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With digital holographic display and recording setups steadily improving and the advent of realistic super-high-
resolution holograms (>100 megapixels), the efficient compression of digital holograms (DHs) becomes an urgent
matter. Therefore, JPEG Pleno holography is undergoing a standardization effort to address this challenge. The
accepted, current baseline coding solution for lossy compression of complex-valued DHs, entitled INTERFERE,
is presented in this paper. Its features include a simple and modular overall architecture, high scalability, view-
selective coding, low decoder complexity, and the highest rate-distortion performance among state-of-the-art
solutions. We also introduce, to our knowledge, a novel meta-quantization strategy that can be used for signals
exhibiting large variations in dynamic range in the domain being quantized. We were able to demonstrate on the
versatile JPEG Pleno hologram database BD-rate reductions between 16% and 272% (average of 119%) over
HEVC for achieving an SNR in the range 5–25 dB. With this first compression standard on DHs, we hope to pro-
vide an essential building block for their future commercialization in large-scale consumer markets. © 2024 Optica

Publishing Group under the terms of the Optica Open Access Publishing Agreement

https://doi.org/10.1364/AO.531422

1. INTRODUCTION

A. Problem Statement and Objectives

Holographic [1] techniques record the interference pattern
produced by light waves emanating from three-dimensional
scene objects on a flat two-dimensional plane, such that the
object wavefront may be reconstructed later from the record-
ing. Holography has many practical applications, ranging
from interferometry for metrological applications to the visual
consumption of 3D multimedia. Interferometric modalities
like digital holographic microscopy [2] and tomography [3]
can be used in wide-ranging biological or material science
applications to perform quantitative volumetric measure-
ments of 3D shapes/refractive indices, study turbulence, heat
distributions, etc.

Since holography reproduces physically accurate wavefields,
it is also considered the holy grail for 3D display applications like
tabletop displays and VR/AR headsets [4–6]. Used as an imag-
ing or display technique, holography provides all depth cues
without suffering from many of the issues seen in conventional
3D displays, such as the accommodation-vergence conflict

[7], incorrect or even missing focal cues, discretized motion
parallax, etc.

Emerging applications in this domain face large data storage
and processing requirements [8], which hinders widespread
adoption. For example, extremely small pixel sizes in the range
of a few hundred nanometers are required for visualization.
Here, the pixel pitch (p) used and wavelength (λ) of the emitted
light are related to the angular field of view θFOV of the display
by the grating equation [9] as

θFOV
= 2 sin−1

(
λ

2p

)
. (1)

Displays with a high space-bandwidth product, i.e., simul-
taneously supporting a large field of view and viewing aperture
size, have enormous pixel counts and require massive amounts
of data to be driven. Signaling only the scene information,
which is usually much smaller than the native hologram repre-
sentation, and generating the hologram on the client side are one
potential solution to the data transmission problem. However,
computationally generating holograms is a challenging task as
holography is non-local, i.e., each scene point can potentially
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affect all pixels in the holograms. This limits that approach to
only simple scenes and/or requires extremely powerful hardware
at the client side [10].

If this bandwidth problem were not to be addressed, it could
significantly delay the onset of holographic display technol-
ogy. Holographic signals have properties and statistics that
differ substantially from natural photographic imagery because
they consist of complicated interference patterns. That is why
conventional image and video codecs are sub-optimal for this
purpose. Therefore, novel adapted hologram coding solutions
must be designed to solve the problem of compressing and
transmitting digital holograms.

B. State-of-the-Art in Hologram Compression

Data compression techniques can be applied to mitigate trans-
mission costs. Naturally, the decoding procedure should require
much less computation than generation to make compression
worthwhile. Quantization techniques that aim to reduce the
representation accuracy of the hologram in their native format
are the most straightforward of such compression approaches
[11]. Scalar and vector quantization techniques were studied
for the compression of phase-shifted holograms in [12] and
off-axis Fresnel holograms in [13]. Compression approaches
eschewing explicit quantization also exist, like the optical com-
pression protocol [14] proposed for off-axis Fresnel holographic
videos, which utilizes a virtual lens to scale down the input signal
without affecting the fringe structure. To compress phase-only
holograms, [15] obtains a lossy alternative phase representation
with fewer discontinuities and lower entropy. In the case of
phase-only holographic video, [16] proposes an alternative
hologram generation method that introduces an inter-frame
correlation that can be exploited by a computationally simple
delta coding step while improving compression performance
over conventional video codecs.

Most existing image and video compression techniques also
satisfy the computational requirement but show sub-optimal
rate-distortion performance for DHs. DHs can have significant
content all over the frequency spectrum; see, e.g., [17]. This is
in contrast to natural imagery, which is predominantly low pass
and where the amplitude of the spectra follows a reciprocal rela-
tion with increasing frequency values [18]. This difference can
be perceived when inspecting raw hologram data. The micro-
structure of DHs appears as noise due to the higher frequency
content. Compression strategies in conventional image coding
tools strive to preserve predominantly low-frequency content.
For example, JPEG 2000 Part I uses the Mallat decomposition-
based, multi-resolution wavelet transform, which provides
a sparse representation for smoothly varying content [19].
JPEG/HEVC profiles often employ quantization tables, so
more bits are spent for low-pass content [20]. The motivation
is that the human visual system’s CSF (contrast sensitivity
function) is less sensitive to errors in higher spatial frequen-
cies. However, these approaches do not apply to holography,
which encodes interference patterns. Here, the higher spatial
frequencies of the hologram also relate to larger viewing angles.
Quantizing or pruning those higher spatial frequencies will
reduce the reconstruction quality of views at larger angles.

