the
solution of the EM-induced stresses in multi-segment interconnects with different current
densities was trivial and required assigning the relevant current densities to the domain of
each segment, which were spatially discretized, while self-diffusion occurred across the
segments and within the segments of an interconnect residing in a BEOL layer.

Table 1. Interconnect geometrical and technological specifications and related physical input parame-
ters for the electromigration model.

Parameter Value Description

Da Da(T = 310 ◦C) = 1.82 × 10−20 m2/s Atomic diffusivity

ρ 49 Ω.nm Resistivity

B 15 GPa Interconnect effective bulk modulus

w 45 nm Linewidth

h 90 nm Line height

Z* 3 Effective charge

e 1.60218 × 10−19 C Electronics charge

Ω 1.182 × 10−29 m3 Atomic volume

The fluxes at the two ends of the 1D electromigration domain are zero given the
blockage by the diffusion barriers. Thus, by equating the total flux in Equation (1) to zero
at the two ends, i.e., J = 0, at x = 0 and x = L, the stress boundary condition for the solution
of Equation (2) is derived as follows:

dσ
dx

=
Z*eE

Ω
(3)
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The initial stress was simplified and considered to be constant along the domain where
technology-relevant values as in [33] were applied; see Table 1.

Once the EM-induced tensile stress calculated by the stress evolution PDE reached
a critical stress, σcrit, a void was considered to nucleate in the location, and a growth
phase was initiated. Upon void nucleation, the stress at the void surface relaxes to zero
to ensure the continuity of chemical potential energy [58]. This relaxation generates large
stress gradients adjacent to the void surface, which drives diffusion from the void up the
stress gradient, resulting in an increase in void volume. Korhonen suggested the use of a
post-nucleation boundary condition at the cathode end of the interconnects, assuming that
the void is exactly at the cathode end, to capture the flux of atoms from the void surface as
follows [49]:

Jvoid =
D

kBT

( σ

w

)
(4)

where w is the width of the interconnect, assuming that the peak stress at the void relaxes
to zero over a characteristic length equal to the width of the interconnect to estimate the
stress gradient that drives atoms away from the void surface through fast diffusion paths.
The application of this boundary condition for the solution of Equation (2) post-nucleation
can capture the stress relaxation starting from the cathode void and its propagation to the
rest of the interconnect, resulting in a shift of stress towards compression in the rest of the
interconnect. In this case, the void volume at any time can be derived as follows [66]:

V(t) =
(

A
B

)∫ L

0
(σ(x, t))dx (5)

where A is the cross-sectional area, and L is length. In high-temperature accelerated tests
on long interconnects, the void growth rate before volume saturation can be approximated
as a function of the electron current density where the longitudinal drift velocity of an
incubated void is as follows [15]:

vd =
D

kBT
Z*eρj (6)

Once a void nucleated and started to grow, the resistance of the interconnect was calcu-
lated by assuming a growing void in Cu, while the interconnect cladding (i.e., combination
of barrier and liner) still shunted the current around the void, as will be further described
and formulated in Section 3.3.2.

3.3. Variability Propagation Modelling and Assumptions

EM-induced void nucleation and growth electrically manifests as an increase in in-
terconnect resistance. In standard EM tests, interconnects are exposed to a constant DC
current and once the resistance change exceeds a target value of 10%, the interconnect
is considered to have failed. The variability of EM TTF stems from the variability of
(i) time-to-nucleation and (ii) the resistive impact of voids depending on their location and
morphology [67], as discussed in the following two sections.

