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Abstract 

Point cloud video delivery will be an important part of future immersive multime-
dia. In it, objects represented as sets of points are embedded within a video which 
is streamed and displayed to remote users. This opens possibilities towards remote 
presence scenarios such as tele-conferencing, remote education and virtual training. 
Due to its infeasibly high bandwidth requirements, encoding is unavoidable. The intro-
duced artifacts and network degradations can have an important but unpredictable 
impact on the end-user’s Quality of Experience (QoE). Thus, real-time quality moni-
toring and prediction mechanisms are key to allow for fast countermeasures in case 
of QoE decrease. Since current state-of-the-art research is focusing on either con-
tinuous QoE monitoring of traditional video streaming services or objective delivery 
optimizations of point cloud content without any QoE validation, we believe this 
work brings a valuable contribution to current literature. Therefore, we present a no-
reference (NR) QoE model, consisting of KMeans clustering and sigmoidal mapping, 
that works on video-level, group-of-pictures (GOP)-level and frame-level granularity. 
Results show the value of the sigmoidal mapping across all granularity levels. The clus-
tering algorithm shows its value at the video-level and in the role of an outlier detector 
on the more fine-grained levels. Satisfying results are yet obtained with correlation 
values often going above 0.700 on GOP- and frame-level while maintaining root mean 
squared error (RMSE) below 10 on a 0–100 scale. In addition, a Command Line Interface 
(CLI) Video Metric Tool is presented that allows for easy and modular calculation of NR 
metrics on a given video.

Keywords:  Point cloud video, Quality-of-Experience, No Reference, Near-continuous 
modeling, Video Metric Tool

1  Introduction
Point cloud video delivery will be one of the key aspects of immersive multimedia. To 
enable this, dense sets of six-dimensional points (three space coordinates + 3 color 
channels) need to be streamed over the network to present them to the remote end-user. 
As such, a plethora of possibilities open up towards remote presence scenarios such as 
more immersive tele-conferencing, remote education and virtual training. Due to the 
high bandwidth requirements of this content, in the order of Gbps, encoding is key. The 
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introduced encoding artifacts, together with any degradations present in the network, 
such as losses, delay or jitter, can have a severe impact on the end-user’s quality of expe-
rience (QoE). As such, a real-time client-side QoE mechanism is essential to monitor 
quality and to allow for fast counteraction in case any severe QoE drops are detected.

Although subjective evaluations are still the most reliable way of evaluating QoE, they 
come with inherent costs, duration and complexity which are incompatible with a real-
time system. Therefore, objective evaluation methods are needed. For the specific case 
of point cloud content, two different approaches can be distinguished: geometric and 
projection-based quality evaluation. Geometric approaches make an assessment of the 
distorted point cloud figure (or its mesh representation) by comparing it to its original, 
undistorted counterpart. As such, point-to-point or point-to-plane Peak Signal-to-Noise 
Ratio (PSNR)-based metrics, among others, can be applied to estimate the quality of the 
given object [1–4]. Projection-based evaluations make a quality assessment based on 
the current Field-of-View (FoV) rather than the figure as a whole. In other words, the 
three-dimensional figure is first projected to a two-dimensional plane after which tradi-
tional 2D video metrics can be applied for assessing quality. Note that projection-based 
metrics therefore pose an important advantage in comparison to geometric approaches 
w.r.t. establishing the (near) real-timeliness of quality evaluation, as existing 2D No Ref-
erence (NR)-metrics are already designed in computationally efficient ways. As such, 
their well-established and highly optimized pipelines for traditional video pose a unique 
opportunity to reuse their value for (near) real-time point cloud evaluation. However, 
research towards their accuracy and modeling with respect to subjective perception is 
still rather limited. This is important, however, as one cannot straightforwardly assume 
that existing metrics and models for natural video will also apply to specific types of 
content such as synthetic content or volumetric media. Twitch-alike gaming videos, for 
example, have shown to allow for much more straightforward modeling approaches than 
is the case for natural video content  [5], which often rely on rather complex Machine 
Learning (ML) or Deep Learning (DL) modeling. Among these projection-based met-
rics, Full Reference (FR) metrics such as Netflix’ Video Multimethod Assessment Fusion 
(VMAF) take human intervention out of the equation while still maintaining high accu-
racy in terms of correlation to subjective perception scores. This is the case for natural 
video content, but also for the specific case of point cloud video with correlation values 
to Mean Opinion Scores (MOS) often up to 0.9 [6–10]. As such VMAF is, among others, 
typically used as an objective FR benchmark and substitute for time consuming subjec-
tive MOS in the evaluation of projection-based point cloud quality  [11–13]. As these 
metrics rely on a comparison with the original, undistorted content, however, they are 
infeasible in live-streaming scenarios as the reference content cannot be accessed with-
out suffering from encoding and network degradation as well. As such, client-side NR 
metrics, which act solely upon the distorted stream to measure blur, noise, blockiness, 
etc. are relied on to fulfill the aforementioned task. To this end, this work presents a NR 
QoE model for projection-based point cloud video, consisting of KMeans clustering and 
sigmoidal mapping. In our previous work [13], we presented a first exploration and pre-
liminary results on this matter. Encouraged by these, this paper presents the fine-tuned 
model and accompanying full-fetched analysis on multiple granularity levels (video, 
group-of-pictures (GOP), and frame-level). The latter is of utter importance to enable 
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QoE monitoring in a (near) real-time fashion while maintaining high accuracies towards 
subjective scores or well-established subjective benchmarks such as VMAF. In that way, 
the necessary adaptations and optimizations can be made in a fast manner to keep the 
end-user’s perception and immersion to a maximum. As most traditional NR metrics 
have highly optimized implementations in order to evaluate on a per-frame base, they 
are extremely suited to fulfill this task, provided they can meet the necessary accuracy 
requirements as well. In addition, the necessary tools to easily calculate aforementioned 
metrics are provided in the form of a Command Line Interface (CLI) Video Metric Tool. 
The tool allows for customization on which metrics to include or exclude in the calcu-
lation and new metrics or alternative implementations can easily be plugged into the 
existing framework.

Therefore, our contributions are fivefold: 

1.	 We present an NR QoE model, consisting of KMeans clustering and sigmoidal map-
ping, that works on video-level, GOP-level and frame-level granularity.

2.	 A full-fetched analysis of the dataset [13] is conducted, providing in-depth insights 
on multiple granularity levels (GOP- and frame-level analysis).

3.	 An analysis towards the applicability of multiple objective benchmarks is provided, 
with respect to their correlations and root mean squared error (RMSE) towards sub-
jective scores.

4.	 Investigation of the extent to which a one-for-all QoE model is feasible and when 
per-video models are more appropriate.

5.	 Presentation of a video quality metric CLI tool that allows to calculate a set of NR 
metrics on a given video.

The remainder of this paper is organized as follows. Section 2 presents an overview of 
the most important literature in terms of geometric and projection-based point-cloud 
quality metrics as well as objective quality modeling and benchmarking. Section 3 dis-
cusses the followed methodology, followed by Sect. 4 in which the created Video Metric 
Tool is presented. Section 5 presents the dataset as well as the obtained results, which 
are further discussed in Sect. 6. Section 7, at last, lists the most prominent findings of 
this work and gives some pointers towards future research directions.

2 � Background and related work
This section will briefly discuss research related to the work presented in this paper. 
First, an overview of geometric approaches is provided, followed by objective, projec-
tion-based point cloud quality metrics. Next, a brief discussion on existing mechanisms 
for fine-grained QoE monitoring and modeling is provided, as well as a thorough over-
view on applied benchmarks in literature. At last, the most important takeaways from 
existing literature are listed.

2.1 � Geometry‑based point cloud quality metrics

Alexiou et al. [14] created a geometric metric by calculating the average angular similar-
ity between nearest neighboring points. Their results show Pearson Linear Correlation 
Coefficients (PLCCs) between 0.89 and 0.99 to subjective MOS depending on the type of 
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distortion being applied and whether Absolute Category Rating (ACR) or Double Stimu-
lus Impairment Scale (DSIS) is being assessed.

In a second study [15], they adapted Structural Similarity Index Measure (SSIM) for 
use in point clouds based on geometry, normal vectors, curvature values, and colors. 
Similar to SSIM, features are extracted per neighborhood after applying dispersion 
statistics. The authors show that maximum PLCCs to MOS between 0.80 and 0.90 are 
achieved, depending on the considered dataset.

Diniz et  al.  [16] derived a Reduced Reference (RR) point cloud quality assessment 
model based on local patterns. In this model, each pixel is assigned a binary code by 
thresholding the difference in intensity with its surrounding pixels. The quality of the 
point cloud is then determined by the difference between the histograms of the original 
and the distorted content, mapping this distance to a predicted MOS using a third-order 
polynomial relationship. Results show that PLCCs to MOS varying between 0.67 and 
0.88 can be achieved, depending on the considered content.

In a second study [17], they present an objective FR visual quality assessment metric 
for static point clouds, named BitDance, which uses color and geometry texture descrip-
tors. The proposed method first extracts the statistics of color and geometry informa-
tion of the reference and test point clouds. Then, it compares the color and geometry 
statistics in terms of distance and combines them in a logistic mapping to estimate the 
perceived quality. Their results show an average PLCC of 0.84 to subjective scores when 
averaged over multiple datasets.

Viola et al. [4] created a RR quality metric by extracting color statistics, creating his-
tograms and correlograms from both the original and the distorted sequence. The dis-
tance between both is used to predict the subjective MOS by applying a curve-fitting 
approach.

Following up on this work, the authors created a second RR metric based on a 
weighted combination of feature differences in terms of geometry, luminance and nor-
mal [18]. Evaluating both metrics, PLCCs up to 0.90 for the subjective MOS are achieved 
for a single publicly available dataset.

Nehme et  al.  [19] proposed a FR metric for the quality assessment of 3D meshes, 
which works entirely on the mesh domain. The proposed metric integrates both geom-
etry and color information, using statistics on curvature (e.g., contrast and structure) 
and color (e.g., chroma and hue comparison) on local neighborhoods corresponding to 
the original and the distorted content. While individual features result in PLCCs for the 
MOS between 0.30 and 0.70 only, the overall metric results in a PLCCs between 0.86 and 
0.91, depending on the considered dataset.

Tian et al. [20] propose a geometric point-to-plane distance as a measure of geometric 
distortions on point cloud compression. To this end, the intrinsic resolution of the point 
clouds is proposed as a normalizer to convert the mean square errors to PSNR numbers. 
In addition, the perceived local planes are investigated at different scales of the point 
cloud. As such, they create a metric that is independent of the size of the point cloud and 
shows to better track the perceived quality than the point-to-point approach.

Javaheri et al. [21] present a geometric point cloud quality assessment metric based on 
a generalization of the Hausdorff distance. This generalization is realized by computing 
the distance over a subset of data after ranking all the values. Their results show that this 
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generalization leads to an improvement in correlation towards subjective scores, and 
even tends to outperform the MPEG adopted geometry quality metrics when decoded 
point clouds with different types of coding distortions are considered.