Another approach compresses DHs by propagating them
to an in-focus/object plane, so some objects are in focus [21].
Object plane compression works best if there is a single, small,
and shallow object in the hologram field of view, as minimal
scene information will be out of focus. Then, classical image
compression solutions would perform well [22]. A unitary
transform that can apply piecewise depth propagation in the
time-frequency domain given a depth map of the scene was pro-
posed in [23], which allows this approach to be generalized to
complex, deep scenes at the expense of computational complex-
ity. Nonetheless, the propagation step in these approaches incurs
a vast computational burden and requires additional infor-
mation about the scene composition. While free-space light
propagation is mathematically invertible [23], it is potentially
vulnerable to aliasing issues when employing lossy compres-
sion. Conversely, a key advantage of the above solutions is that
integrating well-established image codecs will represent lesser
upfront costs to design specialized hardware/software. Thus, sig-
nificant efforts have also been expended to modify conventional
codecs to handle holographic data better. For example, Fresnel
hologram sequences were compressed using AVC [24] after
a 2D-discrete cosine transform was applied so that the fringe
patterns could be better characterized [25]. In a similar vein, the
compression efficiency of HEVC on phase-only holograms can
be markedly improved by techniques like phase unwrapping
[26] or by modifying clipping operations performed within the
codec itself [27].

Several transform-based compression techniques have been
proposed over the years for DH. We shall also follow such an
approach. In one of the first works [28], the application of the
2D-discrete Fourier transform (DFT) with a user-specified
low-pass filter was proposed for the compression of electronic
speckle pattern interferometry (ESPI) images. Similarly,
2D-DFTs of size 8× 8 were used in [29] for lossy compres-
sion, where compression is achieved by setting some n lowest
coefficient magnitude values out of the 64 to zero. Other trans-
forms that have been explored targeted the distinct nature of
oriented fringes and/or phase space (i.e., the space spanned
by spatial coordinates and spatial frequencies [17]) locality
[30–32]. In [33], the hologram is compressed using the
Fresnelets basis obtained by Fresnel transforming B-spline
wavelets. This Fresnelet transform at some wavelet scale relates
to the hologram reconstruction at a corresponding distance.
In [34], Gabor wavelet bases were proposed for compression
and view-dependent transmission, as they are known to be
excellent tools for signal analysis. However, this technique is
overcomplete and thus contains redundant information.

Recently, there has also been a trend in applying deep learning
[35] in the context of hologram compression, often in conjunc-
tion with classical image coding tools [36–38]. Deep learning
has shown promise in uncovering complex relationships and
finding novel applications in many related domains. However,
the gains demonstrated by deep learning for hologram compres-
sion remain somewhat marginal and/or were only demonstrated
in restrictive parameter settings, for example, shallow scenes,
large pixel pitches, and small field of view. Ultimately, none of
the aforementioned techniques has advanced into more than an
academic proposal so far, and henceforth, no solution for the
effective compression of DHs for visualization exists. For more
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insight into the state-of-the-art of hologram coding and the
associated challenges, we defer to [39–41].

C. Proposed Solution and Contributions

To address the compression requirements in holography and
other plenoptic modalities, the JPEG committee (ISO/IEC
JTC 1/SC 29/WG 1) has been working on a suite of standard
specifications called JPEG Pleno [42]. JPEG Pleno Holography
(ISO/IEC 21794-5) aims to attain high compression efficiency
while enabling efficient hardware/software implementation,
ensuring device interoperability and supporting various holo-
graphic modalities and representations [43]. A call for coding
solutions for holography [44] was launched in 2021 by the
JPEG committee, where the INTERFERE solution — pre-
sented here — was chosen as the baseline compression method
for standardization. INTERFERE comprises two parts [45]:
one for the lossless compression of binary DHs and another
for the lossy compression of (non-binary) complex-valued
holograms. The lossless compression of binary DHs is described
in [46]. This work describes the core compression framework
utilized for the lossy compression of complex-valued DHs.

We demonstrate that the short-time Fourier transform
(STFT) paves the way for computationally efficient lossy
hologram compression. The STFT representation is not only
conducive to sparsification but also allows for the selection of
viewports, i.e., given the position of the user(s), only a frac-
tion of the hologram needs to be signaled depending on the
viewing angles. Both factors can help in significantly reducing
bandwidth requirements. We also introduce a novel two-stage
quantization mechanism for effectively storing signal represen-
tations exhibiting large dynamic range variations, like typical
holographic data in the STFT domain.

Our compression framework can operate in both lossy and
near visually lossless regimes and supports the following fea-
tures: simple and modular overall architecture, high scalability
(easy to parallelize and transfer to specialized hardware), view-
selective coding, asymmetric en-/decoder complexity, as well as
the highest rate-distortion performance of any existing solution
to our knowledge.

In summary, our specific contributions are as follows:

• we give a detailed account and rationale for the codec
standardized for JPEG Pleno Holography;

• we present a scalable and random-access supporting archi-
tecture based on the STFT, utilizing a four-dimensional (4D)
spatio-angular coefficient representation compatible with many
holographic display and recording types;

• we present novel two-step quantization, rate-distortion
optimization, and entropy coding procedures tailored for
hologram coding;

• we report BD-rate reductions ranging from 16% and
272% over H.265/HEVC (average of 119%) and ranging from
36% and 470% over JPEG 2000 (average of 209%) for an SNR
in the range of 5–25 dB on the holograms from the JPEG Pleno
hologram database.

An initial version of the compression framework without the
two-step quantization procedure and entropy coding was devel-
oped in [47], while preliminary compression results achieved for
a single hologram with the new framework were communicated
as part of [45]. This work describes and motivates the processing
steps used in the framework and includes comprehensive experi-
mental evaluations. The following section provides an overview
of this paper’s organization and a high-level description of the
en-/decoder, data organization, and processing flow.

2. OVERVIEW OF THE PAPER

The compression procedure starts with a monochrome DH
spatially partitioned into tiles. This allows for limiting the mem-
ory requirements of the codec in the case of very large hologram
resolutions. The encoder independently processes each tile as
shown in Fig. 1(a).

Each tile undergoes an STFT transformation as described in
Section 3. The transform coefficients are organized into quan-
tization blocks (QBs) and subject to a novel meta-quantization
strategy, which will be discussed in Section 4. The parameters
governing the quantization procedure are obtained by applica-
tion of a rate-distortion optimization (RDO) step on the QB
data as described in Section 5.