3.3.1. Variability of Time-to-Nucleation at Single Interconnect Level

The intrinsic variability of time-to-nucleation is strongly correlated to the variability of
the critical EM-induced stress to induce a void, i.e., ∆σcrit [68]. Therefore, by deciphering the
distribution of ∆σcrit, the employed Korhonen model is able to determine the variability of
time-to-nucleation; see Figure 3. ∆σcrit was assumed to follow a lognormal distribution [69]
with strictly positive values. The median critical stress can be estimated based on the
Blech characteristics of Cu interconnects, where, for interconnects of length L, there exists a
critical current density jc, under which 50% of the tested population of interconnects show
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immunity to EM because the peak steady state stress does not exceed ∆σcrit in half of the
samples. The peak EM-induced stress along an interconnect is [68]:

∆σpeak =
jLZ*eρ

2Ω
(7)
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By assigning j = jc, the median critical stress, ∆σcrit_50%, can be obtained as
∆σpeak = ∆σcrit_50%. The value of (jL)c depends on many technology-dependent factors
such as the adhesion of Cu at its interfaces, the mechanical properties and thickness of the
cladding materials and dielectrics and interconnect dimensions [24]. For the interconnect
considered in this study (width = 45 nm, height = 90 nm), a (jL)c of 3300 A/cm was applica-
ble [25], yielding a ∆σcrit_50% of 56 MPa. Using a second point on the lognormal cumulative
distribution function (CDF), the sigma of the lognormal distribution could be deciphered.
This was estimated using our experimental insights, where, under a current density of
1.5 MA/cm2, immortality was never observed in interconnects longer than 25 µm. Using
Equation (7), a peak EM-induced stress of 76 MPa was obtained, which was correlated to
a high probability of 99%, to approximate a lognormal distribution for ∆σcrit, yielding a
lognormal sigma of 0.1, as shown in Figure 3.

3.3.2. Variability of Void’s Resistive Impact at Single Interconnect Level

Detailed physical modelling of the void’s interaction with current and stress fields,
and thereby its impact on interconnect resistance, requires 2D and 3D void dynamics
models such as in [52,57]. Such models are computationally expensive for modelling
interconnect networks where many voids nucleate and simultaneously evolve within the
network segments. Therefore, a compact model was devised to capture the resistance
increase with void volume evolution and its variability in interconnect segments. The
compact model was devised such that it could be conveniently calibrated from standard
EM tests. Starting with the most simple case where the void behaves as a slice spanning
across the Cu cross-section (henceforth referred to as slice-void) and increases its volume
by drifting along the interconnect, the resistance of the interconnect will be as follows:

R(t) =
ρMB
AMB

× lvoid(t)+
ρcu
Acu

× (L − lvoid(t)) (8)

where lvoid is the slice-void length, ρ is resistivity and MB denotes the metal barrier cladding
surrounding the copper sidewalls and bottom interface.
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For a generic void morphology, which does not necessarily span across the intercon-
nect, an equivalent slice-void length, lvoid_eqv, can be defined such that the resistive impact
of the void would be equal to a slice-void with a length, lvoid_eqv, as follows:

lvoid_eq(t) = (1/ξ)× V(t)
Acu

(9)

where V(t) is the void volume and Acu is the Cu cross-sectional area of the interconnect
and ξ is a parameter which determines the severity of the void’s impact on electron flow,
which for simplicity is assumed to be time-independent. Therefore, by substituting lvoid_eq
for lvoid in Equation (9), the resistance evolution of the interconnect is as follows:

R(t) = (1/ξ)× ρMB
AMB

× V(t)
Acu

+
ρcu
Acu

×
(

L − (1/ξ)× V(t)
Acu

)
(10)

where ρ is resistivity and MB denotes the metal barrier. ξ relates to the void’s location and
morphology, given that the resistive impacts of a slit void of a given volume which spans
under a via or a void within a via are significantly more than a trench void of the same
volume residing far from the via [70,71]. By introducing ξ, such differences in the resistive
impact of voids are considered. The variability of a void’s resistive impact can be captured
by deciphering the statistical distribution of ξ. In this context, the variability of time-to-
failure, TTF, is a function of the variability of time-to-nucleation, Tnuc, and time-to-growth,
Tgr, where:

TTF = Tnuc + Tgr (11)

As such, by having an experimental TTF distribution from standard EM tests on
single interconnects, and by having the distribution of Tnuc from the nucleation model, the
distribution of Tgr can be deciphered using Equation (11); see Figure 4.
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Subsequently, using Equation (6), ξ can be calibrated from the distribution of Tgr
as follows:

