Journal of Network and Computer Applications 234 (2025) 104067

Contents lists available at ScienceDirect

NETWORKE
COMPUTER
APPLICATIONS

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Research paper

Gwydion: Efficient auto-scaling for complex containerized applications in
Kubernetes through Reinforcement Learning

José Santos &%, Efstratios Reppas®, Tim Wauters 2, Bruno Volckaert?, Filip De Turck ?

@ Ghent University - imec, IDLab, Department of Information Technology, Technologiepark - Zwijnaarde 126, Gent, 9052, Belgium
b National Technical University of Athens (NTUA), Greece

ARTICLE INFO ABSTRACT

Keywords: Containers have reshaped application deployment and life-cycle management in recent cloud platforms. The
Auto-scaling paradigm shift from large monolithic applications to complex graphs of loosely-coupled microservices aims
Contamer? to increase deployment flexibility and operational efficiency. However, efficient allocation and scaling of
Cloud-native microservice applications is challenging due to their intricate inter-dependencies. Existing works do not
Orchestration L, .
Reinforcement Learning consider microservice dependencies, which could lead to the application’s performance degradation when
Kubernetes service demand increases. As dependencies increase, communication between microservices becomes more

complex and frequent, leading to slower response times and higher resource consumption, especially during
high demand. In addition, performance issues in one microservice can also trigger a ripple effect across
dependent services, exacerbating the performance degradation across the entire application. This paper studies
the impact of microservice inter-dependencies in auto-scaling by proposing Gwydion, a novel framework
that enables different auto-scaling goals through Reinforcement Learning (RL) algorithms. Gwydion has been
developed based on the OpenAl Gym library and customized for the popular Kubernetes (K8s) platform to
bridge the gap between RL and auto-scaling research by training RL algorithms on real cloud environments for
two opposing reward strategies: cost-aware and latency-aware. Gwydion focuses on improving resource usage
and reducing the application’s response time by considering microservice inter-dependencies when scaling
horizontally. Experiments with microservice benchmark applications, such as Redis Cluster (RC) and Online
Boutique (OB), show that RL agents can reduce deployment costs and the application’s response time compared
to default scaling mechanisms, achieving up to 50% lower latency while avoiding performance degradation.
For RC, cost-aware algorithms can reduce the number of deployed pods (2 to 4), resulting in slightly higher
latency (300 ps to 6 ms) but lower resource consumption. For OB, all RL algorithms exhibit a notable response
time improvement by considering all microservices in the observation space, enabling the sequential triggering
of actions across different deployments. This leads to nearly 30% cost savings while maintaining consistently
lower latency throughout the experiment. Gwydion aims to advance auto-scaling research in a rapidly evolving
dynamic cloud environment.

1. Introduction . s .
strategies for applications in popular cloud platforms, such as Ama-

zon ECS (Amazon, 2024a), K8s (Burns et al.,, 2019), and Red Hat
OpenShift (Hat, 2024). Moreover, the next generation of applications,
including Extended Reality (XR), Industrial Internet of Things (IIoT),

Microservice architectures have emerged as the dominant approach
for application deployment in modern cloud platforms
(Newman, 2021). This architectural approach involves breaking down

the traditional monolithic application into loosely-coupled microser-
vices, implemented and deployed independently. This paradigm shift
offers enhanced deployment flexibility, scalability, service portability,
and operational efficiency (Li et al., 2021). However, orchestrating
modern applications in today’s cloud platforms is challenging due to
their intricate microservice inter-dependencies. The widespread adop-
tion of containers necessitates efficient deployment and orchestration

* Corresponding author.
E-mail address: josepedro.pereiradossantos@ugent.be (J. Santos).

https://doi.org/10.1016/j.jnca.2024.104067

and autonomous vehicles (e.g., cars and Unmanned Aerial Vehicles
(UAVs)) add further complexity and put even more pressure on current
cloud infrastructures (Giordani et al., 2020; Santos et al., 2021). The
deployment of these applications is hindered by the inability of modern
infrastructures and protocols to meet their stringent requirements, such
as high reliability, low latency, and high bandwidth.