The quantized data and quantizer side information are sub-
ject to fixed-point arithmetic encoding using adaptive context
modelling and will be elaborated upon in Section 6. The QB
information is organized into codeblocks (CBs) for entropy

Fig. 1. Overview of compression proposal defined for a spatially partitioned (not shown) tile. Data structures are given in bold font, while
processes are in italics. STFT: short-time Fourier transform, QB: quantization block, RDO: rate-distortion optimization, CB: codeblock.
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coding. CBs are the random access unit in our compression
system—that is, each CB can be decoded independently. Each
QB collects STFT coefficients from a neighborhood in 4D
phase space. Likewise, each CB is obtained as a collection of
QBs from a 4D neighborhood partitioning the 4D phase space
volume of an STFT-transformed tile.

The decoder, shown in Fig. 1(b), performs a straightforward
reversal of the steps performed by the encoder, starting from
one or more CBs. The CBs are subject to fixed-point arithmetic
decoding to retrieve the quantized data and quantizer side
information. After obtaining this information, dequantization
is applied to the quantized STFT coefficients, followed by the
inverse STFT procedure to obtain the decoded tile.

Exhaustive benchmarks for the compression performance
regarding state-of-the-art image compression codecs, with both
objective and subjective analysis, are provided in Section 7.
Finally, the work is concluded in Section 8.

The notation used in this work is discussed below.
Variables are denoted in italics, constants are in upright

font, vectors are in boldface, and scalars are in normal font.
The index for addressing an element of a vector is given
as a subscript. For example, xi is the i th element of vec-
tor x . The expression i :d refers to d contiguous indices
{i, i + 1, . . . , i + d − 1}. Vectors can be defined using the
following notation: x = {xi ∈ f |i ∈ I }. This implies the vector
is constructed by iterating over all indices i ∈ I . f denotes the
domain of xi . Vectors can be multi-dimensional, where commas
separate the subscript indices for each dimension.

R+ are the non-negative real numbers. ∅ is the empty set. j is
the imaginary unit.

3. SHORT-TIME FOURIER TRANSFORMATION

Holograms are complex-valued amplitude measurements
corresponding to a superposition of coherent electromagnetic
waves propagating through a medium, typically measured
across a 2D plane. For a monochromatic wavelength λ, the
hologram is denoted by h(x , y ), where x and y represent
the two spatial dimensions of the 2D plane. Here the Fourier

transform value H(u, v) calculated for some frequency coor-
dinate u, v represents the complex amplitude contribution of
the plane wave e 2π j (ux+vy ) travelling with directional cosines
(λu, λv,

√
1− (λu)2 − (λv)2) with respect the hologram

plane [48]:

H(u, v)=
∫∫

+∞

−∞

h(x , y )e−2π j (ux+vy )dxdy . (2)

The objects in the scene emitting light will excite the various
spatial regions in the hologram with plane waves sent in differ-
ent directions, as guided by the scene geometry [17]. In order
to sparsify DHs, we need to leverage the sparsity existing in the
plenoptic representation, which should allow for simultaneous
representation of space and (spatial) frequency. Many types of
such representations are possible, denoted as phase-space rep-
resentations [49]. The Heisenberg uncertainty relation bounds
any given representation’s spatial and frequency resolution.

The discrete short-time Fourier transform (STFT) is one such
representation. It is special because it is reversible, can form a
critically sampled ortho-normal basis, and is easy to implement
in hardware. We propose to use a normalized rectangular win-
dow with zero overlap (i.e., no redundancy) for our compression
scheme. We will hereafter simply refer to this specific variant
as STFT. For a 2D hologram tile of size N1 ×N2, and using a
STFT transform block of dimensions F1 × F2, the 4D STFT is

given by Eq. (3) where u ∈ {0:F1}, v ∈ {0:F2}, x ∈
{

0:N1
F1

}
, and

y ∈
{

0:N2
F2

}
. The procedure is visualized in Fig. 2:

Hu,v,x ,y =

F1−1∑
x ′=0

F2−1∑
y ′=0

h x ′+F1x ,y ′+F2 y · e
− j2π ·

(
ux ′
F1
+
vy ′
F2

)
. (3)

The discrete short-time Fourier transform can decompose
the hologram into the most dominant plane waves received
across the different spatial regions, thus aiding sparsification.
The STFT was also deployed in our previous work [47] tar-
geting holographic video compression. Here, it was used to
compress residual data obtained after subtracting the motion
compensation reference hologram from the original hologram.

Fig. 2. Illustration of the non-redundant, short-time Fourier transform (STFT) with rectangular spatial windows used in this work. The left-
hand side shows that the 4D-STFT is obtained by applying 2D-DFTs on blocks of F1 × F2 pels each for a hologram tile with N1 ×N2 pels. The
right-hand side shows that the frequency coordinates {u, v} of the 2D-DFT obtained from the {x , y } block are mapped to the 4D STFT coordi-
nates {u, v, x , y }. As the 2D-DFT block size F1 × F2 increases, the frequency localization of the STFT representation increases while the spatial
localization decreases.
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This residual data consists of missing information that can be
localized spatially and motion compensation errors that tend to
be localized in frequency. The STFT permits trading off spatial
and frequency localization with respect to each other, such that
a sparse signal representation is obtained. Similarly, in off-axis
digital holography microscopy and tomography, only the infor-
mation belonging to a well-localized region in the frequency
spectrum corresponding to the+1-order term is used [50,51].

Apart from sparsity, this decomposition using the STFT
can also enable view-dependent hologram coding, where
only the information that is visible to a user is transmitted—
depending on the position and viewing orientation with respect
to the hologram plane [34,52]. The transform coefficient in
Eq. (3) represents the component of the complex amplitude
of light received along the direction represented by plane wave

e j2π ·( ux ′
F1
+
vy ′
F2
) for the spatial segment of size F1 × F2 whose

indices are given by {F1x :F1, F2 y :F2}. Grouping STFT coef-
ficients from neighboring spatial and frequency precincts into
independently decodable units provides spatio-angular random
access that facilitates the selective signaling of views or data only
visible from specific viewing positions.

Lastly, the discrete Fourier transform is already ubiqui-
tously used in the processing of holographic content [48] for
a wide variety of purposes like numerical depth propagation
[53,54] in accelerated computer-generated holography (CGH),
[55–57], motion compensation [47,58], and tomographic
reconstruction [59].

The inverse/forward transform in Eq. (3) can be efficiently
computed using a cascade of row-wise and column-wise
1D-(I)FFTs of length F1 and F2. The (I)FFT has log-linear com-
putational complexity and is one of the most widely used tools
in signal processing, with efficient hardware implementations
available for many platforms [60,61].