In a second study [2], they propose novel improved PSNR-based metrics by exploit-
ing the intrinsic point cloud characteristics such as resolution and the rendering process 
that must occur before visualization. Their results show improvements of up to 32% in 
PLCC for certain cases.

In a third study [22], a scale-invariant point cloud geometric quality assessment metric 
is proposed as the correspondence between a point and a distribution of points based 
on the Mahalanobis distance. Their results show PLCC gains up to 31.9% and Spearman 
Rank Order Correlation Coefficient (SROCC) gains up to 22.8% with regard to existing 
MPEG metrics.

Liu et al. [23] propose a RR linear perceptual quality model for V-PCC encoding based 
on geometry and color quantization whose coefficients can easily be computed from 
two features extracted from the original point cloud. Their subjective quality test results 
show that the proposed model outperforms certain state-of-the-art FR objective meas-
ures in terms of both PLCC and SROCC with correlation values up to 0.91.

Chen et al. [24] propose a Layered Projection-based Point Cloud Quality Metric (LP-
PCQM). The distorted point cloud and its original version are layered such that geom-
etry and color features of layers can be extracted. The geometry feature is obtained using 
the projection-based method and the color features are extracted upon RGB by using 
the point-based method. Finally, the LP-PCQM is a weighted linear combination of an 
optimal subset of these pooled geometry and color features of layers. Their results show 
PLCCs between 0.71 and 0.90 depending on the dataset.

2.2 � Projection‑based point cloud quality metrics

In the last few years, a significant amount of research has been conducted on measur-
ing the objective quality of omnidirectional video [25–27]. In the context of point cloud 
video, however, research is still at an early stage, with standards for evaluation proce-
dures still to be agreed upon. Nevertheless, a decent amount of studies can be men-
tioned in the field of projection-based quality modeling for point-cloud video, which this 
work is focusing on.

Recently, several attempts have been made to tailor projection-based metrics to vol-
umetric video. Alexiou et  al.  [28] research projection-based objective quality assess-
ment of point cloud imaging by investigating the impact of the number of viewpoints 
employed to assess the visual quality of a content. This is done while discarding informa-
tion that does not belong to the object under assessment, such as background color. In 
addition, they propose to assign weights to the projected views based on user interactiv-
ity information. Their results show that employing a larger number of projected views 
does not necessarily lead to better predictions of visual quality, while user interactivity 
information can improve the performance.

Yang et  al.  [7] presented a FR metric based on the projection of the point cloud on 
the six perpendicular planes of a cube. For each of the resulting images, features are 
extracted from the color and depth information in terms of texture similarity, Jensen–
Shannon (JS) divergence, and edges. Combining feature values from all six planes, a 
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single quality index is then derived. Results show PLCCs with subjective MOS ranging 
from 0.66 to 0.97, depending on the considered content and the introduced encoding 
distortions. In a second study  [29], GraphSIM is proposed: a metric to accurately and 
quantitatively predict the human perception of point clouds with superimposed geom-
etry and color impairments. Based on the characteristics of the Human Visual System 
(HVS), local graphs are constructed around geometric keypoints which are used to com-
pute three moments of color gradients. Afterwards, the similarity index is calculated 
by pooling the local graph significance across all color channels and averaging across 
all graphs. Their results show PLCCs between 0.89 and 0.98 to MOS depending on the 
dataset and the content type.

Torlig et al. [30] propose a framework for quality assessment of point clouds by means 
of rendering software that allows for real-time voxelization and projection of the 3D 
point clouds onto 2D planes, while allowing interaction between the user and the pro-
jected views. These projected images are then employed by two-dimensional objective 
quality metrics, in order to predict the perceptual quality of the displayed stimuli. Their 
benchmarking results, using subjective ratings that were obtained through experiments 
in two test laboratories, show high predictive power.

Yang et al. [31] propose a new metric called Volu-FMAF based on the results of a com-
prehensive user study to understand the effectiveness of popular perceptual quality met-
rics for volumetric video. It combines volumetric VMAF with viewpoint related features. 
To this end, a Support Vector Regression (SVR) with Radial Basis Function (RBF) kernel 
is trained with subjective DSIS MOS as the benchmark. In addition, they present a novel 
neural-based volumetric video streaming framework RenderVolu and design a distor-
tion-aware rendered image super-resolution network, called RenDA-Net. Their results 
show a boost in perceptual quality of 171% to 190% while achieving a 108× speedup in 
encoding efficiency compared to state-of-the-art approaches.

Fan et  al.  [32] propose a novel DL NR volumetric video quality assessment method 
based on multi-view learning. This is realized by projecting the volumetric videos to 
2D video sequences from various viewpoints. Next, a set of quality-aware features is 
extracted from the projected video sequences by means of a 3D-Convolutional Neural 
Network (CNN) backbone. Based on these, a regressor is designed that fuses the fea-
tures from the multiple viewpoints and joins them into quality scores. The results show 
that their method outperforms state-of-the-art objective volumetric video quality 
assessment metrics on the V-SENSE VVDB2 database [33], with PLCCs and SROCCs up 
to 0.901 and 0.865, respectively, and RMSEs down to 7.927.

Van der hooft et  al.  [1] presented an objective and subjective quality evaluation of 
point cloud streaming for multiple scenarios in terms of bandwidth, rate adaptation, 
viewport prediction and user motion. Their results show high correlation with MOS for 
traditional video metrics such as PSNR, SSIM and Video Quality Metric (VQM). They 
further indicated that the subjective perception of point cloud video lays within a very 
small interval of the total range of the objective metrics, which might be a result of the 
inclusion of (too much) background during the quality metric calculation.

In our own, previous work  [13], we communicated a first set of preliminary, video-
level results on the clustering-based NR QoE assessment model for point cloud video 
being presented in this work. Using this approach, PLCCs up to 0.977 and RMSEs down 
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to 0.077 on a 0-to-1 scale are obtained at video-level. In the following section, this 
approach will be discussed in more detail and a full-fetched analysis with results on mul-
tiple granularity levels (GOP and video-level) will be presented.

2.3 � Fine‑grained QoE monitoring, modeling, and benchmarking

When it comes to (near) continuous, per-GOP or per-frame monitoring and modeling 
of QoE for point cloud content, very little research is available. On one hand, a lot of 
studies focus on optimizations of point cloud content delivery in terms of rate con-
trol [34–38], transmission [39], error concealment [40] or coding [41] rather than con-
tinuous monitoring. Here, the influence on end-user QoE is most of the times not taken 
into account and studies that do so often do not validate their QoE predictions with real 
subjective scores or accurate objective benchmarks such as VMAF  [37, 38]. Research 
that does focus on (near) continuous QoE modeling, though, are mostly centered around 
traditional video streaming services [42–47] or on specific use-cases such as tele-confer-
encing [48], live broadcasting [49] or cloud gaming [50]. To the best of our knowledge, 
no works currently exist that apply this research on continuous QoE monitoring and 
modeling to the specific case of point cloud video delivery.

To enable such a system, it is of high importance to select an appropriate metric for 
benchmarking, such that models can be trained and evaluated on fine granularity levels 
where subjective scoring is infeasible. Preferably this is also a projection-based or tra-
ditional video-metric that can operate at frame-level to allow for real-time monitoring. 
Furthermore, the linearity, monotony and accuracy of the metric compared to subjective 
scores at a more coarse level should be taken into account, such that one can hypoth-
esize these will hold at finer granularity. In this respect, Ak et al.  [51] show VMAF to 
have the best performance along image-based metrics for static point clouds. PLCCs 
and SROCCs of 0.742 and 0.669 are obtained. These show to be outperformed, though, 
by geometry-based metrics such as p2plane-Mean Squared Error (MSE) and Point- Cen-
tered Quarter Method (PCQM), which result in correlations well-above 0.8. Unfortu-
nately, no RMSE values were reported to further analyze accuracy. Furthermore, these 
metrics tend to show rather stable behavior alongside encoders, where image-based 
metrics tend to drop performance for V-PCC. On the downside, it is important to real-
ize that geometry-based metrics require the availability of the full point cloud object in 
every frame of the video rather than a single projection. As such, these induce consider-
ably, and maybe even infeasible, computational overhead when to be applied in a real-life 
practical implementation.

In the analysis of Lazzarotto et al. [52] on encoding distortions in static point clouds, 
Feature Similarity Indexing Method (FSIM) is identified as the best performing metric 
on average over all metric types. Respective PLCCs, SROCCs and RMSEs of 0.876, 0.790 
and 0.566 are obtained. VMAF follows shortly with values of 0.862, 0.770 and 0.595. 
Furthermore, GraphSIM, MS-PointSSIM, PCQM, Information content Weighted SSIM 
(IW-SSIM) and Multi-Scale SSIM (MS-SSIM) are showing similar performance. Impor-
tant to mention, however, is that most of these metrics tend to show reduced perfor-
mance on V-PCC distortions compared to G-PCC and JPEG Pleno. Only FSIM, PCQM 
and MS-PointSSIM show rather stable in this respect.
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Yang et  al.  [53] conducted a correlation analysis for static color meshes. Among 
the video-based metrics, VMAF shows the best average performance compared to 
PSNR and SSIM with average PLCC and SROCC of 0.70 and 0.51 and an RMSE of 1.0. 
Although some point-based metrics, such as PCQM-PSNR, show better performance on 
average, it is worth mentioning that the accuracy of these metrics is typically very sensi-
tive to the difference in point density between the reference and the distorted object. 
Furthermore, the calculation of such benchmarks may induce a considerable computa-
tional overhead, as was stated earlier.

In a subsequent study [54], they confirm VMAF to be the best performing video-based 
metric in comparison with PSNR and SSIM, be it with much lower average PLCC and 
SROCC than reported before (0.48 and 0.53, respectively). This time, similar perfor-
mance is recorded for PCQM-PSNR, while YUV-PSNR is showing better performance 
with respective average PLCC and SROCC of 0.59 and 0.65. However, the same remark 
with regard to computational complexity can be restated in this case. As one can notice, 
rather low correlations are reported in general, which the authors attribute to the chal-
lenging content of the SJTU-TMQA database being analyzed.

In a third study on dynamic meshes [10], they obtain rather high PLCCs and SROCCs 
for VMAF with respective values of 0.92 and 0.90. These are comparable with PSNR 
(0.93, 0.91), SSIM(0.96, 0.95), MS-SSIM (0.94, 0.92) and FSIM (0.95, 0.94). Furthermore, 
the point-based metric PCQM once again shows comparable performance with respec-
tive correlations of 0.94 and 0.93. Unfortunately, no RMSE values were reported to fur-
ther investigate metric accuracy.

Wien et  al.  [9] presented a similar analysis for dynamic meshes. Here, VMAF also 
shows to be the best performing image-based metric in terms of PLCC, SROCC, Ken-
dall Rank Correlation Coefficient (KRCC) and RMSE to DSIS MOS, when compared 
to PSNR, SSIM, MS-SSIM and VQM. VMAF reaches respective correlation values 
of 0.84,0.85 and 0.67 while limiting RMSE to 1.1. Only MS-SSIM is able to somewhat 
stay in the neighbourhood of VMAF with respective correlations of 0.79, 0.83 and 0.64 
and an RMSE of 1.3. Furthermore it is also interesting to notice how both VMAF and 
MS-SSIM, and even straightforward PSNR, are able to easily outperform point-based 
metrics.