Received 12 April 2024; Received in revised form 19 September 2024; Accepted 11 November 2024

Available online 26 November 2024

1084-8045/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jnca
https://www.elsevier.com/locate/jnca
mailto:josepedro.pereiradossantos@ugent.be
https://doi.org/10.1016/j.jnca.2024.104067
https://doi.org/10.1016/j.jnca.2024.104067
http://creativecommons.org/licenses/by/4.0/

J. Santos et al.

Container orchestration platforms typically support rapid adjust-
ments to application deployment through horizontal and vertical scaling
(illustrated in Fig. 1). Horizontal scaling involves increasing (scale-out)
or decreasing (scale-in) the number of deployed instances (i.e., con-
tainers), and vertical scaling entails adjusting the resources allocated
to each container instance (i.e., scale-up or scale-down). Over-
provisioning wastes resources and increases costs, while under-
provisioning degrades performance and violates Service Level Agree-
ments (SLAs). Therefore, efficient auto-scaling (Qu et al., 2018) in-
volves dynamically adding or removing resources to meet Quality of
Service (QoS) requirements without human intervention. Designing
efficient auto-scaling systems is challenging due to limited hardware re-
sources, dynamic workloads, diverse service requirements, and complex
infrastructures. Existing literature often focuses on either horizontal
or vertical elasticity. Vertical scaling allows rapid responses to small
workload variations, while horizontal scaling handles sudden workload
peaks. However, most works mainly address resource utilization in the
infrastructure (e.g., CPU and Memory), which is insufficient to satisfy
the demanding requirements of microservice applications, especially
concerning latency and bandwidth. As inter-dependencies increase,
microservice communication becomes more complex and frequent,
resulting in slower response times and increased resource consumption,
particularly under high demand. Additionally, the strong interdepen-
dence between microservices means that performance issues in one
service can trigger a cascading effect (Soldani et al., 2021), exacer-
bating degradation across the entire application. Current approaches,
such as (AWS, 2024; Kubernetes, 2024a,b; Rattihalli et al., 2019;
Srirama et al., 2020), typically scale containers for each microservice
independently without considering their inter-dependencies.

This paper focuses on understanding the impact of microservice
inter-dependencies on auto-scaling mechanisms. The goal is to identify
optimal states for each microservice based on the current demand, con-
sidering its performance impact on the overall application pipeline. To
this end, Gwydion,'a RL-based auto-scaling framework has been devel-
oped. The framework is inspired on the OpenAI Gym library (Brockman
et al, 2016) to train RL agents with different auto-scaling objec-
tives on operational cloud environments established with the most
popular container orchestration platform, K8s (Burns et al., 2022).
K8s automates various processes throughout the application lifecy-
cle, including deployment and scaling. Traditional approaches mainly
focus on threshold-based or Machine Learning (ML)-based methods
(e.g., (Kubernetes, 2024a,b; Rossi et al., 2019; Lee et al., 2020; Rzadca
et al., 2020)), focusing on resource efficiency without considering the
application’s response time or latency. This work addresses mainly
horizontal scaling, as vertical scaling can trigger potentially costly
operations. Adjusting container resources could lead to performance
degradation or Out of Memory (OOM) errors, as containers may no
longer fit on their machines. The main contributions of this paper are:

* Gwydion framework and improved RL design: Building upon
our previous work (Santos et al.,, 2023b), the Gwydion frame-
work significantly extends the gym-hpa framework® by adding
predictive capabilities and refining the RL-based approach for
horizontal scaling of microservices in K8s clusters. Section 5
presents the refined RL design, including observation state, action
space, and reward functions. This approach addresses microser-
vice inter-dependencies and the application’s response time, both
often neglected in most works, which are crucial for achieving
efficient scaling decisions. Gwydion has also been open-sourced,*

1 Gwydion is a magician, hero and trickster of Welsh mythology, which can
be metaphorically linked to the complexity and creativity involved in auto-
scaling research. Efficient auto-scaling algorithms need intricate design and
optimization, related to Gwydion, the master of magic.

2 https://github.com/jpedro1992/gym-hpa

3 https://github.com/jpedro1992/gwydion

Journal of Network and Computer Applications 234 (2025) 104067

P « PP

scale-out

(a) Horizontal scaling.

scale-up ﬁi@}i@} o
o v

(b) Vertical scaling.

Fig. 1. Illustration of horizontal and vertical scaling.

enabling researchers to leverage the framework to evaluate their
auto-scaling concepts.

+ Integration of Resource Predictions in RL: Gwydion adopts
statistical and ML-based algorithms for predicting CPU and Mem-
ory usage of microservice applications. A microservice applica-
tion named as Gwydion-estimator has been developed to provide
real-time resource predictions, allowing Gwydion to label mi-
croservices accordingly. Results show that enabling predictive
capabilities in Gwydion leads to faster learning at a slightly higher
performance depending on the selected objective (Section 8.2).

» Performance Evaluation with Microservice Benchmarks:
Gwydion has been validated on real-world microservice bench-
mark applications: a database application named as RC (Redis,
2024) (Fig. 2(a)), and a multi-tier web application denoted as
OB (Boutique, 2024) (Fig. 2(b)). Experiments conducted in a K8s
cluster demonstrate that the presented RL approach can reduce
the latency up to 50% while avoiding performance degradation,
more noticeably for the OB application. In addition, Gwydion can
significantly reduce deployment costs for both applications, as
shown in Section 8.