4. QUANTIZATION

Quantization increases the compressibility of a signal by reduc-
ing the total number of possible signal states. As a consequence,
it introduces a distortion in the signal representation.

We define our quantizers on 4D hyperrectangles of dimen-
sion QB1 ×QB2 ×QB3 ×QB4 in the STFT domain and call
them quantization blocks (QBs), as given in Eq. (4):

QBu,v,x ,y = HQB1u:QB1,QB2v:QB2,QB3x :QB3,QB4 y :QB4 . (4)

Thereby, u ∈ {0: F1
QB1
}, v ∈ {0: F2

QB2
}, x ∈ {0: N1

QB3F1
}, and

y ∈ {0: N2
QB4F2
} in Eq. (4). We shall denote the number of all QBs

in a tile as NQB and the set of 4D indices containing the QB
positions as NQB. The number of coefficients inside a QB shall
be denoted by SQB.

Before we elaborate on the quantization strategy employed
to aid sparsification, we will motivate it based on the statistical
distribution of the STFT coefficients obtained from typical
holograms.

A. Motivation

STFT coefficients of holograms can have a large dynamic range.
The key idea here is to choose a small SQB such that quantization
can be adapted to the statistical distribution of coefficients in
each hyperrectangle. For demonstration, we use the hologram
CGH Venus, computed from a point cloud by superposing
spherical waves originating from each point. Since the CGH
is generated using a rigorous and analytical approach, it is free
from approximation artifacts. Therefore, it will also serve as a
representative hologram for analysis throughout this work.

We take an exemplary QB of size 32× 32× 1× 1 and
plot the histogram (zero-order statistical distribution) of 2048
real/imaginary STFT coefficients belonging to it in Fig. 3(a).
Here, we are interested in the change in statistical distribution
when these coefficients are further subgrouped into 4 QBs of
size 16× 16× 1× 1 as shown in Fig. 3(b). The variances (alter-
natively viewed as the energy) and the kurtosis obtained for the
distribution from each region are also showcased. In general, as
the size of the QB gets smaller, the hologram is split into clusters
with higher and lower variances. In other words, the hologram
energy polarizes into higher- and lower-energy QBs. Since the
representation accuracy of each QB quantizer can be adapted,
using smaller-sized clusters helps better localize the hologram
energy. Additionally, it can be seen that the distribution of the
smaller-sized clusters, shown in Fig. 3(b), tends to be more
uniform than the larger-sized QB in Fig. 3(a) as also indicated by
their kurtosis. When discretely representing a uniformly distrib-
uted signal, the maximum increase in SNR for each additional
bit can be calculated from rate-distortion theory as around 6 dB,
which is always greater than the maximum increase possible for
peaked distributions like Gaussian/Laplacian [62].

However, the tradeoff in opting for a small-sized QB is that
the quantizer information of each QB must also be transmitted.

Fig. 3. Histogram (zero-order statistical distribution) of 2048 neighboring real/imaginary STFT coefficients chosen from hologram Venus when
viewed as (a) single QB of size 32× 32× 1× 1. (b) Four smaller QBs of size 16× 16× 1× 1. The real/imaginary values have been normalized by
the largest absolute valued real/imaginary coefficient (σ 2—variance, κ—kurtosis).
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Our quantization procedure discussed below strives to min-
imize the quantizer side information while still maintaining
quantization adaptivity.

B. Quantization Procedure

For scalar quantization, the Lloyd-Max quantizer design in [63]
has been shown to achieve the lower bound for `2 distortion
under certain weak assumptions. Despite its optimality, the
Lloyd-Max quantizer is not used in many practical compression
scenarios. The determination procedure is iterative and com-
putationally tedious. Additionally, if the signal statistics are not
available at the dequantizer, then the mapping that describes the
dequantization for the quantization output states needs to be
also transmitted,

Often, simpler quantization approaches suffice, like trun-
cating the least significant bits of the signal. It was shown in
[64] that at asymptotically high rates, the relation between the
entropy of the output signal — after rounding/truncation —
and the distortion approaches the Shannon rate-distortion
bound for typically encountered signals and distortion func-
tions. This work simplifies quantization using such a uniform
scalar mid-rise quantizer (MRQ).

The MRQ quantizer can be uniquely defined by its bit depth
and quantization range. For an input x ∈R, an integer quanti-
zation bit depth b ≥ 1, and quantization range X ∈R+, the out-
put of the MRQ centered at zero is given by

Q(x , b, X )=


−2b−1, if x − X

b
2b−1x

X c, if − X ≤ x ≤ X

2b−1
− 1, otherwise

 . (5)

Applying dequantization on a quantized output x using the
uniform mid-rise dequantizer (MRDQ) yields

Q−1(x , b, X )= (x + 0.5)
X

2b−1
. (6)

The transformation undergone by some input due to the
quantization procedure is denoted asQ−1Q:

Q−1Q(x , b, X ) :=Q−1(Q(x , b, X ), b, X ). (7)

For b = 0, x ∈R∪ ∅, and X ∈R+ ∪ ∅, the operations of
the MRQ and MRDQ are defined as Q(x , 0, X )=∅ and
Q−1(∅, 0, X )= 0.

Using the MRQ, we quantize the STFT coefficients
within a QB as follows: we split the complex values into
real/imaginary parts [65,66] and quantize each part using
the same MRQ within a QB. Per QB, the coefficient bit depth
b ∈ B= {0 : bmax

+ 1} and QB quantization range X ∈R+. If
b = 0, then the coefficients in the QB are essentially skipped,
and the other bit depths shall be denoted by B+.

As motivated in Section 4, we pursue the quantization
strategy of keeping the QB dimensions small, such that the
quantization can better address the statistical variation that
occurs in the STFT domain for holographic content when
optimizing for the minimum overall error. However, the draw-
back for permitting such a fine level of adaptivity is that the
coefficient quantization bit depth — used for all QBs and the

quantization range for all QBs with non-zero coefficient quanti-
zation bit depth — needs to be transmitted as side information
to the dequantizer.