ξ =
Tgr × DeffZ

*eρcuj
kBT ×

[
ρmb
Amb

− ρCu
ACu

]
0.01 × Λ × R0

(12)

where Λ is the failure criterion in percent based on resistence change, and R0 is the initial
interconnect resistence. Using Equation (10) and the Tgr distribution as shown in Figure 4,
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and considering Λ = 10%, the distribution of ξ was calibrated, as shown in Figure 5. The
resistive impact of a near-via void is more pronounced than in trench voids. Especially
in downstream EM tests, where electrons flow from a top via into a line underneath, it
has been shown that the variability of TTF is larger than in upstream scenarios, where
electrons flow from a via into a top line [70,71]. The increased variability of TTF stems from
two distinct failure modes induced by (i) trench voids far from vias and (ii) under-via slit
voids [70,71]. In Figure 5, the distribution of TTF for upstream and downstream scenarios
for a given interconnect dimension, technology and current are shown. Fitting a lognormal
distribution, a two-times-larger lognormal sigma is exhibited in the downstream scenario.
Using the described approach, the distribution of ξ was obtained, showing that it follows
a more monomodal distribution for the upstream case, whereas the distribution deviates
from monomodality at lower tails of the distribution due to under-via slit voids, which
results in an early increase in resistance and failure; see Figure 5.
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After addressing the EM variability at the single interconnect level by deciphering the
distributions of ∆σcrit and ξ, the impact of reduncy in interconnect networks was studied
by employing the developed coupled electrical-EM modelling platform using the Monte
Carlo approach. In each simulation instance, distinct values of ∆σcrit and ξ from their
respective distributions were allocated to interconnect segments within networks to obtain
network-level TTF distirbutions.

In the results and discussion section, model predictions were initially corroborated
by comparison to experimental data on double redundancy networks and subsequently
the model was applied for the prediction of TTF distributions for a more complex PDN
unit-cell (tile) with multiple redundant paths.

4. Results and Discussion
4.1. Model Corroboration

In order to corroborate the modelling framework for coupled electrical-EM analysis,
the impact of redundancy was simulated and compared with experimental findings for a
case with a single interconnect and a case with two interconnects in parallel; see Figure 6.
The failure criterion of each interconnect was a 10% increase in resistance and the redundant
case was considered to have failed when the last (toughest) interconnects failed. In addition,
the input terminal current was scaled with the same factor as the number of redundant
paths (i.e., increased by 2× for the case with two parallel interconnects); see Figure 6a.
Therefore, initially, the interconnects were all conducting the same current, irrespective
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of the number of redundant paths. As shown in Figure 6b, a 2-fold increase in TTF for
the case with double redundancy at a probability of p = 0.001 is expected, where the
TTF distribution manifested a marked decrease in the lognormal sigma for the case with
redundancy; see Figure 6b. This is because the TTF was defined based on the failure of
the last surviving interconnect. From a statistical viewpoint, this can be understood, as
by increasing the number of parallel redundant interconnects, the probability of having
a more robust interconnect that lasts longer increases. Of note, this observation depends
on the failure criterion. Conversely, if the failure criterion was the failure of the first
(weakest) interconnect, the lognormal sigma would have decreased. Consistent with the
experimental observations, the simulation framework predicted a 1.8-fold increase in the
time-to-failure at p = 0.001 (Figure 6c), which consolidated the modelling framework’s
predictions, quantitatively. In addition to the statistical reason behind the increase in TTF in
the case with redundancy, a cascade of events was implicated in the observed enhancement.
Upon void nucleation in the weakest interconnect and with its growth, the interconnect’s
resistance increased and the current was redirected to the more robust interconnects. This,
in turn, slowed down the ageing of the weakest link (i.e., the growth rate) and the tougher
interconnect compensated by carrying larger current until it also endured void nucleation
and growth. Obviously, if the input terminal current was not kept unchanged, i.e., if the
currents scaled ½-fold for the double redundancy case, the lifetime extension would have
been more significant.
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4.2. Application to PDN Unit-Cells