The remainder of the paper is organized as follows: the state-of-the-
art on auto-scaling is discussed in the next section. Section 3 discusses
application deployment and auto-scaling operations in K8s, describing
its terminology. Section 4 details the Gwydion framework and Section 5
presents the RL-based auto-scaling approach. Section 6 details the pre-
diction algorithms of Gwydion, highlighting the importance of accurate
resource estimations. Then, Section 7 describes the evaluation setup,
followed by the results in Section 8. Lastly, Section 9 focuses on open
challenges and future directions, and Section 10 concludes this paper.

2. Related work

Recent surveys (Qu et al., 2018; Singh et al., 2019) provide com-
prehensive insights into auto-scaling features applied to cloud-based
systems. Both surveys categorize auto-scaling approaches based on
various criteria. This section explores the literature through five key di-
mensions: threshold-based, queuing model-based, time series analysis,
control theory-based, and ML-based methods.

Threshold-based techniques (AWS, 2024; Kubernetes, 2024a,b;
Rattihalli et al., 2019; Srirama et al., 2020) are widely adopted by the
industry. Popular orchestration platforms (e.g., K8s, Amazon ECS) rely
on best-effort threshold-based scaling policies based on cluster-level
metrics such as CPU usage and the average number of requests. Most

https://github.com/jpedro1992/gym-hpa
https://github.com/jpedro1992/gwydion

J. Santos et al.

Journal of Network and Computer Applications 234 (2025) 104067

Table 1
Comparison of existing works related to auto-scaling.

Existing work Dimension Type Policy A% Metrics Dep. Eval.
Amazon EC2 (AWS, 2024) T H R VMs + C e.g., CPU + RAM X A
KHPA (Kubernetes, 2024a) T H R C e.g., CPU, RAM X K
KVPA (Kubernetes, 2024b) T \% R C e.g., CPU, RAM X K
Rattihalli et al. (2019) T A% R C CPU + RAM X A+ K
Srirama et al. (2020) T H R VMs + C e.g., CPU + RAM X S
Gergin et al. (2014) Q H R VMs RT X A
Danilo et al. (2021) Q H R VMs CPU + RT X S+ T
Calheiros et al. (2015) TS H P VMs e.g, CPU, RT X S
Messias et al. (2015) TS H R+P VMs RT X S
Kumar and Singh (2018) TS H R+P VMs R X S
Farokhi et al. (2016) CT A% R VMs e.g., RAM, RT X T
Nouri et al. (2019) CT + ML H R VMs e.g., CPU, RT X T
Toosi et al. (2019) CT H+V R VMs e.g., CPU, TL v S
Toka et al. (2021) ML + TS H R+ P C CPU + R X K
Rossi et al. (2019) ML H+V R+ P C e.g., CPU, RAM X S+D
Lee et al. (2020) ML H P VMs T + RT 4 (o}
Rzadca et al. (2020) ML + TS H+V P C e.g., CPU, RAM X T
Santos et al. (2023b) T + ML H R+P C e.g., RT, CPU, RAM v S+K
Gwydion T + TS + ML H R+ P C RT + CPU + RAM v S+ K

Dimension: T = Threshold, Q = Queuing model, TS = Time Series analysis, CT = Control theory, ML = ML-based.

Type: H = Horizontal, V = Vertical.
Policy: R = Reactive, P = Proactive.
Virtualization (VT): VMs = Virtual Machines, C = Containers.

Metrics: CPU = CPU usage, RAM = Memory usage, T = Throughput, RT = Response time, R = Number of requests.

Dependencies (Dep.): v = addressed, X = not considered.

Evaluation (Eval.): A = Amazon AWS, K = Kubernetes, D = Docker, O = Openstack, S = Simulation, T = Testbed.

£
<9

(a) Redis Cluster (RC) application.

0
P7

HTTP pTiP CanService
PaymentService CheckoutService ‘

Frontend

ShippingService

(b) Online Boutique (OB) application.

Fig. 2. Illustration of microservice dependencies (Santos et al., 2023b).

cloud providers offer reactive threshold-based scaling methods, such as
Amazon EC2 (AWS, 2024) and Kubernetes Horizontal Pod Autoscaler
(KHPA). Amazon EC2 is particularly well suited for applications with
predictable traffic patterns (e.g., daily or weekly) as it allows tailored
rules to handle these patterns. KHPA adjusts the number of pods based
on specific metrics (e.g., CPU usage) by maintaining an average of
the desired metric and scaling pods accordingly. However, a notable
drawback of these methods is the manual tuning required to determine
appropriate thresholds and scaling actions, which can significantly
impact application performance if poorly chosen (Qu et al., 2018).
On the other hand, vertical scaling techniques (Kubernetes, 2024b;
Rattihalli et al., 2019) involve resizing containers dynamically during

runtime. Kubernetes Vertical Pod Autoscaler (KVPA) sets container
resource limitations based on statistics gathered over a moving window
(e.g., the 99th percentile of memory usage over 24 h). Gwydion focuses
on horizontal scaling, as resizing containers may lead to OOM errors
or compromise QoS during sudden usage spikes. We argue that vertical
scaling is a risky procedure that needs further research to ensure
that dynamically adapting container resources at runtime does not
compromise performance.