The mean-squared error d(R) of the Lloyd-Max quantizer
for a signal is approximated as a function of its rate R (in bit) by
d(R)≈ ε2σ 2

· 2−2R (Eq. 3.20 in [62]), where ε is a parameter
derived from the signal’s probability distribution function.
This relation hints that the target bit allocation for a QB will be
correlated to the (signal) energy in a logarithmic manner. We
can expect the target bit depth allocation for the QBs to vary
smoothly across phase space and, therefore, be amenable to
entropy coding.

In the case of the target QB coefficient quantization range,
we also propose quantizing the range. That is, the represen-
tation of the quantizer is quantized itself, leading to the
meta-quantization philosophy. We can expect a correlation
between the target QB bit depth allocation and the target QB
range, which is exploited in this design. For all QBs whose
coefficients are quantized with some b ∈ B+, its target quanti-
zation range is further quantized with a uniform MRQ having
a bit depth q ∈Q= {0 : qmax

+ 1}. For positive q , the MRQ is
centered around an offset Qoff

∈R+, and has a range Q ∈R+.
Here, the offset Qoff is used because the target QB quantization
ranges are not zero-mean and consequently help to reduce the
effective dynamic range encountered by the QB range quantizer.
In case q = 0, the QB range is assigned a constant value of Qoff.

Summarized, the following target parameters need to be
determined for the quantization procedure at the encoder, also
shown in Fig. 4(a).

• The bit depth allocation vector b= {bi ∈ B|i ∈NQB
}

containing the bit depths used for quantizing the STFT
coefficients of each QB.

Fig. 4. Quantization and dequantization procedures performed at
the encoder and decoder for the ith QB are shown.
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• The quantization range vector X = {X i ∈R+ ∪ ∅|i ∈
NQB
} for each QB. The value ∅ is assigned for those QBs whose

coefficients were quantized with a bit depth b = 0.
• The quantization table represents the one-to-one map-

ping between the QB coefficient bit depth and the parameters
used for the QB range quantization.

- The meta-quantizer bit depth vector q = {qb ∈Q|b ∈
B+}.

- The range offset vector Qoff
= {Qoff

b ∈R+ ∪ ∅|b ∈
B+}. The value ∅ is assigned to a bit depth b if it does not
occur in b, i.e., when no QBs were assigned a coefficient
quantization bit depth b.

- The meta-quantizer range vector Q= {Qb ∈

R+ ∪ ∅|b ∈ B+}. The value ∅ is assigned to a bit depth b
if it does not occur in b or if the meta-quantizer bit depth qb

mapped to b is zero.

The quantized QB range and quantized QB coefficients
belonging to the ith QB are obtained at the encoder as shown
in Fig. 4(a). These quantized values and QB bit depth will be
stored after entropy coding with the quantization table.

The decoder will utilize these components to perform the
dequantization procedure to obtain the dequantized QB
coefficients as shown in Fig. 4(b).

A natural question follows: “How are these target param-
eters determined at the encoder?” This forms the crux of the
discussion given in the next section. Here, we utilize a rigorous
approach for estimating the influence of the various parameters
on compression performance by computing the true distortion
from quantization. Additional heuristics, like parametrically
estimating distortion [62], can be used to speed up the estima-
tion procedure, but this is beyond the purview of this work. In
any case, the meta-quantization does not appreciably increase
the complexity of the dequantization done at the decoder, as the
additional steps are trivial and performed once per QB.

5. RATE-DISTORTION OPTIMIZATION

Lossy compression codecs typically require a bitrate or distor-
tion target such that the codec can adjust its internal operating
parameters to reach the same. This adjustment process is
called rate-distortion optimization (RDO). We use a global `2

distortion target Dtar calculated per hologram tile.
In the case of a non-orthonormal transform, the problem

stated above is intractable due to the extremely large number
of possible parameter sets. Furthermore, the global distortion
for some parameter sets can only be calculated after applying
the inverse sparsifying transform over the entire hologram tile
— quantized with the corresponding parametrization. For
ortho-normal transforms, like the non-redundant STFT variant
used here, the theorem of Plancherel holds, and the `2 error of
the coefficients is the `2 error in the original hologram domain.
Therefore, the `2 error in the hologram domain can be opti-
mized independently on small hyperrectangles in the transform
domain, rendering computation feasible.

The RDO procedure utilizes the Lagrangian multiplier
method in which the distortion of the quantizers is calculated
explicitly [67]. Other Lagrangian-based optimization strategies
estimate rate-distortion behavior rather than calculating exact
values. In contrast, the employed approach does not require

convexity assumptions on quantizer rate-distortion behavior.
The following additional numerical optimization procedures
are used for determining the most suitable RDO parameter set.

• UniMini ( f (·), {y1, y2}) returns y , where f (y ) is min-
imal in [y1, y2] for a unimodal function. We solve this problem
with the golden section search [68].

• MonoSearch ( f (·), t, {y1, y2}) returns y , where
f (y )= t given that t lies between f (y1) and f (y2) for a
monotonic function. We use the binary search algorithm [69].

A. RDO Overview

The RDO proceeds as follows. In the first step, an oracle vector
Xora containing the optimal values of quantization ranges X ora

i,b

to be used for each QB i ∈NQB, at each potential bit depth
b ∈ B+ its coefficients may be quantized at, is determined:

Xora
=
{

X ora
i,b ∈R

+
|i ∈NQB, b ∈ B+

}
. (8)

The optimal oracle quantization range to be used for the
uniform MRQ quantizer depends on the tradeoff between two
diametrical errors: the granular and clipping errors. The granu-
lar error represents the quantization error that occurs when
the input is within the quantization range. When increasing
the quantization range while keeping the bit depth constant, the
granular error will increase due to the increase in quantization
step (bin) size.