In our own work, at last, we previously calculated PLCCs of SSIM and VMAF to both 
ACR and DSIS MOS on a set of point cloud videos  [8]. Here, it was shown that both 
indicate similar results, although VMAF shows somewhat better performance with 
respective average PLCCs of 0.88 and 0.93 compared to 0.80 and 0.85 for SSIM. In this 
work, this analysis will be broadened with SROCC and RMSE as additional evaluation 
metrics.

2.4 � Conclusion

As can be noticed from this discussion, there is little to no consensus on which approach 
to use for objective quality estimation of volumetric media. Specific research towards 
projection-based NR metrics and modeling is still rather limited, especially for the spe-
cific case of point cloud video delivery. The presented approaches are highly varying in 
terms of input features and are not always as computationally friendly. In addition, nei-
ther of them are investigating whether similar accuracy can be reached by benchmarking 
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against objective FR metrics such as VMAF instead of subjective MOS. This is required, 
however, to be able to rule out the human factor in order to create a fully automated 
quality assessment system even when previously unseen content is entering the database 
(which would require a costly subjective study for every new sequence otherwise).

In this respect, the above discussion has revealed that in general, VMAF and FSIM 
tend to show best performance when image-based metrics are considered. SSIM-based 
metrics tend to show similar performance in terms of correlations, although they often 
lack in accuracy (i.e., RMSE) due to their narrow working range as discussed in our 
earlier work  [8]. Caution is advised, though, as the performance of these image-based 
metrics tends to severely vary depending on the encoding artifacts being present. There-
fore, it is required to carefully evaluate the dataset at hand to make a well-supported 
choice on the applied benchmark. Some geometry-based metrics, such as PCQM and its 
variations, tend to show similar or even somewhat improved performance compared to 
image-based metrics. Nevertheless, the gains show to be limited compared to the addi-
tional computational overhead they induce. Furthermore, their performance typically 
depends on the difference in point density between reference and distorted point cloud 
figures, such that their generalizability can be questioned. For this reason, the remain-
der of this work will focus on image-based metrics for benchmarking, which match the 
projection-based purpose of the presented methodology.

As such, we believe that this work addresses an important hiatus in the state-of-the-
art, therefore providing a valuable contribution. First, we create and evaluate a predic-
tive and objective NR quality assessment model for point cloud video streaming on a 
(near) continuous assessment level. This model is based on a straightforward white-box 
approach, i.e., a sigmoidal mapping of a weighted linear combination, that poses low 
computational requirements while maintaining satisfying accuracy. It will be accompa-
nied by a thorough evaluation on available benchmarks in order to identify the most 
suitable one in terms of linearity, monotony and accuracy towards subjective scores.

As a side contribution, we present an easy-to-use CLI tool for the calculation of NR 
metrics on a given input video. The tool allows for customization on which metrics to 
include or exclude in the calculation and new metrics or alternative implementations 
can easily be plugged into the existing framework.

3 � Methods
This section will describe the methodology followed in this work. First, it presents how 
the presented model fits into the broader architecture of QoE management for (point 
cloud) video streaming. Next, the set of metrics included in the model will be described. 
At last, the modeling approach will be discussed including its two major parts: clustering 
and psychometric modeling.

3.1 � QoE management architecture

To clearly indicate how the proposed model fits into the broader QoE management 
paradigm, a brief and conceptual overview of the latter for the use-case of point-cloud 
video streaming is first provided. Figure 1 shows a typical (point cloud) video stream-
ing architecture. A given set of point cloud figures is stored at a database on the server 
side. There, a point cloud encoder foresees multiple quality representations of the given 



Page 10 of 42 Van Damme et al. EURASIP Journal on Image and Video Processing         (2024) 2024:42 

Fi
g.

 1
 T

he
 e

nv
is

io
ne

d 
sy

st
em

 a
rc

hi
te

ct
ur

e



Page 11 of 42 Van Damme et al. EURASIP Journal on Image and Video Processing         (2024) 2024:42 	

figures. Based on the content, the current network conditions and the real-time esti-
mated end-user QoE, the video encoder combines multiple figures at their appropri-
ate quality representations into one scene, projects them on the 2D plane in a regular 
pixel-based format based on the current viewport, and encodes the whole into the video 
bitstream. This is done by tweaking the encoding parameters in terms of bitrate and 
bandwidth allocation scheme based on the client-side QoE estimation and the current 
network status. This can for example be established using a Reinforcement Learning 
(RL) approach where the QoE estimation is used as a reward to train an optimizer on 
how to react to certain changes in the network conditions to keep QoE to an optimum. 
The resulting encoded video stream is sent over the network to the client side, where it is 
decoded by the video decoder. This decoded video representation is used for client-side 
QoE estimation, of which the output is sent back over the network to the server-side 
video encoder for decision-making. As such, a QoE management loop [55] is constructed 
in which the client-side QoE assessments are fed back to the server for quality mon-
itoring. Here, this feedback is used for further optimization of encoding and network 
control of streamed content, therefore positively affecting end-user QoE after which the 
loop can repeat itself. The contribution of this work is situated in the QoE modeling, as 
an accurate estimation of end-user QoE will lead the encoder to the most optimal deci-
sions to maintain the ground-truth end-user QoE, therefore acting as the fuel of this 
quality management loop. The parameters for this client-side QoE estimation model, 
together with a content classifier (if relevant for the particular model), are retrieved from 
the server-side training module, which uses a network emulator to simulate network dis-
tortions at client side. Furthermore, the undistorted reference content is also included to 
be able to calculate a FR objective metric as a ground truth benchmark, such that model 
training can take place fully automated without any human intervention or assessment.

3.2 � Quality metrics

To allow the QoE estimation model to work on a per-frame base, the NR quality metrics 
are limited to spatial quality estimators. Temporal metrics such as Temporal Information 
(TI)[56], Mean Motion Intensity (MMI) [57] and jerkiness [57] are therefore not consid-
ered. In addition, these metrics should be low complexity pixel-based features, which 
can be run on light-weight devices in real-time as new frames arrive. As a result, the fol-
lowing set of NR metrics (as proposed in Van Damme et al. [13]) is included, which have 
already proven their suitability to (near) real-time quality assessment of natural videos in 
previous studies [58–60]. Note that, in case of per-video or per-frame analysis, the per-
frame values are averaged over the respective number of frames afterwards (except for 
Spatial Information (SI) where the maximum is taken by definition):

•	 Noise. Noisy pixels are identified by thresholding on the difference between the local 
derivative and the average derivative. Both the average noise (NOI) (the average dif-
ference divided by the total amount of noisy pixels) and noise ratio (NRT) (the num-
ber of noisy pixels to the total number of pixels) are calculated [61]

•	 Blur. Blurred pixels are identified by thresholding on the difference between a pixel 
and the corresponding pixel in the derivative image. Both the average blur (BLU) (the 
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average difference divided by the total amount of blurred pixels) and the blur ratio 
(BRT) (number of blurred pixels to the total amount of edge pixels, after applying an 
edge detection algorithm) are calculated [61].

•	 Blockiness (BLK). Calculated by analyzing the inner and outer edges of 8x8 subblocks 
on both the vertical and horizontal Sobel-filtered versions of the frame. As such, an 
inner and edge blockiness level is determined, of which the average difference over all 
blocks describes the blockiness value of the frames [62].

•	 SI. Measurement for the degree of spatial detail, calculated by taking the standard 
deviation of the pixel intensities of a Sobel-filtered version of each frame [56].

•	 Bandwidth (BW). The bandwidth at which the video is being sent.

In terms of benchmarking, we evaluated four well-known image-based metrics concern-
ing their PLCC, SROCC, and RMSE towards both ACR and DSIS MOS:

•	 Netflix’s VMAF. This FR quality metric is forged out of four features (ANSNR, DLM, 
VIF and MI) using an SVR approach with subjective MOS as the benchmark  [63]. 
We chose it due to its proven strong correlation with subjective MOS for point cloud 
video in a wide variety of compression and network conditions as shown in previous 
research [8–10]. Therefore, VMAF is used as a direct benchmark, without any fur-
ther logistic mapping.

•	 The VQM, as implemented by the Institute for Telecommunication Sciences 
(ITS) [64].

•	 SSIM. The well-established perception-based model that considers image degrada-
tion as perceived change in structural information [65].

•	 PSNR. The logarithm of the ratio between the maximum possible power of a signal 
and the power of corrupting noise that affects the fidelity of its representation.

Note that all of these metrics allow for per-GOP and per-frame quality benchmarking 
contrary to subjective evaluation methods such as ACR or DSIS. Furthermore, it is also 
important to mention that other deep-learning-based perceptual metrics exist, such as 
Learned Perceptual Image Patch Similarity (LPIPS) [66] and Deep Image Structure and 
Texture Similarity (DISTS) [67]. Although they have proven to be promising for predict-
ing image quality perception in terms of correlation with subjective scores, their appli-
cability on a per-GOP and per-video level is still to be proven. Moreover, contrary to 
VMAF, VQM, SSIM, and PSNR, they have not yet been evaluated on the specific case of 
point cloud content.

3.3 � K‑Means classification and psychometric QoE modeling

The proposed model [13] (Fig. 2) calculates the perceived quality as a sigmoidal fitting of 
a weighted linear combination of NR metrics QNR towards an objective FR benchmark 
QFR , where the different weights and parameters are determined based on the particu-
lar class of the video. This classification is needed as literature has shown that different 
types of videos can rely on totally different types of NR metrics for quality estimation [5].

Whenever a new video is received at the client side (indicated in black in Fig.  2), 
the set of NR-metrics QNR is calculated on each of the incoming frames. Once a 
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sufficiently large portion of the video (e.g., one GOP) is received, the obtained met-
rics are averaged (apart from SI, where the maximum is taken by definition  [69]) 
to characterize the given video. The obtained characterization is fed to a K-Means 
classifier in order to obtain the class c of the given video. K-Means is chosen for its 
fast training and evaluation times as well as its intuitive interpretation. This classi-
fier is pre-trained at server side using already available sequences. Note that K-Means 
also allows for easy updating of this classification whenever new content is added to 
the server-side database. Based on the resulting class c, the weights wc,i for a linear 
combination of the NR-metrics xi as well as the parameters ac and bc of a sigmoidal 
mapping (Eq. 1) are determined. Note that the latter is based upon the well-known 
Quality of Service (QoS)–QoE relationship proposed by Fiedler et al. [68] (Fig. 3). The 
subsequent calculation of both results in the quality prediction Q, which lays within 
the [0, 100] interval:

At server side (indicated in blue in Fig. 2), both the weights wc,i and the sigmoid param-
eters ac and bc are trained by minimizing the MSE against the FR benchmark QFR which 
is known to correlate strongly to subjective scores (e.g., VMAF [8]). Note that this met-
ric cannot be calculated at client side as the undistorted content is unavailable. Further-
more, QFR is also used for evaluation of the obtained models (e.g., in terms of PLCC, 
SROCC and RMSE). Note that the calculation of QFR on new content is only needed if 
it fundamentally differs from the current dataset. This can be done on the server side, 
however, where computational and time-related requirements are less stringent. By 
sending the appropriate weights and parameters as well as the classifier to the client at 
video request, this provides all necessary tools for client-side quality estimation.