Following the corroboration of the simulation framework in the previous section, it
was applied to simulate and predict EM ageing in a network based on the architecture
of the PDN unit-cells in advanced CMOS technology nodes, where multiple redundant
parallel paths exist; see Figure 7. In order to exclude Blech effect’s contribution that
was previously shown to impact the TTF distributions of such PDN tiles [64], the tile
dimensions and thereby the line lengths where considered to be relatively long (i.e., 100 µm),
while the architectural and line segment length proportionalities were kept consistent.
The BEOL stack consisted of 11 layers of interconnects where EM occurred in the lower-
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most layers of the stack, given their highest j/jmax ratio in the stack, i.e., in M0, M1,
M2 and M3, which had a 45 nm linewidth and utilized the same dual damascene Cu
interconnect technology. The EM voids occurred within the vias and lines if the EM-
induced stress exceeded their assigned critical stress from the previously deciphered critical
stress distribution in Section 3.3.1. Given the negligible length of the electron flow path
within vias (i.e., 90 nm) compared to the length of lines (i.e., from 16 µm to 100 µm),
and the direct correlation of stress with conduction length, i.e., σpeak ∼ jL [49], the EM-
induced stress within the via was approximated with the EM-induced stress in the line
above the via (in a dual damascene scenario), as supported by our higher-dimensional EM
simulations [59]. The M2 interconnect was considered to be a staple, i.e., the length of M2
was very short and functioned as a vertical connection between M1 and M3. Therefore,
EM-induced stress in M2 was negligible and EM voiding was not thought to occur in the
M2 staples. Three ideal current sources were connected to the network at the middle of M0,
each supplying current to the three M0 lines at the bottom of the stack, analogous to the
operation and configuration of standard cells in a CMOS chip. Upstream or downstream
EM scenarios were investigated, where in the downstream case electrons flew from the
highest metal levels to the lowest metal level and vice versa for the upstream case; see
Figure 7.
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During the transient simulation, stress analysis was conducted for all interconnects
at each time iteration of the explicit simulation from pre-nucleation to nucleation and
post-nucleation, as shown in Figure 8. Prior to each simulation, a critical value of stress was
assigned to every location within the interconnects in a Monte Carlo approach. As voids
nucleated within the network and grew, the resistance of the voided segments increased
and the initially symmetric current distribution was distorted, given the probabilistic
nature of voids that occurred at different segments. As shown previously, the redundant
paths compensated for voided segments by carrying larger currents [72,73]. Thereby,
the asymmetric current distribution induced by the increase in resistance in the voided
segments resulted in the asymmetric evolution of stress. In Figure 8, the M3 line with
multiple segments is shown where, under downstream EM, its two ends (where the vertical
totems land on M3) endure maximum tensile hydrostatic stresses. When the stresses
exceeded the critical stress assigned to the specific location on the interconnects, void
nucleation occurred, followed by a drastic relaxation of stress at the nucleation sites; see
Figure 8.
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In addition, the stress distribution at steady state is of interest for tiles consisting of
interconnects of very short lengths [48,64]. In such cases, the Blech effect will dominate in
PDN tiles and results in the early immergence of a steady state where the net atomic flux
along interconnects subsides to zero for interconnects operating below jc [48,74]. In Figure 9,
the stress distribution at steady state is shown. In M0, M1 and M3, the two ends endure the
peak tensile stresses (positive hydrostatic stress) in the downstream operation, i.e., the Vss
grid. In contrast, their middle endures the highest tensile stress in upstream operation, i.e.,
the Vdd grid. Clearly, therefore, there is potentially a two times higher number of sites prone
to EM voiding in the downstream case as compared to the upstream case, which contributes
to higher EM vulnerability. In addition, for the specific grid configuration considered, in
M3, the peak tensile stress has a magnitude that is two times larger in the downstream
case than in the upstream case. The peak stress magnitude in M3 was 16.2 times larger
than in M1; thereby, M3 was the interconnect level with highest EM-related events. This
was mainly because the path from M3 to M0, passing vertically from the stacked vias at
the top and the bottom of M1 and vertically through M1, constituted the least resistive
path. Thereby, in the intact grid before EM voiding, the current magnitude along M1 is
significantly lower than in M3 [72,73]. Given the observed stress distribution patterns, in
the downstream scenario, the majority of voids were at the ends of M3 under V34 (i.e., the
via connecting M3 to M4) and in the two ends of M0 where V01 (i.e., the via connecting
M0 to M1) lands on M0. In contrast, in the US case the dominant failure mode was by
voiding in the middle of M0 where the current source was attached and in M3 was either
adjacent or in the three vias which connect M2 to M3 (i.e., V23). Clearly, therefore, VSS grids
are more vulnerable to EM compared to VDD grids. The wider TTF distribution of single
interconnects due to under-via voids in the downstream operation mode, as discussed in
Section 3.3.2 and shown in Figure 5a, is a key cause of the relatively higher vulnerability
of VSS grids. Nevertheless, the model also identifies the heightened peak tensile stress
and the increased number of vulnerable locations as exacerbating the vulnerability of
VSS grids. In this context, in Figure 10, the TTF distribution as determined by the model
is shown for the downstream and upstream operation of the same unit-cell under the
same operational conditions with electron flow direction as the only difference. The PDN
unit-cell failure criterion considered was a 10% peak EM-induced voltage drop among the
three supply points in the middle of M0 lines. PDN unit-cell TTFs followed a lognormal
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distribution and in both upstream and downstream cases the lognormal sigma of the grid
unit-cells, σlogn−tile, showed a marked decrease compared to the lognormal sigma of the
constituent single interconnects, σlogn, with a 50% and 66% decrease compared to single
interconnects for downstream (Vss) and upstream (Vdd), respectively. In addition, at the tile
level, σlogn−tile was three times higher for downstream (Vss) compared to upstream (Vdd),
whilst by contrast this difference was only 2-fold at the single interconnect level. A 4.13-fold
increase of t50% was observed at the tile-level for the upstream compared to downstream
operation, which was also more pronounced than in the single interconnect level where
the difference was only 2-fold; see Figures 5a and 10. Metal extrusion due to compressive
stresses [21] was not considered as extrusions were not experimentally observed.
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Figure 9. Stress distribution at steady state along (a) M3, (b) M1 and (c) M0 interconnects of the
PDN tile shown in Figure 7. Stress normalized by the peak stress of each interconnect level. The
schematics show the line–via configurations and the direction of electron flow under upstream and
downstream operation.
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4.3. Impact on Electromigration Reliability Margins