The clipping error refers to the error encountered for inputs
above or below the quantization range. It decreases as the quan-
tization range increases. Figure 5 shows for an exemplary QB
how the distortion produced by the MRQ changes with respect
to the quantization range for different bit depths. It can be seen
that the distortion, which is the summation of these diametrical
errors, is a unimodal function of the quantization range. As the
bit depth of the MRQ quantizer increases, the granular error
reduces, and the value of the optimal quantizer range increases
[47]. To determine the oracle quantization ranges, we use the
UniMini numerical optimization procedure as shown in
Eq. (9):

X ora
i,b = UniMini

(
DQB(i, b, ·), {y1, y2}

)
. (9)

Fig. 5. `2 distortion dependence of an exemplary QB on MRQ
bit depth and range. Result shown for Venus with F= {512,512},
QB= {8, 8, 1, 1}.
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Fig. 6. The quantization procedure is modelled via two coupled
sub-systems, Systems 1 and 2. The final bitrate reduction and distor-
tion functions induced by quantization are expressed additively from
the corresponding functions of each system. Lagrangian optimization
performed individually at some multiplier value 31 for System 1 and
32 for System 2 finds the solution that reduces the bitrate most among
all solutions having the same distortion within each system. The RDO
strives to pick the tuple {31, 32} among all such solutions that meet
the final distortion target with the lowest bitrate.

The unimodal objective is the `2 distortion for QB i when
using a bit depth b and quantization range y ; see Eq. (10):

DQB(i, b, y )=
∥∥Q−1Q(QB i, b, y )− QB i

∥∥
2. (10)

The search starts with the endpoints y1 = 0 and y2, where
the latter is the QB’s largest absolute valued scalar coefficient.
The oracle vector is determined independently of the global `2

distortion target Dtar.
After X ora is calculated, the RDO strives to find the optimal

allocation of bits to the QB coefficients btar, and the bits for the
QB quantization range qtar along with the other meta-quantizer
parameters.

We use two coupled quantization-optimization systems for
the RDO: Systems 1 and 2, which we will elaborate upon next.

System 1 performs quantization of the QB coefficients using
some (coefficient) bit depth allocation b, where we do not
consider the influence of the subsequent quantization of the
QB range. Here, from the previously determined oracle ranges,
X ora

i,bi
will be used as the quantization range for the QB indexed

by i. The quantization range is represented as a 32-bit floating
point number. The associated reduction of the total rate and
the induced distortion of the quantization procedure shall be
given by1R1(b) and1D1(b). Out of all possible solutions, the
bit depth allocation is restricted to b(31) obtained as the solu-
tion minimizing the Lagrangian rate-distortion cost-function
obtained by System 1, for some Lagrangian multiplier31 ∈R+.
The chosen bit depth allocation shall satisfy the following with
respect to any bit depth allocation b: 1D1(b(31))≤1D1(b)
if1R1(b(31))≤1R1(b) [67].

System 2 represents the second stage of the quantization
procedure and determines the meta-quantizer bit depth allo-
cation q for the QB quantization ranges, along with Qoff

and Q. It requires the QB coefficient bit depth allocation b
from System 1 as input. Let 1R2(b, q) and 1R1(b, q) be the
induced rate-reduction and distortion due to the quantization
by System 2. In an analogous manner to the solution of System
1, the bit depth allocation of System 2 is determined as q(32)

Fig. 7. Payload belonging to the ith QB before application of
entropy encoding.

for some 32 ∈R+, where 1D2(b, q(32))≤1D2(b, q) if
1R2(b, q(32))≤1R2(b, q).

Thus, the bit depth allocations are determined using a greedy
approach, where the chosen solution is optimal with respect
to both systems individually. Note that the ideal compression
performance can only be achieved when solving both systems
simultaneously, which is computationally intractable.

The final rate and distortion spanned by all operating points
under this quantization approach as shown by Fig. 6 are given
in Eq. (11), where we have assumed non-quantized STFT
coefficients to be 32-bit floating point numbers:

D(31, 32)=1D1(b(31))+1D2(b(31), q(32)),

R(31, 32)= 64NQBSQB
−1R1(b(31))−1R2(b(31), q(32)).

(11)

Out of all possible tuples {31, 32}, the RDO with
distortion target strives to pick the best values, such that
D(31, 32)= Dtar while minimizing R(31, 32). For a
given Dtar, there is only a range of values for 31 for which the
distortion constraint can be satisfied. Within this range, for
some31 the required value of32 can be obtained by solving for
the distortion constraint Dtar. The MonoSearch procedure
can be used, as the system distortion (and rate) functions are
monotonic with respect to the Lagrangian multiplier.

The search procedure is detailed in Supplement 1. The pro-
cedure identifies a search range for31 and then finds the value
3tar

1 within this search range that minimizes the overall rate.
While here we have used a distortion target, the RDO can also
be performed using a rate target. However, in this case, the target
will serve as an upper bound as the rate will become smaller after
entropy coding. On the other hand, distortion is unchanged as
entropy coding is lossless.

We demonstrate the utility of the meta-quantization (i.e.,
the coupled System 1 and System 2) by comparing its compres-
sion performance with that of just utilizing System 1 for the
hologram Venus (as given in Fig. 9). The obtained compression
gain reduces as the QB size SQB increases because the cost of
the side information is now spread over 2SQB real/imaginary
coefficients. Our experiments that evaluate INTERFERE’s
compression performance as a function of SQB in Supplement 1
show that the best performance is obtained when using small
QB sizes, typically in the range 16–64. See Fig. S3 for a few
examples.

6. ENTROPY CODING

The final bitstream is split into two parts: the header infor-
mation and payload information. The header information

https://doi.org/10.6084/m9.figshare.26661532
https://doi.org/10.6084/m9.figshare.26661532
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Fig. 8. Entropy coding performed for the QB bit depth is illustrated. (a) Context determination used in the encoding of the QB bit depth.
(b) QB bit depths allocated for an exemplary transform block from the Venus hologram—N= {4096,4096}, F= {512,512}, QB= {4, 4, 1, 1},
CB= {128,128, 1, 1}, and a distortion target of 15 dB.

represents a tiny fraction of the total information and is stored as
is, once per hologram tile. The header comprises the following:

• data organization: describes the dimensions used in the
construction of the data organization units, namely, the holo-
gram tile, STFT block, quantization block, and codeblock (N,
F, QB, CB);

• quantizer side information: contains the maximum
bit depths, bmax and qmax, that the QB coefficient and QB
range quantizer can use, respectively. It also consists of the
quantization table (q, Qoff, Q).

The payload information corresponds to the remaining infor-
mation on which entropy coding is applied. Here, the payload
consists of the QB coefficient bit depths b, and the quantized
QB range and QB coefficients Xint and QBint.