In order to further explore the applicability of the objective NR model for quality 
assessment of streamed point cloud video, we fundamentally enlarge the video-level 
analysis presented in our previous work [13]. In addition, we extend the model to also 

(1)Q = σc

(

wc,0 +

7
∑

i=1

wc,i · xi

)

with σc(x) =
100

1+ eacx−bc
.

Fig. 3  Typical, general relationship between the degree of impairment and the perceived quality in a 
multimedia service [68]
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cover GOP- and frame-level granularity. In addition, it will be investigated to what 
extent the preference towards a content-independent one-for-all model can hold for 
smaller time frames and when one has to rely on per-video models.

4 � Implementation
To enable a straightforward frame-level calculation of aforementioned metrics, a Python-
based CLI Video Metric Tool1 is created to provide the calculation of these metrics for a 
given input video. The CLI (video_metric_tool.py with argparse.py as a backbone) takes 
the path to a given video as an input. Optionally, a list of metrics to include or exclude 
from the full list (Sect. 3.2) can be provided, e.g., to speed up calculations. The tool pro-
vides an output .csv-file (of which path and name can be specified) with a per-frame cal-
culation of the NR metrics based on the implementations referenced in Sect. 3.2. Note 
that TI, Motion Intensity (MI) and jerkiness are also available in the NR-library (nrlib.
py) for calculation, but were not used in the analysis of this work. The file analyser.py 
is called by the command-line application and is responsible for reading in the given 
video frame-by-frame and to return the resulting .csv-file. In addition, it translates the 
NR metrics given as an input to the according functionality in nrlib.py. Note that this 
mapping behavior also allows for the easy addition of additional metrics or alternative 
implementations by adding the corresponding implementations in nrlib.py and altering 
the mapping in analyser.py accordingly.

5 � Evaluation
This section describes the evaluation of the proposed QoE estimation procedure. First, 
the dataset used for this research will be described, including the subjective annotations 
(i.e., MOS) and the way they were gathered. Furthermore, the results of the modeling 
approach on a video-, GOP- and frame-level are presented.

5.1 � Dataset

For the evaluation of the model, we used the subjectively annotated point cloud dataset 
from our previous work [13, 70]. It consists of 16 source videos (Table 1), each between 
18 and 50 s of length and with a framerate of 30 fps. Each sequence contains the gener-
ated viewport of a scene consisting of four point cloud objects from the 8i dataset [71], 
each with a different setup of the figures (line, semi-circle, circle and square) and a dif-
ferent type of camera movement (panning, zoom, rotation and zig-zag).

The point cloud objects were encoded using the Video-based Point Cloud Compres-
sion (VPCC) encoder  [72] with MPEG’s five reference quality representations  [73], 
resulting in bitrates between 2.4 Mbps and 53.5 Mbps (compared to uncompressed 
bitrates in the order of Gbps). The resulting point cloud objects are then merged together 
in different scenes. Four different types of scenes are distinguished (Fig. 4): one in which 
the objects are standing next to each other in a straight line, an analogue one in which 
they are positioned on a semi-circle, a setup in which the objects are facing each other 
in a circle and a constellation in which the objects are placed on the corners of a square 
(all facing the same direction). By combining these constellations with different types of 

1  https://​github.​ugent.​be/​samda​mme/​Video​Metri​cTool.

https://github.ugent.be/samdamme/VideoMetricTool
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camera movement (panning, zoom, rotation, zig-zag), a total of 16 FoVs was generated 
and rendered using the MPEG point cloud compression renderer[74].

Furthermore, a network was emulated using Mininet  [75] with a single client con-
nected to a HTTP/1.1 enabled Jetty server  [76]. The available bandwidth was fixed 
on different discrete values (15, 20, 60, 100, 140 and ∞ Mbps) using traffic control 
on a shared link. The buffer size was varied between 0 and 4  s using discrete steps 
of 1 s. The size of the visual area [77] was used to prioritize objects within the scene. 
Objects are then ranked based on their priority similar to the approach taken by Hos-
seini [78], where the Euclidean distance is used to distinguish between objects. After 
ranking these objects according to their priority, the available bandwidth is assigned 
to the four point cloud objects using three different schemes:

Fig. 4  Screenshots of the multiple scene configurations, i.e. a Circle, b Line, c Semi-circle and d Square

Table 1  Summary of the 16 source videos in the dataset in terms of point cloud constellation, 
duration and camera movement. Videos 1–3 are subjectively annotated with both ACR and DSIS 
MOS

Video Setup Duration Camera movement

1 Line 24s Pan left-to-right and back (angle)

2 Semi-circle 18s Zoom-in/zoom-out + rotate to next (loot and redandblack)

3 Semi-circle 18s Zoom-in/zoom-out + rotate to next (soldier and longdress)

4 Circle 24s Outside rotation

5 Circle 24s Outside rotation + zoom-in/zoom-out

6 Circle 24s Outside rotation + zoom-in/zoom-out in between figures

7 Line 24s Pan left-to-right and back (angle)

8 Line 24s Pan left-to-right and back (frontal)

9 Line 24s Rotate left-to-right and back

10 Semi-circle 50s Zoom-in/zoom-out + rotate to next

11 Semi-circle 24s Rotate left-to-right and back

12 Semi-circle 24s Rotate + pause on figure

13 Square 24s Outside rotation

14 Square 24s Outside rotation + zoom-in/zoom-out

15 Square 24s Outside rotation + zoom-in/zoom-out

16 Square 24s Zig-zag
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•	 Uniform: Starting with the highest ranked point cloud object, the quality of the dif-
ferent objects is increased one representation at the time. On the upside, this results 
in similar quality for all objects, creating a more smooth FoV. On the downside, one 
might allocate valuable bandwidth to objects never being consumed.

•	 Greedy: The highest ranked point cloud object is given the highest possible quality 
before considering the next object. This is a rather useful approach when a limited 
amount of objects is in scope, but might significantly reduce the user’s perceived 
quality when multiple objects are considered.

•	 Hybrid: Here, the collection of objects is divided in two sets: the set of objects within 
the FoV and the set of objects outside of it. First, the quality of the objects within the 
FoV is improved uniformly until either the highest quality is assigned or no more 
bandwidth remains. Next, objects outside the FoV are considered and their qualities 
are improved one by one using the greedy approach. As such, the advantages of the 
two previous approaches are combined which is especially useful when the user tar-
gets a specific group of subjects.

Note that these quality allocation schemes determine the quality of each specific point 
cloud object before projection to the 2D plane, contrary to tiling-based schemes that 
determine the quality of each tile of the viewport after projection has taken place. Fur-
thermore, the latency was set to 37 ms, a reference value for 4G networks [1]. As a result, 
a total of 453 sequences is obtained.

5.2 � Calculation of the quality metrics

For each of the sequences, the same seven objective NR metrics (BLU, BRT, NOI, NRT, 
BLO, SI and BW) , PSNR, SSIM, VQM and VMAF are calculated analogously as dis-
cussed in Sect. 3.2. The NR metrics were implemented in Python following the imple-
mentation of our previous research [5] and using the tool created for this work as 
described in Sect.  4. Note that their mathematical definitions are provided in Appen-
dix A at the end of this manuscript. VMAF was calculated with the freely available 
GitHub tool  [79], resulting in values within the [0, 100] interval. It was chosen due to 
its proven strong correlation with subjective MOS for point cloud video, as proven in 
previous research  [8–10]. Therefore, VMAF is used as a direct benchmark, without 
any further logistic mapping. VQM [64] is calculated using the freely available tool. To 
this end, the standardized National Telecommunications and Information Administra-
tion (NTIA) General Model was followed, using full-reference calibration. The respec-
tive Python OpenCV [80] and SciKit-image [81] implementations are followed for PSNR 
and SSIM. All metrics are calculated using their default settings. Note that each of these 
benchmarks allow for per-GOP and per-frame quality benchmarking contrary to sub-
jective evaluation methods such as ACR or DSIS. For the GOP level, the resulting set 
of per-frame metrics is chunked in parts with a size of 1 GOP (= 30 frames). For each 
chunk, the 30 per-frame values of each metric are averaged to obtain the per-GOP met-
rics (apart from SI, which uses the maximum by definition). Analogously, metrics are 
averaged over the whole video (or the maximum is taken in the case of SI) to obtain the 
video-level metrics.
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In addition, this dataset is also partially annotated with subjective MOS  [1]. These 
were collected for all sequences of source videos 1–3, both in ACR (26 subjects) and 
DSIS (28 subjects) fashion.

5.3 � Evaluation approach

The evaluation approach can be divided into three important parts: (i) the K-Means clas-
sifier, (ii) the evaluation of possible benchmarks and (iii) the actual modeling as a combi-
nation of a linear regressor and a sigmoidal mapping.

5.3.1 � K‑Means classifier

The K-Means classifier used the same implementation as in our previous work  [13], 
which is based on Python’s SciKit Learn library [82]. The algorithm is ran 10 times with 
a maximum of 300 iterations per run. The relative tolerance is set to 0.0001. As K-Means 
is distance based, NR metrics not laying within the [0, 1] interval (BW, BLU, NOI, SI) 
are first normalized using a min–max scaler before putting them into the algorithm. 
Depending on the granularity under scrutiny, either the per-frame, per-GOP or per-
video metrics are fed to the algorithm. The number of clusters is determined for each 
granularity level by optimizing the Silhouette Score (SS) [83]. To this end, the K-Means 
algorithm is run multiple times with the number of clusters varying from 1 to 16 (= the 
number of videos). The optimal number of clusters is determined as the run in which the 
maximal SS is obtained. The resulting, optimal number of clusters and according SS for 
each granularity level are shown in Table 2. Note that if the multiple configurations of a 
given video end up in different clusters after the K-Means algorithm, they are completely 
assigned to the cluster with the largest number of sequences to allow for easy cross-val-
idation in the modeling step. Furthermore, the GOP size is set to 30, which corresponds 
to 1 s of video playback.

5.3.2 � Benchmarks

The performance of the calculated benchmarks is evaluated in terms of linearity, monot-
ony and accuracy by respective means of PLCC, SROCC and RMSE. These are calcu-
lated with respect to both ACR and DSIS MOS. To this end, evaluations are performed 
on each individual video as well as on average.

5.3.3 � QOE model evaluation

The performance of the model on each video is cross-validated by leaving the particular 
video out as a test set and optimizing the model parameters (by minimizing MSE) on 
the remaining videos in the cluster. When evaluating video 6, for example, which is in a 

Table 2  The optimal number of clusters and according SS at each granularity level

Level Optimal number of clusters SS

Video 4 0.606

GOP 7 0.348

Frame 2 0.395
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cluster with videos 4,5 and 13, the training set consists of all data from videos 4, 5 and 
13 while the test set encompasses all configurations from video 6. In case no clustering is 
applied, all videos are considered, i.e., all configurations from videos 1–5 and 7–16 make 
up the training set while all configurations from video 6 are included in the test set. Note 
that in case a video ends up in a separate cluster on its own after the clustering step, or 
when a per-video model is constructed, a 5-fold cross-validation is performed on the 
different configurations of that particular video. Here, the composition of each fold is 
determined at random. Note that the normalization parameters of BW, BLU, NOI and SI 
are recalculated at each iteration of the cross-validation on the training set only to avoid 
data leakage.