As explained earlier, the standard approach for the evaluation of interconnect systems’
EM reliability has been by employing SEB, where the weakest link statistics are employed
to predict the failure probability at a given time [43]. To this end, (i) the DC-equivalent
design electrical current density, jdesign, in every interconnect needs to be determined by
using EDA tools and (ii) the EM current density limits of single interconnects, referred to
as jmax, needs to be determined from single interconnect EM experiments, where jmax is
determined from the TTF distribution of single interconnects as defined by the maximum
current density that can be tolerated where a target failure probability, Fn, (e.g., 100 PPM)
at the expected lifetime (e.g., 10 years) can be met. Subsequently, the interconnect system’s
failure probability at the target lifetime, Fsys, is calculated using the weakest link statistics
as follows [10]:

Fsys = 1 − ∏N
i=1(1 − Fn) = 1 − (1 − Fn)

N (13)

Assuming the lognormal distribution of TTF, N is as follows [10]:

N = ∑K
i=1

1
2Fn

1 + Erf(
Z +

(
n

σlogn

)
Ln
[

jdesign
jmax

]
√

2
)

 (14)

where K is the total number of interconnects, n is Black’s equation’s current exponent
factor, σlogn is the lognormal sigma of the TTF of tested interconnects and Z is the Z-score
corresponding to Fn [10].