As explained earlier, we will split the payload information into
units called codeblocks (CBs). Each codeblock is a grouping of
the payload from CB1 ×CB2 ×CB3 ×CB4 QBs belonging to
the 4D space-frequency neighborhood. Each CB, like the QB, is
a contiguous 4D partition of the phase-space information of the
hologram tile and permits hologram transmission with simul-
taneous spatial and angular viewports. Apart from enabling
random access, partitioning into codeblocks also permits paral-
lel processing for the entropy en-/decoding procedures, which
will certainly be required to support the throughput require-
ments imposed by holographic content. We will now elaborate
on how the information is organized within a codeblock.

A. Entropy Coding Procedure

For entropy coding, the payload information belonging to all
QBs per CB is grouped together as shown in Fig. 7. As indicated,
the QB coefficient bit depth needs to be en-/decoded first, fol-
lowed by the quantized QB range and the quantized QB STFT
coefficients.

Real and imaginary QB STFT coefficients are interleaved.
For obtaining the codeblock payload, the QB payloads within

a codeblock are strung together. Thus, each CB payload com-
prises a stream of integer-valued symbols representing the
information belonging to the constituent QBs.

For the entropy coding of the CB payload, we use adaptive
entropy coding with the fixed point arithmetic coder given
in [70], where we assume no a priori information about the
hologram. Simply put, the entropy coder “learns” from the
information that was previously en-/decoded, such that for a
stationary signal, the compression performance improves over
time.

Three symbol types are used depending on whether the
symbol is the QB bit depth, the QB range, or the QB coeffi-
cients. The QB bit depth is encoded using a fixed template
Markov-based histogram model comprising bit depths of the
four immediate previously coded QB neighbors in the same
STFT transform block, as shown in Fig. 8(a). The primary
motivation behind this statistical model is the observation that
bit depths from the neighboring regions are highly correlated.
An example is given in Fig. 8(b).

The QB range and QB coefficients are coded using zero-order
histogram models. A separate model is mapped to each QB bit
depth for either.

The compression gain obtained by the entropy coding mod-
ule is given in Fig. 9 for the hologram Venus. It can be seen

Fig. 9. Rate-distortion curves obtained by the different compres-
sion modes of INTERFERE—N= {4096,4096}, F= {512,512},
QB= {4, 4, 1, 1}, CB= {64,64, 1, 1}.
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that enabling entropy coding brings noticeable benefits. Also
noteworthy is the influence of adaptive quantization on the
compression gain seen by the entropy coder. When the quan-
tizer is ill-tuned to the data, most quantizer outputs are mapped
to only a small subset of its output alphabets. Entropy coding
can be highly beneficial here, helping to regain some of the “lost”
performance from poor adaptivity in quantization. In other
words, when less adaptive quantization models are used, the
burden of compression shifts to the entropy coding stage.

7. RESULTS

In this section, we discuss the compression performance
achieved by INTERFERE. The experiments reported in
this paper have been carried out according to the Common
Test Conditions [71] defined for the JPEG Pleno Holography
standardization effort. The tests were conducted on a Windows
10 PC equipped with an i7 11800H processor and dual-channel
DDR4 3200 MHZ RAM. The results have also been independ-
ently verified in the context of evaluation conducted by the
JPEG committee [72–77].

As test data, a diverse selection of complex-valued DHs is
used. The test data contains both computer-generated holo-
grams (CGHs) and optically captured holograms (OCHs) with
varying scene complexities. All holograms used [78–84], except
for Venus, are available at the JPEG Pleno database [85]. The
recording and generation parameters of these holograms are
given in Table S2 in Supplement 1. The dimensional infor-
mation describing the various data organization units used by
the INTERFERE codec for these holograms is included. The

influence of the choice of these parameters on compression per-
formance is also discussed. The encoder and decoder software
of INTERFERE was written in ISO C ++17 using Microsoft
Visual Studio 2022.

For comparison, JPEG 2000 (Kakadu 8.0.5 [86]) and
intra-mode H.265/HEVC (HM 16.20) are used. The coding
conditions used for both are specified in Supplement 1. Since
JPEG 2000 and HEVC require unsigned integer input repre-
sentations, the floating-point complex-valued holograms are
split into real and imaginary components and quantized to
integer representation before compression [71]. 16-bit input
modes are used for both codecs to introduce only minimum
loss from this procedure. In the case of color holograms, each
wavelength/color channel is en-/decoded independently for all
compression solutions.

The compression performance of lossy compression methods
can be compared objectively by rate-distortion curves that plot a
selected distortion metric calculated on the lossy decoded holo-
gram ḣ as a function of the achieved bitrate. The bitrate is mea-
sured as

bitrate (bpp)=
Number of bits in encoded file

Total pixels in hologram
. (12)

The distortion is measured by the SNR calculated over the
global hologram wavefield as given in Eq. (13). Other distortion
metrics, such as SSIM (variants) and even subjective scores, were
studied in [75]:

Fig. 10. Rate-distortion plots comparing INTERFERE with JPEG 2000 and HEVC are shown for a selection of test holograms from the JPEG
Pleno Database. See Fig. 11 to compare numerical reconstructions from different compression solutions.

https://doi.org/10.6084/m9.figshare.26661532
https://doi.org/10.6084/m9.figshare.26661532
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SNR (dB)= 10 log10

(
‖h − ḣ‖2

‖h‖2

)
. (13)

The rate-distortion plots comparing INTERFERE with
other compression solutions are shown in Fig. 10 for a selection
of test holograms. It can be seen that INTERFERE obtains a
convincing improvement over conventional image codecs.

The BD-rate metric can summarize the relative rate-
distortion compression performance between two codecs across
a quality region of interest [D1, D2], as shown in Eq. (14):

BD-Rate(%)=
100 ·

∫ D2
D1
(RB(D)− RA(D))dD∫ D2
D1

RA(D)dD
, (14)

where RA(D) and RB(D) are the bitrates for the codecs for
achieving distortion D. A positive value corresponds to a bet-
ter relative performance of the reference codec A. We use the
hologram wavefield’s SNR as the distortion metric, with the
INTERFERE codec as a reference. The distortion is measured
across two quality regions of interest. We select a perceptually
lossy region (5–15 dB) as well as a perceptually lossless region
(15–25 dB).