Queuing model-based methods are widely used for analyzing In-
ternet applications, particularly for estimating performance metrics and
request waiting times. These techniques can understand the behav-
ior and performance of the system under various conditions. Recent
works (Gergin et al., 2014; Danilo et al.,, 2021) have applied queu-
ing theory to auto-scaling strategies. The primary objective of these
methods is to optimize deployment costs while ensuring that the appli-
cation’s Service Level Objectives (SLOs) are maintained. However, it is
important to note that queuing models are generally designed for ana-
lyzing stationary systems, assuming that demand remains constant over
time. In the current cloud landscape, numerous real-world applications
experience dynamic workloads with fluctuating demands. The models
rely on known parameters (e.g., the arrival rate of service requests),
making them effective in predicting system behavior under stable
conditions. When facing dynamic workloads, the known parameters
may no longer accurately represent the system, requiring model and
metric recalibration to match the current dynamics. Adapting queuing
model-based methods to handle dynamic microservice applications re-
mains an enormous challenge, enhancing their suitability for real-world
environments.

Time series analysis typically comprises a two-step process: fore-
casting workload patterns and triggering scaling actions based on the
predicted workload. However, a majority of existing methods (Calheiros
et al.,, 2015; Messias et al., 2015; Kumar and Singh, 2018) rely on
predefined thresholds to trigger actions when the predicted metric
surpasses a certain threshold. Workload prediction models are com-
monly applied to produce efficient scaling actions, aiming for optimal
resource usage while minimizing adverse impacts on QoS (Calheiros
et al.,, 2015). Nonetheless, the applicability of these methods across
diverse workload types remains challenging. Predicting incoming re-
quests (Messias et al,, 2015) or subsequent resource consumption
can be time-consuming, potentially limiting real-time responsiveness.

J. Santos et al.

Furthermore, these approaches often focus on individual microservices,
neglecting the complex dependencies within a microservice-based ap-
plication. In contrast, Gwydion advocates for determining appropriate
scaling actions based on the real-time status of multiple microservices,
offering a more comprehensive and adaptive solution to handle the
intricate dynamics of microservice applications.

Control theory-based methods (Farokhi et al., 2016; Nouri et al.,
2019; Toosi et al., 2019) typically consist of two main phases (i.e., anal-
ysis and planning) coming from the Monitoring, Analysis, Planning
and Execution (MAPE) loop (Arcaini et al., 2020). These phases work
in tandem to understand system behavior and make informed adjust-
ments. The essence lies in modifying the system’s behavior to align
with specified output and reference values, aiming to bridge discrep-
ancies through responsive feedback mechanisms. In auto-scaling, the
desired SLA serves as the reference value, while performance metrics
such as CPU usage represent the output. Experiments show that these
approaches significantly reduce deployment costs by enhancing overall
memory utilization (Farokhi et al., 2016) and by mitigating SLA viola-
tions (Toosi et al., 2019). However, these techniques depend highly on
the controller design and the target application. Their main drawback
occurs when dealing with dynamic and unpredictable workloads. Exist-
ing works tackle this challenge by combining control-theory methods
with ML-based techniques or leverage time series analysis to predict
future demands within the controller and adapt resources accordingly.
The main advantage of these hybrid approaches is their potential to
significantly reduce execution time and enhance the overall efficiency
of the scaling process.

ML-based techniques (Rossi et al., 2019; Lee et al., 2020; Rzadca
et al, 2020; Santos et al., 2023b; Toka et al.,, 2021) are gaining
substantial traction in modern auto-scaling strategies. The primary ob-
jective of these techniques is to build a model for accurately estimating
resource needs under specific workloads. These approaches are robust
to dynamic demands since the algorithm adjusts the model parameters
if any notable event occurs (i.e., online learning). The model also can
be trained offline, but it would often require significant human inter-
vention, losing the main benefit of these algorithms. Google Autopilot,
introduced in Rzadca et al. (2020), automatically configures resources,
adjusting the number of concurrent tasks in a job (i.e., horizontal scal-
ing) and the CPU/RAM limits for individual tasks (i.e., vertical scaling).
Autopilot aims to reduce the difference between resource limits and
actual resource usage, thereby reducing the risk of OOM errors and
performance degradation due to CPU throttling. Autopilot applies ML
algorithms to analyze historical data and discern patterns from past task
executions. Results show that Autopilot significantly reduces resource
utilization and minimizes OOM errors. The main drawback of ML-based
approaches is the high execution time to converge to a stable model and
thus causes auto-scaling to perform suboptimally during the learning
phase. Recent efforts focus on optimizing the execution time while
ensuring the accuracy and stability of the resulting ML models. The
potential of ML-based auto-scaling strategies to revolutionize applica-
tion performance makes this active research field highly promising for
future cloud computing environments.