As previously discussed, an obvious limitation of this approach is that the failure
of the first line is used to predict the failure of the interconnect system, which is an
overly pessimistic assumption for grid-like networks such as PDNs. To evaluate the
reliability margin neglected by SEB, the TTF distribution of the PDN tile described in the
previous section was determined using the developed modelling platform; see Figure 11. A
maximum voltage drop of 10% at the standard cell supply contacts (middle of M0) was
considered as the failure criterion of the PDN tile. The TTF distribution was obtained under
accelerated conditions with a temperature of 310 ◦C and a total PDN unit-cell/tile current
of itile = 3 × 200 µA (i.e., 200 µA supplied to each M0 line), under downstream EM. As
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such, the failure probability predictions based on the obtained TTF distribution inherently
capture the impact of redundancy in the PDN unit-cell. Interestingly, the lognormal sigma
of the PDN tile’s TTF is 0.27 (Figure 11), as compared to 0.6 for the constituent interconnects
in isolation (Figure 5a). This 55% reduction in the lognormal sigma is a consequence of
redundancy and is consistent with the findings of the simple case shown in Section 3.1, as
in highly redundant systems the TTF of the system is more strongly dictated by the TTF of
the toughest link, rather than the weakest link.
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Figure 11. Cumulative distribution function (CDF) of the TTF of the simulated PDN tile shown
in Figure 7, where the impact of redundancy is considered by employing the calibrated modelling
framework. The data were fit with a lognormal function. For a target lifetime of 100 h, the probability
of failure is 0.26%.

A lognormal distribution was fit to the TTF distribution of the PDN tile and thereby
the failure probability for an assumed target lifetime of 100 h was determined to be 0.26%;
see Figure 11. Clearly, it is expected that a weakest link statistics approach results in
a significantly more pessimistic system failure probability than 0.26%. For quantitative
comparsion, the SEB was applied considering the same target lifetime of 100 h. In Table 2,
the j/jmax ratio and the statistical frequency for the PDN tile are summarized, where,
consistent with the case shown in Figure 7, the total current of itile = 3 × 200 µA (i.e., 200 µA
to each M0 line) was supplied to the PDN tile. The current densities in every interconnect
segment of the PDN tile were obtained using the circuit solver. The current density limit,
jmax, of the single interconnects within the PDN tile under downstream EM was determined
as follows [10]:

jmax = jstress(
TTF50%,stress

ttarget
)
( 1

n )

e[
Zσlogn

n + Ea
nk (

1
Tuse −

1
Tstress

)] (15)

where jmax was obtained to be 1.1 MA/cm2 considering the downstream single interconnect
test parameters: σlogn = 0.6, n = 1.5, activation energy Ea = 1.15 eV, Tstress = Tuse = 310 ◦C,
TTF50%,stress = 400 h, jstress = 1.5 MA/cm2, the target lifetime ttarget = 100 h and Z = −3.1,
which corresponded to Fn = 0.001.
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Table 2. Breakdown of (jdesign/jmax
) ratios for all the single interconnects within the PDN tile shown

in Figure 7 and the number of interconnects with the corresponding ratio shown as frequency. Both
line and via values are listed.

jdesign/jmax
0 0.58 0.63 0.94 1.2 1.89 3.05 3.63 4.58

Freq. 4 4 4 4 8 2 12 4 4

By employing the data summarized in Table 2 in equation 14, N = 10,025 was obtained.
Thereby, using Equation (13), a failure probability of 99.99% is derived for the PDN based
on SEB as clearly many interconnects have a current density higher than the limit; see
Table 2. Of note, this failure probability is independent of the target single interconnect Fn.
For instance, choosing Fn = 0.1 corresponds to Z = −1.28 and thereby a less conservative
jmax of 2.26 MA/cm2 instead of 1.1 MA/cm2. This thereby leads to N = 100.9, which yields
the same failure probability of 99.99%. Thus, the failure probability predictions by the
standard SEB were starkly more pessimistic than the predictions considering redundancy,
i.e., 99.99% vs. 0.26%, respectively. The practical implications of these paradigms can be
more tangibly comprehended by considering that, in order to reduce the failure probability
predicted by the standard SEB to a value of 0.26%, the input tile current had to be reduced
by 80%, i.e., itile = 3 × 40 µA, instead of itile = 3 × 200 µA; see Figure 12.
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dancy) for the PDN tile shown in Figure 7.