The BD rates were calculated for H.265/HEVC Intra and
JPEG 2000 across all tested holograms.

For HEVC, the geometric mean of the BD rates was +98%
for the perceptually lossy region and+81% in the perceptually
lossless region. In the case of JPEG 2000, the geomean was
182% and 145%, respectively. Table S2 in Supplement 1 lists
the BD rates obtained for each test hologram.

The objective results demonstrate bitrate gains of 40%–
400% across the entire dataset. Only holograms with resolutions
smaller than 2048× 2048 show less impressive gains of 10%–
50%. This showcases the robustness of the proposed method to
optical recording noise, CGH algorithms, hologram parame-
ters, and scene content. Albeit this, slightly larger improvements
can be seen in the case of CGH compared to OCH. The pres-
ence of measurement noise in the case of OCH reduces the
gain provided by the quantization procedure. Furthermore, in
the case of CGH, higher utilization of the space-bandwidth is
possible. This can allow for more spatio-angular information to
be present, like in the Deep CornellBox hologram, leading to an
increased “stress test” for the codecs.

The hologram is propagated to the plane containing the
object to evaluate visual quality using NRSH (Numerical
Reconstruction Software for Holography) V8.0 [87, 88]. In
the case of color holograms, the same bitrates are used for all
wavelengths. This results in one or more reconstructions gener-
ated per hologram. The number of reconstructions depends on
the number of objects in the scene and the viewing angle range
supported by the DH. NRSH utilizes different reconstruction
algorithms depending on the diffraction regime of the hologram
type under test. The generated reconstruction is of 8-bit integer
precision and can be viewed on a conventional 2D-display [83].
In fact, elaborate subjective quality experiments [83] indicate
that test subjects could perceive compression artifacts more
easily on 2D displays when compared to holographic displays.

We show reconstructions obtained by operating the codes
at approximately the same bitrates for a selection of lossy
compressed holograms in Fig. 11, where we have chosen low

bitrates to highlight each codec’s compression artifacts better.
Since holograms encode 3D information, is it important to
assess whether the visual information is well-preserved from all
viewpoints. Conventional codecs give higher weight to lower
frequencies of the signal, leading to non-uniform distortion of
the angular information, as opposed to our proposed STFT-
based codec. The PSNR, which objectively measures the visual
quality of a given reconstruction, is also indicated alongside the
reconstructions:

PSNR recon.(dB)= 10 log10

(
‖r − ṙ‖2

2552

)
. (15)

The improvement of INTERFERE over the two codecs
measured objectively by the SNR is also perceptible from the
numerical reconstructions. We see a pervasive presence of
unstructured noise in the reconstructions of conventional
codecs. Both these codecs have aliasing issues with some holo-
grams (see, e.g., Mermaid ), where unwanted copies of scene
objects are visible. This issue is more pronounced in the case of
JPEG 2000 [89]. Furthermore, a vignetting effect is seen in the
reconstructions of these codecs, especially for corner views. As
mentioned earlier, this arises from the design of these codecs
prioritizing low spatial frequencies inspired by the contrast sen-
sitivity function of the human visual system. As a result, more
bits are spent on on-axis content, while the off-axis content is
skipped, especially at lower bitrates. For example, center views
of DeepCornellBox show a comparable level of detail with respect
to INTERFERE for both the codecs, but most of the informa-
tion in the side view is gone. In the case of OCH Mermaid , the
reconstruction from INTERFERE looks even “better” than
the uncompressed data. This can be attributed to the frequency
filtering induced by the adaptive quantization procedure that
removes most of the measurement noise at low bitrates. For a
more detailed quality evaluation of the INTERFERE compres-
sion proposal with respect to these codecs, the reader is directed
to [75].

Encoding the Dices4K hologram having 4096× 4096
pixels using INTERFERE with parameters F= {256,256},
QB= {4, 4, 1, 1}, and CB= {64,64, 1, 1} while targeting an
SNR of 10 dB took around 100 s and is dominated by the RDO
step. Decoding takes around 2.22 s. For achieving the same
quality level with Kakadu 8.0.5 and HM 16.20, encoding takes
around 0.42 s and 380 s, while decoding takes 0.66 s and 5.19 s,
respectively. Note that Kakadu 8.0.5 is commercial software,
while HM 16.20 and INTERFERE are verification models
written to serve as a reference implementation. Therefore, the
processing times of HM 16.20 and INTERFERE are not fully
indicative of achievable performance.

8. CONCLUSION

In this work, we have described an end-to-end pipeline for the
compression of static holograms. It utilizes the STFT using
non-redundant rectangular windows as a sparsifying transform,
along with novel quantization, rate-distortion optimization,
and entropy coding procedures. With the employed scheme,
variations in dynamic range across STFT regions seen for typical
holograms can be efficiently addressed.

https://doi.org/10.6084/m9.figshare.26661532
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Fig. 11. Numerical reconstructions produced by NRSH V8.0 [88] from holograms compressed by different codecs (columns). PSNR and bitrate
shown in brackets for viewports. (a) Center view, 496 mm. (b) Center view, 250 mm. (c) Top right view, 418 mm. (d) Center view, 450 mm. (e) Top
right view, 2.5 mm. (f ) Center view,1060 mm. DeepCB—DeepCornellBox, Low. Doll—LowiczankaDoll . See Fig. 10 for rate-distortion plots.

The shortcomings of conventional image coding solutions,
widely used for hologram compression in practice, were iden-
tified. The proposed solution demonstrably obtains higher
compression levels compared to conventional codecs when
measured objectively by the rate-distortion performance and
when evaluated subjectively from numerical reconstructions for
a wide selection of optically acquired and computer-generated
holograms. Moreover, the compression was achieved with
spatio-angular random access and supports a low-complexity
decoder design. The data to be compressed is also organized into
convenient data structures for scalability.

The proposed coding technology has been accepted as the
basis for the first international standard addressing the com-
pression of holographic content, JPEG Pleno Holography
(ISO/IEC 21794). This standard is expected to be published
in late 2024. We hope this contribution is helpful in the devel-
opment of practical solutions targeting high-end holographic
displays and digital holographic microscopy and tomography.
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