Table 1 compares all methods introduced in this section, classifying
them according to their main characteristics. However, quantitatively
evaluating these methods poses a challenge due to their tailored de-
sign for specific systems or virtualization technologies. To the best of
our knowledge, no standard testing framework for evaluating auto-
scaling features exists. In previous work, we have proposed scheduling
extensions for the K8s platform (Santos et al., 2019, 2023a) that
address complex microservice-based applications. This paper extends
those efforts by focusing on the other important aspect of the life cycle
management of containerized applications: auto-scaling. Moreover, this
work builds further upon our previous work (Santos et al., 2023b), in
which the gym-hpa framework has been presented. Gwydion extends
gym-hpa by integrating prediction algorithms and refining the RL-
based approach for horizontal scaling of microservices in K8s clusters

Journal of Network and Computer Applications 234 (2025) 104067

Admin
gEmsims cu ul
r == 0 Legend:
H 1
i
: 1
i
|| Controller Kube — Kubernetes
i Manager Scheduler Eted !
[i
i
i
i

:Pud Pod Pod |Pod |Pod |Pod |Pod | Pod

=
@
=
=2

!

:

' i
1

i Image Image Kubelet Docker !

3 1

i

1 i}

i |

L 1]

i
i
i
€
Kubelet Docker |
i
| " Registry
|
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [_
= 2
! Service Layer | i Service Layer]
| pemsmasaaasaaassamaaeasaasaaaTaaaasl | bsmesessessesescescsnesccceccccescocecdd !
i1 Physical Machine 7 | Physical Machine]
P & Private Cloud Public Cloud [1 1 Private Cloud Public Cloud |
| [J !
- Pk |
Master Node Worker Node
BE ECa
% L

Fig. 3. The Kubernetes architectural model (Santos et al., 2019).

based on lessons learned from previous experiments (Santos et al.,
2023b). The work differs from the current literature by addressing
microservice inter-dependencies and combining prediction capabilities
with RL algorithms for a more efficient auto-scaling solution. Gwydion
aims to serve as an open-source initiative towards a more comprehen-
sive understanding and effective utilization of auto-scaling mechanisms
in the K8s platform, aligned with the intricate dynamics of modern
microservice-based applications.

3. Application deployment and auto-scaling in the Kubernetes
(K8s) platform

The proliferation of microservice patterns and the widespread adop-
tion of containers have lead to numerous orchestration platforms,
both from the industry and the open-source community. Among these
platforms, K8s has emerged as the most prominent, offering a rich set
of software components to automate the life cycle management of con-
tainerized applications across distributed cluster nodes. K8s operates
on the well-established master-slave model, where at least one master
node oversees containers distributed across multiple worker nodes,
also known as slaves (Fig. 3). Master nodes typically possess higher
computational resources to host various critical software components
such as the Application Programming Interface (API) server, Kubelet, and
Controller Manager, responsible for orchestrating the complete life cycle
workflow of containerized applications. One of the main benefits of K8s
is that its API is standardized across vendors, with applications capable
of being deployed on private data center resources or managed public
vendor options such as Amazon EKS (Amazon, 2024b), and Google
Kubernetes Engine (GKE) (Google, 2024).

Microservices within K8s are often tightly coupled into a group
of containers known as a pod. A pod represents the smallest func-
tional unit in K8s and includes a collection of containers and volumes
(i.e., storage) executing within the same runtime environment (Burns
et al., 2019). K8s establishes connections between identical pods via a
Deployment (Kubernetes, 2022a) entity, but it does not natively support
the aggregation of distinct pods into a particular application. Thus,
developers need to configure individual KHPA components for each mi-
croservice (i.e., Deployment) of their application for proper horizontal
scaling across their entire application. This results in KHPA handling
horizontal scaling for each Deployment without any knowledge about its
microservice inter-dependencies. Current auto-scaling strategies in K8s
do not consider the holistic view of the application, which could lead

J. Santos et al.

Gwydion Framework
Legend:
Kes Cluster @) openl 6ym (@) [190 tributi
ur contripution

[0 Kubernetes (K8s)
[Gym environment
£ 0 'y
o Cluster Simulation
= @ 9\ mode mode
- Prometheus
o e
]
Z£0 o
—= \\ Workload
Cluster Pods K8s api Deployment Predictor
Nodes

Fig. 4. Illustration of the Gwydion framework.

to suboptimal scaling decisions. The following section describes the
Gwydion framework, a novel auto-scaling approach that acknowledges
microservice dependencies by aggregating multiple K8s deployments
into an application entity. Therefore, Gwydion aims to study the com-
plex relationships and interactions between microservices within a
microservice-based application, offering comprehensive insights to the
research community.