5.4 � Results and discussion

In this  section, the results will be discussed on three levels of granularity: video-level, 
GOP-level (30 frames), and frame-level. Note that the references videos were excluded 
from this analysis (apart from the calculation of benchmarks), as their perfect score of 
100 in terms of VMAF benchmark would put to much confusion and bias on the finer 
granularity levels of the model. This decision is justified, as the transmission of a video 
sequence that exactly matches its reference (so without any encoding or network distor-
tion in place) can be considered non-existent in practical scenarios.

5.4.1 � Benchmarks

Table 3 shows the obtained performance values of the four benchmarks under scrutiny 
towards both flavors of MOS. When looking at ACR MOS, the best performing metric 

Table 3  PLCCs, SROCCs and RMSEs of the four benchmarks to both ACR and DSIS subjective 
MOS. For each MOS flavor, benchmark, and evaluation metric the best score (highest for PLCC and 
SROCC, lowest for RMSE) is indicated in bold. For PSNR, which is unconstrained by definition, a min–
max scaler was applied to make it fall within the [0,100] interval

Video MOSACR MOSDSIS

PLCC SROCC RMSE PLCC SROCC RMSE

PSNR 1 0.960 0.929 8.257 0.963 0.821 28.486

2 0.978 0.750 47.027 0.978 0.857 26.417

3 0.989 0.964 17.649 0.993 0.964 26.111

Avg. 0.976 0.881 24.311 0.978 0.881 27.005

SSIM 1 0.955 0.929 52.677 0.963 0.821 26.925

2 0.989 0.679 57.929 0.979 0.892 37.880

3 0.981 0.964 58.277 0.995 0.964 44.445

Avg. 0.975 0.857 56.294 0.979 0.892 36.417

VQM 1 0.971 0.964 45.669 0.951 0.750 20.047

2 0.984 0.821 52.573 0.979 0.821 32.485

3 0.981 0.999 52.097 0.967 0.893 38.234

Avg. 0.979 0.928 50.113 0.966 0.821 30.255

VMAF 1 0.948 0.929 35.507 0.969 0.821 10.093
2 0.984 0.679 37.723 0.979 0.893 17.398
3 0.986 0.964 33.241 0.993 0.964 19.095
Avg. 0.973 0.857 35.490 0.980 0.893 15.529
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in terms of PLCC tends to differ depending on the particular video, although it has to be 
said that all metrics are showing high correlations in general. In terms of SROCC, VQM 
is showing the best performance especially with respect to video 2. SSIM and VMAF 
show more struggle on this video with SROCCs below 0.7, while PSNR holds the mid-
dle with a value of 0.750. For videos 1 and 3, high SROCCs are obtained by all metrics. 
With regard to RMSE, both SSIM and VQM are showing rather high values which, tak-
ing the high correlation values into consideration, hints at severe over- or under-predic-
tion. PSNR is showing the best performance in this regard, although the performance 
depends on the video at hand as can be seen from the high value for video 2. VMAF 
somewhat holds the middle with values below the ones of VQM and SSIM, but clearly 
higher values for videos 1 and 3 compared to PSNR. Nevertheless, it shows the most 
constant performance in this respect, therefore acting more reliable than PSNR.

When evaluating performance towards DSIS MOS, VMAF is clearly showing the best 
performance over all metrics. Only for video 3, a slightly higher PLCC is reported for 
SSIM. Nevertheless, PSNR, SSIM and VQM are clearly showing higher values in terms 
of RMSE compared to VMAF.

Based on this discussion, as well as on the results obtained from literature (Sect. 2.3), 
we decided VMAF to be the most appropriate choice for benchmarking. On one hand, 
this decision is based on the observation that most works in literature identify VMAF 
as the best performing among image-based metrics. On the other hand, DSIS MOS 
seems to be most applied as a subjective evaluation methodology for point cloud con-
tent, of which the performance of VMAF is clear on this dataset based on the above 
results. Nevertheless, it is important to mention that a clear, stable and reliable metric 
for benchmarking point cloud video is yet to emerge, such that the choice of benchmark 
can be debated and probably depends on the dataset under scrutiny.

5.4.2 � QoE‑model: video‑level

Table 4 shows detailed results of the one-for-all video-level model. Note that the perfor-
mance of per-video models is not analyzed in this Section, as there are insufficient data 
points for model training and validation on video-level for this purpose. The first and 
most straightforward conclusion is the clear positive impact of clustering to the perfor-
mance of the model. In terms of PLCC, improvements can be noticed for all cases, with 
correlation scores going above 0.95 in the majority of the cases. For some of the videos, 
impacts are especially high as is the case for videos 3 and 12 in the non-mapping case, 
where improvements of 0.406 and 0.199, respectively, can be observed. In the case with 
sigmoidal mapping, we see remarkable improvements for videos 3 and 10, with respec-
tive increases of 0.523 and 0.190. On average, a clear improvement of 0.116 is observed 
in the non-sigmoidal case, as well as an improvement of 0.108 in the sigmoidal case.

For the SROCC scores, we also notice improvements for all videos except 7 and 10. 
Decreases there are limited, however, with differences of 0.007 and 0.044, respectively. 
The most important improvements can be noticed for videos 1,2 and 13, with increases 
of 0.249, 0.143 and 0.112, respectively. Note that, despite its increase, the SROCC of 
video 2 is still limited (0.679) after applying clustering. On average, clustering shows 
an increase in SROCC of 0.047. Furthermore, it is also worth mentioning that SROCCs 
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are the same for the cases with and without sigmoidal mapping as applying a monotone 
function does not change the mutual ordering of the results.

In terms of RMSE, results only seem to be positively impacted by applying this sig-
moidal function when combined with the clustering algorithm. For videos 2 and 10, for 
example, decreases of 4.486 and 17.567 on a 0-100 scale are observed. In the non-clus-
tering case, however, these same videos show increases in RMSE of 13.135 and 17.024, 
respectively. On the downside, some of the videos show a small decrease when apply-
ing sigmoidal mapping after clustering, such as is the case for videos 4, 6, 7, 13 and 16. 

Table 4  PLCCs, SROCCs and RMSEs towards VMAF of the one-for-all video-level model in 
comparison with the cases without clustering (Cl.) and/or sigmoidal mapping. For each video and 
each case, the best performing metric (highest for PLCC/SROCC and lowest for RMSE) is indicated in 
bold

Video No clustering Clustering

PLCC SROCC RMSE Cl. PLCC SROCC RMSE

No sigmoidal mapping 1 0.969 0.750 5.576 2 0.996 0.999 13.213

2 0.820 0.536 17.200 0 0.946 0.679 15.138

3 0.568 0.714 25.958 2 0.974 0.821 15.047

4 0.835 0.985 1.803 1 0.997 0.994 3.001

5 0.838 0.942 2.403 1 0.994 0.968 8.021

6 0.868 0.907 2.601 1 0.986 0.978 3.198

7 0.863 0.988 4.226 0 0.988 0.981 1.018
8 0.805 0.984 3.234 0 0.985 0.986 2.202

9 0.817 0.959 3.115 0 0.987 0.972 1.842

10 0.904 0.988 3.811 3 0.319 0.944 46.119

11 0.818 0.966 3.085 0 0.985 0.974 1.417

12 0.787 0.982 3.291 0 0.986 0.990 3.929

13 0.827 0.837 2.075 1 0.998 0.949 2.480

14 0.843 0.942 2.115 0 0.973 0.948 8.366

15 0.847 0.867 2.095 0 0.967 0.896 6.918

16 0.809 0.960 5.352 0 0.991 0.977 19.595

Avg. 0.826 0.894 11.440 / 0.942 0.941 9.469

Sigmoidal mapping 1 0.970 0.750 6.149 2 0.996 0.999 12.411

2 0.822 0.536 30.335 0 0.973 0.679 10.652
3 0.451 0.703 17.227 2 0.974 0.821 14.585
4 0.934 0.985 1.454 1 0.996 0.994 3.036

5 0.910 0.942 2.194 1 0.993 0.968 7.960

6 0.910 0.907 2.478 1 0.987 0.978 3.228

7 0.945 0.988 3.703 0 0.987 0.981 1.206

8 0.907 0.984 2.713 0 0.992 0.986 1.394
9 0.922 0.959 2.480 0 0.993 0.972 1.064
10 0.651 0.988 20.835 3 0.841 0.944 28.552

11 0.909 0.966 2.620 0 0.985 0.974 0.963
12 0.893 0.982 2.661 0 0.997 0.990 3.162

13 0.917 0.837 1.883 1 0.998 0.949 2.568

14 0.932 0.942 1.660 0 0.957 0.948 5.570

15 0.933 0.867 1.636 0 0.977 0.896 6.185

16 0.901 0.960 5.485 0 0.988 0.977 20.424

Avg. 0.869 0.894 19.858 / 0.977 0.941 7.685
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These decreases are marginal, however, and do not weigh up against the big gains sig-
moidal modeling can bring to other videos. Despite, there can be noticed that for videos 
1, 2, 3 and 10, the resulting RMSEs remain high compared to the other videos while still 
showing high correlation values. As such, this is an indication of either over- or under-
prediction. This could be a result of the fundamental different properties of the videos 
in terms of blockiness and blur ratio as is illustrated in Fig. 5. This is also reflected in the 
fact that videos 1, 3 and video 10 end up in their own cluster. Only video 2 was assigned 
to the major cluster due to its fundamental difference in SI compared to 1, 3 and 10 as 
is shown in Fig. 6. Reapplying the proposed modeling approach on the clusters that can 
be derived from Fig. 5 did not improve results, however. As such, it could be the case 
that more optimal modeling methods can be designed for these outlying videos. This is 
a subject for further research, though. Nevertheless, a decrease of RMSE with 1.784 is 
observed on average when applying sigmoidal mapping post-clustering. On the contrary, 
in the non-clustering case, we even observe an increase in RMSE with 8.418.