In this analysis, a 10% peak EM-induced voltage drop at the PDN-tile level was used
as the failure criterion. One might initially assume that adopting a more conservative
voltage drop criterion, such as 5%, would increase the failure probability over a given
lifetime, thereby reducing the identified reliability margin compared to the standard single
interconnect-based approach. However, simulation results based on both 5% and 10%
failure criteria in the downstream operation mode reveal that the TTF at the lower end of
its cumulative distribution remains unchanged when the failure criterion is reduced to 5%;
see Figure 13. This is attributed to the fact that the lower end of the TTF distribution is
dominated by under-via slit voids, which lead to early catastrophic open failures upon nu-
cleation. On the other hand, the upper end of the TTF distributions is primarily influenced
by trench voids, which cause a gradual increase in the interconnect’s resistance as they drift
along the trench. Therefore, a more conservative failure criterion only shortens the TTFs at
the upper end of the distribution, while the lower end remains unaffected; see Figure 13.
When fitting the TTF with a monomodal lognormal distribution, there is a 25% decrease in
the lognormal sigma when the tile-level failure criterion is reduced from 10% to 5% of the
EM-induced voltage drop, whereas a bimodal statistical fit would overlap at the lower tail
region for 10% and 5% failure criteria.
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Clearly, ignoring the identified reliability margins provided by grid redundancy
imposes significant limitations on P&R resulting in an inevitably larger PDN real estate.
It will also adversely impact chip performance and power consumption. In this context,
the recently proposed approach [64] based on the characterization of the EM limits of
PDN tiles as repeating unit-cells of PDNs instead of individual interconnects enables more
realistic EM compliance evaluations of large VLSI PDNs. As such, by considering PDN tiles
as the fundamental EM elements/links in SEB, the impact of grid redundancy would be
inherently captured as redundancy is implicated in the PDN unit-cell current limits, itile_max.
To this end the current limit of a PDN unit-cell must be determined either experimentally
by testing individual PDN unit-cells or by using efficient and predictive numerical models
of PDN tiles, which are easily calibratable based on single interconnect tests. The modelling
framework presented in this work is conducive to enabling the latter and determining the
current limits of PDN unit-cells/tiles within the context of a tile-based SEB paradigm. The
considered tile size is a crucial factor, given that if the tile-based EM characterization is
conducted on tiles with the actual small dimensions of grid unit-cells, then short-length
effects (SLE), such as the TTF saturation shown in [64], will manifest in characterizations
and thus current limits. Alternatively, the tiles for characterization can be considered to
have the architecture of the actual PDN unit-cells (thus, the same redundancy, connectivity
and segment length proportionality) but with long interconnects (scaled) within each
layer to minimize the influence of SLE. Obviously, the latter will result in relatively more
conservative EM compliance checks compared to the former. However, from a design
perspective, the latter would be the sensible approach as the power-rails in PDNs are
mostly uninterrupted long multi-segment wires with multiple vias along their length. Thus,
although the SLE assumption would be applicable for vertical connections (e.g., totems)
across the BEOL stack layers, along the rails within a BEOL layer, SLE are not unequivocally
certain. The latter approach would still provide significant reliability margins compared to
the conventional single segment-based compliance checks, by considering grid redundancy.
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5. Conclusions

This paper introduces a physics-based EM modelling framework that is complemented
by experimental calibration. The framework is particularly suited for determining the
current limits of unit-cells within nano-interconnect mesh networks, a critical step in
enabling the recently proposed tile-based SEB paradigm [64] to assess the impact of nano-
interconnect redundancy on chip reliability. The validity of the framework was confirmed
through comparison with experimental data. For a representative PDN unit-cell/tile, the
framework was employed to shed light on the EM reliability margin that would otherwise
be overlooked by the single interconnect-based SEB. In this context, the variability of
parameters involved in all stages of EM ageing, including the nucleation and growth
phases, were addressed. Significant current margins were identified at the PDN unit-cell
level, which exist due to unit-cell level redundancy and are disregarded by the conventional
single interconnect-based methods. Furthermore, the study identified negative voltage
power grids as more susceptible to EM. Vulnerable sites within a representative tile were
examined based on mechanical stress distributions deciphered by the modelling framework.
The study could pave the way for the adoption of tile-based SEB as a pragmatic approach
for a more accurate prediction of chip reliability margins.
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