4. The Gwydion framework

4.1. System overview

Fig. 4 provides an overview of the Gwydion framework, illustrating
its key software components and their interconnections. The foundation
of this framework lies in the OpenAlI Gym module (D), a vital building
block that offers a wide range of gym environments for enabling
RL training. Gwydion supports two evaluation modes during startup:
cluster @and simulation 3.

The cluster mode involves RL training within an actual K8s cluster
environment, enabled by the deployment component (@). This compo-
nent interacts with a K8s cluster ®through the K8s API to retrieve
essential information about the target application. Moreover, it also
leverages the Prometheus API (Turnbull, 2018), a widely-recognized
monitoring platform typically integrated natively within K8s, to gather
real-time usage metrics of the application by collecting samples for all
its microservices. On the other hand, the simulation mode represents a
near-real discrete-event experiment aimed at replicating the behavior
of multiple service requests for a specific application deployed on the
K8s platform. This mode accelerates the learning process by training
RL agents based on data collected during the cluster mode execution.
Therefore, the simulation mode can be executed without a K8s cluster,
making the RL training significantly faster.

During the simulation mode, the application’s resource usage met-
rics, such as CPU and memory usage, and the number of deployed
pods are dynamically updated based on scaling actions and the current
service demand. Section 4.3 provides further insights into how datasets
have been created based on microservice-based applications to support
the simulation mode and ensure the simulation closely emulates real-
world experiments. Another vital component is the Workload Predictor
(®, which deploys the Gwydion-estimator pod for each microservice.
This estimator utilizes Deep Learning (DL) algorithms to forecast CPU
and memory usage, effectively labeling each microservice with the
expected resource usage. Further explanations are given below on how
the Deployment component interacts with K8s, detailing the underlying
mechanisms that enable Gwydion to effectively harness and integrate
real-world application data for robust RL training.

Journal of Network and Computer Applications 234 (2025) 104067

Table 2
Deployment status in the gym-hpa framework.

Symbol Description

A The application a. Each application consists of a set of different
deployments d ¢ D,.

D, The set of deployments belonging to the application a.

C, The set of container names c € C for deployment d.

P, The set of all pods belonging to the deployment d e D.

@Y ax The maximum replication allowed for deployment d.

@y min The minimum replication allowed for deployment d.

YaA The request vector of deployment d. r denotes resources as CPU (in
m) and memory (in Mi). m stands for millicore and Mi stands for
mebibyte.

Tyn The limit vector of deployment d. r denotes resources as CPU (in
m) and memory (in Mi).

Pain The total usage vector of deployment d. r denotes resources as CPU
(in m) and memory (in Mi).

R, The current number of deployed pods for deployment d.

T The threshold for resource usage. Default: 0.75.

Q, The CPU weight for replica calculation. Default: 0.7.

2, The memory weight for replica calculation. Default: 0.3.

An The target resource usage vector. r denotes resources as CPU (in m)
and memory (in Mi).

Wy The desired number of replicas for deployment d.

7, The latency threshold for application a (in ms).

¥, The current application latency (in ms).

4.2. Integrating Gwydion with Kubernetes (K8s)

Table 2 presents a comprehensive overview of the information
available within the Deployment component, derived from a K8s de-
ployment. Gwydion allows developers to specify the microservices (D,)
that constitute an application (a). Input information (e.g., C;, P,;)
is retrieved from the K8s API, while its real-time status (e.g., Ry,
Payr) is retrieved from the Prometheus API. Moreover, resource re-
quests (7,,7) denote the minimum amount of resources (e.g., CPU,
memory) required by all containers within a pod, while limitations
(I 1)) Tepresent the maximum allocation of resources for these contain-
ers (Kubernetes, 2022b). Developers are encouraged to specify these
resource requests and limits (R/L) in their deployments, enabling K8s
to optimize scheduling and auto-scaling for the respective pods. It
is noteworthy that container abstraction provides less isolation than
Virtual Machines (VMs), and when multiple containers run on the
same cluster node, the sharing of physical resources might result in
performance degradation known as resource contention (Medel et al.,
2018). Within the Deployment component, the desired number of
replicas (R,) is calculated based on the specified resource requests.
The existing KHPA scales the number of pods in a deployment based
on the resource usage of a particular metric, within the specified
minimum and maximum replication thresholds (a,,,, and a,,,). By
default, KHPA focuses on CPU usage and determines the desired replica
count according to (1). We argue that this formula must be adapted to
consider several resource types. In the Gwydion framework, the number
of desired replicas is calculated as in (4), integrating target usages for
each resource (2) and their respective influence on the precise replica
count (3). Typically, a target resource usage of 75% is set as the default,
as aiming for optimal usage (i.e., 100% resource utilization) might lead
to performance degradation in the event of sudden demand spikes or
if containers request additional computing resources. Regarding the
application’s latency (¥,), researchers have the flexibility to specify the
particular measurement or metric to consider. Section 7.1 describes the
two evaluated applications, alongside the corresponding measurements
adopted to represent the application’s latency.