Table 5 shows the subjective correlations and RMSEs of the NR metrics, the ground 
truth VMAF values and the VMAF predictions ( VMAFp ) to the ACR and DSIS MOS 
annotations of videos 1–3. For the ACR MOS it can be noticed that the high PLCC val-
ues are maintained by the predicted values with only a small decrease of 0.055 for video 3 
and even minor increases for videos 1 and 2 compared to VMAF.. On average, the differ-
ence is limited to a 0.015 decrease. Interestingly, this performance is comparable to both 
the BLU, BRT and SI NR metrics. In terms of SROCC, the view is mixed. On average, 
the predictions show a small increase of 0.036 compared to VMAF. More remarkable is 
video 2, on one hand, with an increase of 0.320 to an almost perfect 0.999. Video 3, on 
the other hand, suffers from a 0.214 decrease to an SROCC of 0.750. Also here, similar 
performance can be observed from BRT, SI and BLU. For RMSE, the most clear observa-
tion is the fact that values are rather high for both ground truth and predictions. This is 
intuitive, however, as VMAF is designed as a FR metric comparing distorted with undis-
torted content. As such, better performance compared to DSIS MOS can be expected, 
especially since the quality of undistorted point cloud video content is still below user 
expectations, therefore resulting in more strict scores [1]. On average, a minor increase 
of 3.035 RMSE can be observed compared to VMAF. Larger increases can be observed 
for videos 1 and 2 however, with values of 12.298 and 10.415, respectively. Video 3, in 
contrary, shows a decrease in RMSE of 13.61. For the NR metrics, rather similar RMSEs 
are obtained with NOI performing well on video 3 similar to the proposed method while 
SI and BRT are showing good performance on videos 1 and 2, respectively.

For the DSIS MOS, a similar observation can be made for the PLCCs as for ACR. The 
high performance compared to VMAF in terms of PLCC is maintained with only a lim-
ited decrease of 0.013 on average and 0.005, 0.023 and 0.013 for videos 1-3, respectively. 
Once again, similar performance can be observed from BLU, BRT, and SI. In terms of 
SROCC correlations, decreases can be noticed for videos 2 and 3 when comparing to 
VMAF, be it more limited than in the ACR case with respective differences of 0.072 and 
0.035 and 0.036 on average. Also in terms of SROCC, the good performance of BLU, 
BRT and SI still holds. The DSIS RMSEs, at last, are indeed much lower than their ACR 
counterpart, as previously discussed. On the downside, videos 1 and 2 do show increases 
in RMSE of 11.308 and 10.602, respectively, when compared to VMAF, while video 3 
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shows a similar level of decrease with a value of 10.061. As a result, the average increase 
is limited to 3.949. In this case, much higher RMSE values can be observed for the NR 
metrics, such that it is clear that this is where the main value of the video-level model is 
situated compared to single-feature NR prediction. In summary, while deviations on a 
per-video basis can be observed, the average performance of the predictor shows to be 
comparable to ground truth VMAF for both the ACR and DSIS cases. This is also the 
case for BLU, BRT and SI, apart from RMSE when evaluating against DSIS MOS.

Table 5  PLCCs, SROCCs and RMSEs of both the ground truth VMAF and the predicted VMAF 
( VMAFp ), using clustering and sigmoidal mapping, to both ACR and DSIS subjective MOS of videos 
1–3.  Furthermore, the performance of each NR metric as a single-feature predictor is indicated as 
well

Video MOSACR MOSDSIS

PLCC SROCC RMSE PLCC SROCC RMSE

NOI 1 − 0.797 − 0.464 40.217 − 0.810 − 0.464 67.102

2 − 0.492 − 0.036 53.354 − 0.426 − 0.143 33.677

3 − 0.951 − 0.929 15.449 − 0.916 − 0.929 22.641

Avg. − 0.747 − 0.476 36.340 − 0.717 − 0.512 41.140

NRT 1 0.115 0.214 36.386 0.081 0.071 63.339

2 0.656 0.714 30.106 0.708 0.679 50.915

3 0.369 0.571 29.443 0.481 0.571 44.481

Avg. 0.380 0.500 31.978 0.423 0.440 52.912

BLU 1 0.944 0.929 30.898 0.951 0.821 4.718

2 0.744 0.750 55.938 0.796 0.857 35.760

3 0.973 0.893 28.222 0.990 0.999 42.978

Avg. 0.887 0.857 38.353 0.912 0.892 27.819

BRT 1 − 0.951 − 0.857 37.383 − 0.964 − 0.750 64.342

2 − 0.981 − 0.964 28.033 − 0.974 − 0.929 48.829

3 − 0.981 − 0.964 30.231 -0.994 -0.964 45.268

Avg. − 0.971 − 0.928 31.882 − 0.977 − 0.881 52.813

BLK 1 − 0.125 0.107 41.874 − 0.496 − 0.393 17.092

2 − 0.508 − 0.714 48.958 − 0.386 − 0.321 29.175

3 − 0.264 − 0.536 47.613 − 0.184 − 0.464 34.182

Avg. − 0.299 − 0.381 46.148 − 0.355 − 0.393 26.816

SI 1 0.931 0.821 23.436 0.984 0.964 4.011
2 0.958 0.703 32.369 0.947 0.937 52.982

3 0.962 0.893 49.692 0.948 0.714 35.081

Avg. 0.950 0.806 35.166 0.960 0.872 30.691

VMAF 1 0.948 0.929 35.507 0.969 0.821 10.093

2 0.984 0.679 37.723 0.979 0.893 17.398
3 0.986 0.964 33.241 0.993 0.964 19.095

Avg. 0.973 0.857 35.490 0.980 0.893 15.529
VMAFp 1 0.952 0.929 47.805 0.964 0.821 21.401

2 0.990 0.999 48.138 0.956 0.821 28.000

3 0.931 0.750 19.631 0.980 0.929 9.034
Avg. 0.958 0.893 38.525 0.967 0.857 19.478
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5.4.3 � QoE‑model: GOP‑level

Table  6 shows the results of the same one-for-all modeling approach as in the previ-
ous Section, but trained on GOP-level (30 frames = 1 s) rather than video-level. In terms 
of PLCC, the sigmoidal mapping shows to have a mostly positive impact on the results 
with most of the videos showing an increase in correlation for both the non-clustering 
and the clustering case. Only videos 3, 6, 10 and 16 show a decrease in PLCC in the non-
clustering case, be it with differences of 0.003, 0.070, 0.094 and 0.010, respectively. In 
the clustering case only video 10, of which the outlying behavior was shown in the pre-
vious Section, shows a decrease in PLCC with a marginal difference of 0.004. On aver-
age, limited performance increases are observed of 0.017 in the non-clustering case and 
0.036 in the clustering case. The influence of this clustering results in a more mixed view 
regarding PLCC values. In the non-sigmoid case, half of the videos (1,2,5,8,9,11,12 and 
16) are showing an increase in PLCC due to clustering, with this effect being most prom-
inent for video 1 with an increase of 0.096. For the other videos a decrease is observed 
which is, once again, most pronounced for video 10 with a decrease of 0.188. Video 15 
also suffers from a decrease worth mentioning, however, with a difference of 0.115. On 
average, PLCC stays about the same with respective values of 0.597 and 0.595. In the 
case where post-clustering sigmoidal mapping is applied, results are looking somewhat 
better with 10 out of 16 videos showing an increase in PLCC as a result of clustering. 
This is, once again, most pronounced for video 1 with an increase from 0.688 to 0.782. 

Fig. 5  BLO vs. BRT scatter plot for the 16 videos at video-level

Fig. 6  SI vs. BRT scatter plot for the 16 videos at video-level
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For the videos showing a decrease in PLCC (3, 4, 7, 10, 13 and 15), differences are rather 
limited. Only for videos 10, 13 and 15 higher decreases are observed of 0.098, 0.052 and 
0.114, respectively.

In terms of SROCC, results are not affected by sigmoidal mapping due to its mono-
tonic nature. Clustering shows to have a mostly negative effect on SROCC, with 10 of 16 
videos showing a decrease. This is especially pronounced for videos 4, 6, 10 and 15 with 
respective decreases of 0.094, 0.093, 0.141 and 0.333, respectively. Videos 1, 2, 5, 8, 11 
show an increase in correlation which is once again most pronounced for video 1 with 

Table 6  PLCCs, SROCCs and RMSEs towards VMAF of the one-for-all GOP-level model in comparison 
with the cases without clustering (Cl.) and/or sigmoidal mapping. For each video and each case, the 
best performing metric (highest for PLCC/SROCC and lowest for RMSE) is indicated in bold

Video No clustering Clustering

PLCC SROCC RMSE Cl. PLCC SROCC RMSE

No sigmoidal mapping 1 0.668 0.659 4.246 4 0.764 0.767 3.296
2 0.786 0.854 6.583 0 0.822 0.869 4.027

3 0.601 0.584 8.260 3 0.556 0.546 8.321

4 0.675 0.582 2.919 6 0.658 0.488 2.719

5 0.490 0.430 5.372 6 0.542 0.459 5.457

6 0.165 0.356 8.312 3 0.133 0.263 25.085

7 0.678 0.684 3.633 4 0.656 0.617 4.722

8 0.649 0.588 5.515 6 0.715 0.607 4.703

9 0.613 0.536 5.351 4 0.641 0.439 4.565

10 0.497 0.695 13.805 5 0.309 0.554 20.524

11 0.639 0.579 4.965 6 0.684 0.626 4.538

12 0.569 0.455 5.203 4 0.644 0.455 4.603

13 0.714 0.723 2.783 5 0.675 0.687 8.921

14 0.595 0.696 4.444 1 0.590 0.680 3.121

15 0.706 0.762 3.825 6 0.591 0.429 3.985

16 0.505 0.540 7.528 2 0.537 0.538 7.045

Avg. 0.597 0.608 5.797 / 0.595 0.564 7.227

Sigmoidal mapping 1 0.688 0.659 4.506 4 0.750.782 0.767 4.274

2 0.793 0.854 8.421 0 0.750.850 0.869 3.686

3 0.598 0.584 8.805 3 0.582 0.546 7.856
4 0.725 0.582 2.627 6 0.716 0.488 2.454
5 0.523 0.430 5.233 6 0.750.583 0.459 5.372

6 0.095 0.356 9.799 3 0.141 0.263 26.031

7 0.725 0.684 3.479 4 0.719 0.617 4.389

8 0.693 0.588 5.158 6 0.750.766 0.607 4.368
9 0.658 0.536 5.006 4 0.750.693 0.439 4.341
10 0.403 0.695 14.641 5 0.305 0.554 26.940

11 0.684 0.579 4.671 6 0.750.736 0.626 4.157
12 0.624 0.455 4.879 4 0.750.701 0.455 4.283
13 0.765 0.723 2.449 5 0.713 0.687 8.201

14 0.608 0.696 4.337 1 0.750.624 0.680 3.064
15 0.751 0.762 3.492 6 0.637 0.429 3.934

16 0.495 0.540 7.712 2 0.750.553 0.538 6.996
Avg. 0.614 0.608 5.951 / 0.750.631 0.564 7.522
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an increase of 0.108. On average, clustering seems to reduce performance, however, with 
a decrease of 0.044 in SROCC.

When it comes to RMSE, mixed results can also be observed as 7 and 6 out of 16 
videos show a decrease when adding clustering in the non-sigmoid and sigmoid cases, 
respectively. In the non-sigmoid case, most increases in RMSE are limited with excep-
tion of videos 6, 10 and 13 where respective differences of 16.773, 11.773 and 6.138 are 
observed. On average, an increase in RMSE of 1.430 is noticed. In the case with sigmoi-
dal mapping, similar results can be seen with decreases or small increases in RMSE for 
all videos except 6, 10 and 13. The latter show increases of 16.232, 12.299 and 5.752, 
respectively. On average, an increase of 1.571 can still be noted though. The impact of 
sigmoidal mapping to RMSE shows to be mainly beneficial, with 10 out of 16 videos 
showing better results in the non-clustering case and 13 out of 16 in the clustering case. 
In the non-clustering case, limited increases in RMSE are observed for videos 1, 2, 3, 6, 
10 and 16. In the clustering case, the same is true for videos 1 and 6. Only video 10 is 
showing deviating behavior with an RMSE increase of 6.416.