0, = [R, * <pj”’“>1)

cpu

desired replicas for default KHPA

Ay = Ry X (T X v459) &)

The target number for resource r

J. Santos et al.

Journal of Network and Computer Applications 234 (2025) 104067

60000

50000

40000

30000

Number of occurrences.

20000

Cumulative Distribution Function (CDF)

10000

o

8

°

6

°
=

o

Cumulative Distribution Function (CDF)

3 4 . 6 o 200 400
Number of deployed Pods

(a) Number of Deployed pods.

600
CPU usage (in m)

(b) CDF (CPU Usage).

800 1000 1200 0 20 40 60 80 100 120

Memory usage (in Mi)

(c) CDF (Memory Usage).

Fig. 5. Analysis of the leader microservice of the Redis Cluster (RC) application (Santos et al., 2023b).

Correlation Matrix

redis-leader_cpu_usage 0.1
redis-leader_mem_usage 0.0
redis-follower_num_pods 0.3 0.4
redis-follower_cpu_usage 0.0 0.2 0.0 0.7 10 0.4

redis-follower_mem_usage 0.0 0.2 0.0 03

_pods
_usage

_pods
_usage

redis-leader_num
redis-leader_cpu_usage
redis-leader_mem_usa
redis-follower_num
redis-follower_cpu_usage
redis-follower_mem_usa

(a) Redis Cluster (RC) application.

Correlation Matrix

recommendationservice_num_pods mm
recommendationservice_mem_usage "
productcatalogservice_cpu_usage
cartservice_num_pods
cartservice_mem_usage
adservice_cpu_usage
paymentservice_num_pods
paymentservice_mem_usage
shippingservice_cpu_usage
currencyservice_num_pods
currencyservice_mem_usage
redis-cart_cpu_usage
checkoutservice_num_pods
checkoutservice_mem_usage
frontend_cpu_usage
emailservice_num_pods
emailservice_mem_usage

(b) Online Boutique (OB) application.

Fig. 6. The correlation matrix for both evaluated applications. A strong correlation typically exists between the CPU usage of the microservice and the corresponding number of

pods deployed in the cluster.

Pd,lr)
o = [Ry X

1 3
Il

The desired number of replicas based on resource r
;=] R, X o, + Q, X @, |
———

desired Mem.

4

CPU weight desired CPU Mem. weight

desired replicas for Gwydion

4.3. Dataset creation for the simulation mode

Datasets can be collected for applications from real K8s deployments
by generating different requests to trigger several scaling actions. These
datasets are saved in Comma Separated Value (CSV) files to help build
a tailored simulation where each observation corresponds to the actual
resource usage of these applications in a K8s cluster. Consequently,
when an RL agent selects a particular action, an appropriate obser-
vation is retrieved from the dataset. This approach transforms the
simulation mode into a near-real experiment, closely mirroring the
behavior and dynamics of the actual applications running in K8s clus-
ters. As an illustrative example, Fig. 5 shows the number of deployed
pods and the corresponding Cumulative Distribution Functions (CDFs)
regarding CPU and Memory usage based on the master deployment
of the RC application. Fig. 6 illustrates the correlation matrix of both
evaluated applications (further details are given in Section 7). It rep-
resents the relationship between different variables in a dataset with a
correlation coefficient, in which 1.0 is considered a strong relationship,
and —1.0 a poor relationship (i.e., negatively correlated). As shown,
the CPU usage of the microservice is typically strongly related to the
number of pods deployed in the cluster. Also, it should be noted that
the number of pods in the follower is strongly related to the CPU usage
of the leader. A few microservices strongly impact the performance of
dependent microservices, as shown by the strong correlation between
the frontend CPU usage and the product-catalog CPU usage.