It is worth pointing out that video 6 is consistently underperforming in all cases. The 
most probable explanation for this observation is the deviating distributions of NRT 
and, to less extent SI, when compared to the average over all videos as is depicted in 
Fig. 7. There can clearly be seen in the distributions of NRT that while the both show a 
two-modal behavior, the average distribution is much more spread out than is the case 
for the spiking behavior of video 6. To a lesser extent the same behavior can be observed 
for SI while this is not the case for the majority of the other metrics as is illustrated for 
BLK. As such, the model has more trouble generalizing towards the outlying behavior of 
video 6 than for other videos which are more in line with the global average.

By means of comparison, Table 7 shows the results of optimizing the model param-
eters for each video separately rather than on a per-cluster base. Evaluation is performed 
using a 5-fold cross-validation on a per-video base. The positive impact of sigmoidal 
mapping should be clear in this case, given the improved performance of each single 
video. For videos 2, 14 and 16, results are of course identical to Table 6 as these were 
already isolated in a separate class by the clustering algorithm. But also for most of 
the other videos, similar performance can be observed. For videos 3, 6, and 10, clear 
improvements can be noticed though. This is especially remarkable for video 6, which 
is thoroughly underperforming in the one-for-all modeling approach. While still not 
splendid, results are clearly more in line with the other videos under scrutiny. As such, 
it seems that clustering might be more confusing than clarifying to the model in some 
cases. This could be explained by the higher variability in NR metrics due to the finer 
granularity such that clusters become more heterogeneous than is the case at video-
level. Videos 4 and 12, in contrary, seem to suffer from the loss of information of other 
videos in the same cluster. When to or not to apply model pre-clustering is therefore an 
interesting and important further research direction. On average, the per-video mod-
eling approach shows slightly better results than the one-for-all approach although these 
marginal gains are not weighing up to the additional computational complexity of train-
ing a model for every new video in the database. For some specific videos that tend to 
show outlying behavior with respect to the general model, this is an approach that could 
be considered, however.
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Table  8 compares the average performance of the proposed model (including both 
clustering and sigmoidal mapping) in terms of PLCC, SROCC and RMSE to VMAF with 
each of the separate NR metrics and the PSNR and SSIM benchmarks. It is clear that 
the proposed approach is improving upon single-feature prediction with any of the NR 
metrics. Only NRT is getting in the neighbourhood in terms of correlation values, but 
with an average RMSE that is about a factor 10 higher than the proposed method. In 
this respect, BLK as a predictor is showing an RMSE that is even slightly better than the 
proposed solution, but at the cost of very low correlation values. As such, the proposed 
method shows to combine the best of both worlds. It is also interesting to notice that in 
terms of RMSE it is even showing better performance than both of the FR benchmarks 

Table 7  PLCCs, SROCCs and RMSEs towards VMAF of GOP-level models trained on a per-video 
base. A comparison of the cases with and without sigmoidal mapping is provided. For each video 
and each case, the best performing metric (highest for PLCC/SROCC and lowest for RMSE) is 
indicated in bold

Video No sigmoidal mapping Sigmoidal mapping

PLCC SROCC RMSE PLCC SROCC RMSE

1 0.759 0.792 2.184 0.783 0.792 2.083
2 0.822 0.869 4.027 0.850 0.869 3.686
3 0.750 0.785 6.199 0.767 0.785 5.993
4 0.466 0.581 2.679 0.503 0.581 2.590
5 0.559 0.569 4.919 0.598 0.569 4.746
6 0.450 0.478 5.214 0.518 0.478 5.141
7 0.628 0.704 3.309 0.653 0.704 3.241
8 0.686 0.715 4.139 0.752 0.715 3.873
9 0.440 0.636 4.442 0.461 0.636 4.322
10 0.663 0.740 8.114 0.668 0.740 8.055
11 0.691 0.646 4.243 0.757 0.646 3.925
12 0.443 0.482 4.926 0.478 0.482 4.785
13 0.623 0.719 2.105 0.675 0.719 1.993
14 0.590 0.680 3.121 0.624 0.680 3.064
15 0.697 0.659 3.115 0.748 0.659 2.902
16 0.537 0.538 7.045 0.553 0.538 6.996
Avg. 0.613 0.662 4.361 0.649 0.662  4.211

Table 8  Average PLCCs, SROCCs, and RMSEs of the six NR-metrics, PSNR, and SSIM to the VMAF 
benchmark at GOP-level. The best performing metric (highest for PLCC/SROCC and lowest for RMSE) 
is indicated in bold. Note that a min–max scaler was applied to NOI, BLU, SI and PSNR to make them 
fall within the [0, 100] interval

Metric PLCC SROCC RMSE

NOI − 0.275 − 0.274 16.168

NRT − 0.511 − 0.511 76.407

BLU 0.384 0.376 75.931

BRT − 0.115 − 0.111 71.568

BLK 0.128 0.142 7.014
SI − 0.476 − 0.432 40.532

PSNR 0.765 0.740 31.420

SSIM 0.755 0.737 14.627

Proposed 0.631 0.564 7.522
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with a value of 7.522 compared to 14.627 for SSIM and 31.420 for PSNR. Although the 
correlation values of the proposed method are somewhat lower, this is in fact a satisfying 
result giving the NR nature of the proposed solution compared to the FR approach of 
both SSIM and PSNR.

5.4.4 � QoE‑model: frame‑level

Table 9 shows the results of the one-for-all modeling approach on frame-level. In terms 
of the impact of clustering, a mixed result can once again be seen. When it comes to 

Table 9  PLCCs, SROCCs and RMSEs towards VMAF of the one-for-all frame-level model in 
comparison with the cases without clustering (Cl.) and/or sigmoidal mapping. For each video and 
each case, the best performing metric (highest for PLCC/SROCC and lowest for RMSE) is indicated in 
bold

Video No clustering Clustering

PLCC SROCC RMSE Cl. PLCC SROCC RMSE

No sigmoidal mapping 1 0.656 0.620 4.297 0 0.771 0.761 2.676
2 0.788 0.822 7.166 1 0.786 0.821 8.371

3 0.591 0.562 8.329 1 0.582 0.552 8.332

4 0.657 0.498 3.007 1 0.651 0.514 3.103

5 0.474 0.394 5.547 0 0.548 0.470 5.285

6 0.181 0.327 8.109 1 0.183 0.310 8.388

7 0.671 0.672 3.660 0 0.691 0.708 3.451

8 0.630 0.534 5.614 1 0.618 0.549 6.187

9 0.587 0.487 5.501 1 0.571 0.494 6.126

10 0.492 0.679 13.841 1 0.508 0.676 13.590
11 0.628 0.549 5.124 0 0.633 0.566 4.860

12 0.559 0.412 5.330 0 0.636 0.480 4.752

13 0.699 0.649 2.767 1 0.688 0.652 2.874

14 0.589 0.636 4.387 0 0.596 0.498 3.696

15 0.683 0.726 3.987 1 0.660 0.723 4.515

16 0.463 0.410 7.941 1 0.445 0.403 8.039

Avg. 0.584 0.561 5.913 / 0.598 0.574 5.890
Sigmoidal mapping 1 0.676 0.620 4.551 0 0.794 0.761 3.397

2 0.799 0.822 9.376 1 0.796 0.821 10.680

3 0.593 0.562 8.796 1 0.582 0.552 9.144

4 0.707 0.498 2.729 1 0.701 0.514 2.777

5 0.506 0.394 5.408 0 0.582 0.470 5.168
6 0.110 0.327 9.186 1 0.112 0.310 9.287

7 0.718 0.672 3.508 0 0.739 0.708 3.283
8 0.672 0.534 5.284 1 0.658 0.549 5.762

9 0.631 0.487 5.179 1 0.613 0.494 5.707

10 0.407 0.679 14.497 1 0.431 0.676 14.060

11 0.672 0.549 4.839 0 0.682 0.566 4.578
12 0.611 0.412 5.022 0 0.694 0.480 4.419
13 0.749 0.649 2.447 1 0.740 0.652 2.494

14 0.604 0.636 4.241 0 0.631 0.498 3.595
15 0.723 0.726 3.692 1 0.700 0.723 4.139

16 0.462 0.410 8.070 1 0.435 0.403 8.260

Avg. 0.603 0.561 6.052 / 0.618 0.574 6.047
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PLCC there can be noticed that for both the sigmoidal and non-sigmoidal case half of 
the videos (1, 5-7, 10-12, 14) are showing improvement by including clustering into 
the modeling algorithm. Especially videos 1, 5 and 12 show decent improvements with 
respective differences of 0.115, 0.074 and 0.077 in the non-sigmoidal case and 0.118, 
0.076 and 0.077 in the sigmoidal case. Furthermore, it should be noted that, for videos 
showing a decrease in performance, differences are rather limited. On average, small 
improvements of 0.014 and 0.015 for the respective non-sigmoid and sigmoid cases can 
be observed. Similar observations can be made for SROCC, where 9 out of 16 videos 
(1, 4, 5, 7-9, 11-13) show improvements from clustering. Once again, videos 1, 5 and 
12 seem to benefit the most from this addition with respective improvements of 0.141, 
0.076 and 0.068, respectively. Video 14, on the downside, shows to suffer from a relevant 
decrease of 0.138 SROCC. On average, however, a limited improvement of 0.013 can be 
seen. When it comes to RMSE, seven videos (1, 5, 7, 10-12, 14) are positively impacted 
by applying the clustering algorithm. Here, videos 1, 12 and 14 seem to experience the 
greatest impact with respective improvements of 1.621, 0.578 and 0.691 in the non-sig-
moid case and 1.154, 0.603 and 0.646 and the sigmoid case. Videos 2, 9 and 15 seem 
to show the largest decreases in performance due to clustering, with respective RMSE 
increases of 1.205, 0.625 and 0.528 in the non-sigmoid case and 1.304, 0.528 and 0.447 in 
the sigmoid case. On average, however, small decreases can be observed of 0.023 in the 
non-sigmoid case and 0.005 if sigmoidal mapping is applied.

The influence of the latter translates to an improvement for the majority of the videos. 
In terms of PLCC, only videos 6, 10 and 16 show a reduction with respective differences 
of 0.071, 0.085 and 0.001 in the non-clustering case and 0.071, 0.077 and 0.010 in the 
clustering case. On average, sigmoidal mapping results in respective improvements of 
0.017 and 0.20 in PLCC. Looking at RMSE, similar conclusions can be drawn, with that 
difference that also videos 1–3 are decreasing in performance for both the non-cluster-
ing and the clustering case. Especially for videos 2, 6 and 10 we see relevant increases in 
RMSE with respective differences of 2.210, 1.077 and 0.656 in the non-clustering case 
and 2.309, 0.899 and 0.470 in the clustering case. On average, sigmoidal mapping shows 
small decreases in performance with respective differences of 0.139 and 0.157 in RMSE. 
Note that for video 6, a much lower performance can once again be observed due to the 
difference in NRT and SI distributions as explained earlier in Sect. 5.4.3 (Table 9).

Table  10 once again shows the results of optimizing the model parameters for each 
video separately rather than on a per-cluster base. Similar as in the GOP-level case, 
sigmoidal mapping is clearly showing its benefit. Only videos 14 and 16 are showing 
marginal increases in RMSE of 0.025 and 0.002, respectively. When comparing to the 
one-for-all approach, a mixed view arises. Just below half of the videos (1, 4, 7, 11-14) 
show a decrease in PLCC for both the sigmoid and the non-sigmoid case when compar-
ing to their best performing counterpart (either with or without clustering) in the one-
for-all approach. This is especially true for videos 4, 7, 12 and 13, which show respective 
decreases of 0.265, 0.083, 0.212 and 0.145 in the non-sigmoidal case and 0.285, 0.107, 
0.246 and 0.164 when sigmoidal mapping is applied. Videos 3, 6 and 10, on the contrary, 
show to benefit from a per-video approach with non-sigmoidal increases of 0.115, 0.325 
and 0.129; and 0.129, 0.417 and 0.208 in the sigmoidal case. On average, almost no dif-
ference is observed with a 0.001 increase for the non-sigmoid case and a 0.006 decrease 
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in the sigmoid case. In terms of SROCC, most videos seem to show increased perfor-
mance when using per-video models, as is the case for e.g., videos 3, 5, 6, 8 and 9. These 
show respective improvements of 0.165, 0.120, 0.152, 0.142 and 0.201. Only videos 4,7, 
12, 13 and 15 show limited decreases of 0.009, 0.028, 0.011, 0.012 and 0.039, respectively. 
On average, a small decrease of 0.065 can be observed w.r.t. the one-for-all model. In 
terms of RMSE, we see improvements for almost all videos, where video 10 is especially 
worth mentioning with respective RMSE decreases of 4.931 in the non-sigmoidal case 
and 5.420 in the sigmoidal case. Video 12 is the only video showing an RMSE increase in 

Table 10  PLSSs, SROCCs and RMSEs towards VMAF of frame-level models trained on a per-video 
base. A comparison of the cases with and without sigmoidal mapping is provided. For each video 
and each case, the best performing metric (highest for PLCC/SROCC and lowest for RMSE) is 
indicated in bold

Video No sigmoidal mapping Sigmoidal mapping

PLCC SROCC RMSE PLCC SROCC RMSE

1 0.739 0.762 2.341 0.764 0.762 2.244
2 0.828 0.848 4.132 0.849 0.848 3.845
3 0.706 0.727 6.759 0.722 0.727 6.577
4 0.401 0.505 2.902 0.422 0.505 2.845
5 0.572 0.590 4.980 0.598 0.590 4.862
6 0.508 0.479 5.629 0.529 0.479 5.536
7 0.608 0.680 3.437 0.632 0.680 3.378
8 0.685 0.691 4.215 0.748 0.691 3.934
9 0.592 0.695 4.064 0.648 0.695 3.861
10 0.637 0.715 8.659 0.639 0.715 8.640
11 0.584 0.576 4.836 0.630 0.576 4.669
12 0.424 0.469 5.088 0.448 0.469 5.015
13 0.554 0.640 2.312 0.585 0.640 2.262
14 0.529 0.667 3.373 0.542 0.667 3.398

15 0.683 0.687 3.299 0.726 0.687 3.140
16 0.497 0.507 7.446 0.506 0.507 7.448

Avg. 0.597 0.639 4.592 0.624 0.639 4.478

Table 11  Average PLCCs, SROCCs, and RMSEs of the six NR-metrics, PSNR, and SSIM to the VMAF 
benchmark at frame-level.  The best performing metric (highest for PLCC/SROCC and lowest for 
RMSE) is indicated in bold. Note that a min–max scaler was applied to NOI, BLU, SI and PSNR to make 
them fall within the [0, 100] interval

Metric PLCC SROCC RMSE

NOI − 0.199 − 0.226 18.639

NRT − 0.187 − 0.279 76.707

BLU 0.142 0.221 76.252

BRT − 0.311 − 0.240 72.030

BLK 0.005 0.011 10.728

SI − 0.004 − 0.141 45.967

PSNR 0.673 0.689 30.677

SSIM 0.820 0.718 16.272

Proposed 0.618 0.574 6.047
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the non-sigmoid case with a difference of 0.336. In the sigmoidal case, limited decreases 
in performance can be observed for videos 4, 7 and 11 with respective RMSE increases 
of 0.116, 0.095 and 0.091. On average, RMSEs show a reduction of 1.298 in the non-
sigmoid case and 1.569 in the sigmoid case.

In Table  11, the average performance of the proposed method (including clustering 
and sigmoidal mapping) in terms of PLCC, SROCC, and RMSE to VMAF is depicted in 
comparison to single-feature prediction by each of the NR metrics as well as the PSNR 
and SSIM FR benchmarks. One can notice that also at frame-level the proposed method 
is clearly improving upon each of the NR metrics in terms of correlation values. Also in 
terms of RMSE a clear improvement can be noticed, with once again only BLK being 
able to stay in the neighborhood with an obtained RMSE of 10.728 compared to 6.047 
for the proposed method. Once again, this RMSE shows to be better that what PSNR 
and SSIM can obtain with respective RMSEs of 30.677 and 16.272. In terms of PLCC and 
SROCC the proposed method is only little below the performance of PSNR. Only for 
SSIM a clear difference can still be noticed. Nevertheless, the obtained performance can 
be considered satisfying given the NR nature of the proposed model compared to the FR 
implementations of both PSNR and SSIM.

6 � Discussion
Section 5.4 has discussed the most prominent results on each of the three granularity 
levels. At the video-level, the beneficial influence of clustering combined with a per-clus-
ter sigmoidal mapping is clear. As such, it can easily be applied as a generic prediction 
mechanism for video-level quality, especially since it predictions match the performance 
of the ground-truth VMAF in terms of correlation and RMSE to (DSIS) MOS. For most 
real-time applications, especially when live-streaming is considered, more fine-grained 
predictions are preferred in order to accurately act upon and end-user drop in QoE. 
While the sigmoidal mapping aspect of the proposed model is still showing beneficial 
for the majority of the videos on a GOP- and frame-level, the influence of clustering 
shows a more mixed view. Especially for certain specific videos such as 3, 6 and 10, a 
per-video model proves to be much more beneficial than a one-for-all approach. From 
this observation, one could interpret the clustering algorithm as an outlier identifying 
strategy. By excluding these outliers from the input data, the non-outlying videos (which 
still make up the majority of the data) could be modeled using one-for-all model based 
on sigmoidal mapping. The minority of videos identified as outlying could then be pro-
vided with their own personal model. As a result, this would provide a good trade-off 
between maximizing performance on one hand and limiting computational and practi-
cal overhead on the other hand, especially since filtering out outlying videos would help 
further fine-tuning the one-for-all model. It has to be mentioned, however, that videos 
such as video 6 that show outlying performance are not always identified as a separate 
cluster by the model yet. As such further improvement of this algorithm to transform it 
to an outlier detector is desirable. Exploring additional NR metrics, possibly on the tem-
poral part such as TI, MI or jerkiness could play a role in this. Giving the easy adaptation 
of the Video Metric Tool presented in Sect. 4 and the fact that the implementations of 
TI, MI and jerkiness are already provided, this is certainly within reach.
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Furthermore, one could state that the results for the majority of the videos, although 
lower than on video-level, are satisfying with correlations often going above 0.700 
while maintaining RMSEs below 10 on a 0–100 scale. Giving the limited complexity 
of the modeling approach, this opens opportunities towards both further generaliza-
tion as well as specification for specific types of content by appropriately updating 
or replacing the clustering prior to the sigmoidal mapping. In case higher per-GOP 
or per-frame accuracy is required, one can still opt to steer towards more complex 
modeling approaches based on ML/DL to exploit any further relationships in the data 
that are not revealed by the psychometric mapping. Nevertheless, when compar-
ing the performance of the proposed method to both th individual NR metrics and 
alternative FR benchmarks, it is shown that satisfying results are obtained, especially 
in terms of RMSE. Although correlation values remain somewhat below the perfor-
mance of the FR metrics, results are satisfying and promising given the NR nature 
of the presented approach. All with all, it can thus be concluded that a decent meth-
odology and baseline towards further research has been provided, and that further 
improvements to the presented approach are also within reach.

7 � Conclusions and future work
This work has presented an NR quality model for point cloud video, which consists 
of a combination of KMeans clustering and sigmoidal mapping. Video-, GOP-, and 
frame-level granularity were considered. The applicability of the model to this gran-
ularities is investigated and analysis is performed to the cases in which a per-video 
model is preferred. In addition, a CLI Video Metric Tool is presented that allows for 
easy and modular calculation of multiple NR-metrics on a given video. Results show 
that the sigmoidal mapping aspect of the model shows its value across all granular-
ity levels. The clustering algorithm results in a more mixed view. However, the lat-
ter would be valuable in the role of an outlier detector to select videos which would 
benefit from a specific video model, as well as further improving the given model by 
delineating the most predictable data for a one-for-all approach. Nevertheless, sat-
isfying results are yet obtained with correlation values often going above 0.700 on 
GOPs- and frame-level while maintaining RMSEs below 10 on a 0–100 scale.

Especially in terms of RMSE, satisfying results are obtained with the proposed 
model outperforming FR benchmarks. Although correlation values remain somewhat 
below the performance of these same benchmarks, results are satisfying and promis-
ing given the NR nature of the proposed method.

It needs to be mentioned, though, that the presented analysis is limited to a single 
dataset of point cloud videos. Therefore, future work includes the validation on addi-
tional projection-based datasets, preferably with other point cloud objects (e.g., from 
the V-SENSE dataset  [33]). Furthermore, it is also worth noticing that the included 
encoding distortions are limited to V-PCC encoding. As such, the exploration of 
other encoding mechanisms such as G-PCC would further add to the generalizability 
of the presented model.
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A Mathematical definition of the NR metrics
This Appendix gives the mathematical definitions of each NR metric on a single frame 
F with size m× n . As stated before, the corresponding value for a GOP or video can 
be calculated by averaging the the per-frame results except for SI, where the maxi-
mum is taken.

A.1 Noise (NOI) and noise ratio (NRT)

This Appendix mathematically defines noise (NOI) and noise ratio (NRT) based on the 
implementation of Choi et al. [61].
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A.2 Blur (BLU) and blur ratio (BRT)

This  Appendix mathematically defines blur (BLU) and blur ratio (BRT) based on the 
implementation of Choi et al. [61].
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A.3 Blockiness (BLK)

This Appendix mathematically defines blockiness (BLK) based on the implementation of 
Perra et al. [62].

A.4 Spatial information (SI)

This Appendix mathematically defines spatial information (SI) based on the definition by 
the International Telecommunication Union (ITU) [56].
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