5. Towards efficient auto-scaling in Kubernetes (K8s)
5.1. Reinforcement Learning (RL)-based auto-scaling

RL has recently become an important research field (Hessel et al.,
2018), often applied to solve sequential decision-making problems. In
RL, agents learn to select actions directly from experience by interacting
with an environment. At first, the agent knows nothing about the task
and learns by receiving a reward for each action. The reward is related
to the new observation, which describes the environment state after
applying the action selected by the agent. For example, in auto-scaling,
the reward is positive if the agent’s action increases application perfor-
mance (e.g., efficient resource usage, low response time). In contrast,
the agent receives a negative reward if the performance degrades. The
agent learns to perform the task by repeated interactions with the
environment and determining the inherent synergies between states,
actions, and subsequent rewards. The goal of RL is to teach an agent
to select actions that maximize application performance and minimize
deployment costs. RL is well-suited for auto-scaling problems because
agents can continuously receive feedback from the environment and
adjust their action selection to achieve long-term objectives in complex
situations, such as microservice auto-scaling. The following subsections
describe the RL approach applied in Gwydion for solving horizontal
auto-scaling of complex microservice applications in K8s.

5.2. Action space

The action space corresponds to all actions that the agent can
perform in the environment. Table 3 shows the action space structure of
the Gwydion framework based on an application with two microservices
(D1 and D2). The action space is MultiDiscrete (openAlGym, 2024),
where a list of possible actions per discrete set exists. However, the
agent can only select one action per each discrete set per step. The
first discrete set corresponds to microservice selection, and the second

J. Santos et al.

Table 3
The action space structure applied in Gwydion.

Discrete set Action Description
Microservice D1 Action triggered on
Deployment 1.
D2 Action triggered on
Deployment 2.
DoNothing The agent does nothing.
Start-1 Deploy one replica.
Start-2 Deploy two replicas.
Scaling Start-3 Deploy three replicas.
Stop-1 Stop one instance.
Stop-2 Stop two instances.
Stop-3 Stop three instances.
Table 4
The Gwydion’s Observation Space Structure.
Metric Description
pods The number of deployed pods.
cpu The total aggregated CPU (in m) of the pods.
mem The total aggregated memory (in Mi) of the pods.

counter The number of DoNothing actions selected sequentially.

one to scaling actions. The size of the action space depends on the
total number of microservices in the application and the correspondent
maximum and minimum replication factor (a,,,, and @, ,;,). For
example, if a .., = 4 and @ ,,;, = 1, the maximum number of additions
or terminations that the agent can select for each microservice is three
(i.e., second discrete set). Thus, agents can decide to:

+ Keep the deployment running as is (DoNothing)
+ Deploying additional pods (Start)
 Terminate a certain number of pods (Stop)

For instance, the agent can choose the following action
[Microservice : D1;Scaling : DoNothing], meaning that the number of
pods for microservice DI will remain unchanged for that given step.

5.3. Observation space

Table 4 shows an example of the observation space for the auto-
scaling problem in the Gwydion framework, describing the environment
at a given step. The updated version of the observation space in
Gwydion consists of three metrics per microservice deployment, namely
the current number of deployed pods (pods), and the current resource
utilization (cpu and mem). This information is retrieved from the De-
ployment component in case the cluster mode is enabled or from the
simulation. The last considered metric is a none counter (counter) that
represents the number of consecutive DoNothing actions selected by the
agent. In previous experiments with gym-hpa (Santos et al., 2023b),
we observed that the agents occasionally converged to suboptimal
states, preferring to choose the DoNothing action instead of trying to
find the optimal deployment scheme for each microservice, leading to
suboptimal performance. As a resolution, the none counter metric is
added to the observation space to encourage the agent not to overselect
DoNothing actions, especially if the current deployment scheme is not
optimal based on the current demand. All these metrics help the agent
select an adequate action at a given moment from the action space.

Another improvement in Gwydion is the normalization of the obser-
vation space (min-max scaling is applied), a common practice in RL.
Normalizing the observation space can help the RL agents to converge
faster and more reliably. When observations have a consistent scale,
it can be easier for neural networks to learn optimal policies. Also, it
stabilizes the training for large input values, preventing the explosion
of gradients. It should be noteworthy that the application latency is
not included in the observation space. The aim is that the agent learns
that the current distribution of microservices can yield lower response
times, depending on the current resource usage of all microservices.

Journal of Network and Computer Applications 234 (2025) 104067
5.4. Reward function

The purpose of the reward function is to teach the agent to max-
imize its accumulated reward by selecting appropriate actions based
on the environment’s observation. Two reward functions have been de-
signed, each with a different objective: cost-aware and latency-aware.

Cost-aware reward (C) (Eq. (5)) The cost function aims to lead the
agent to allocate the correct number of replicas for each microservice
deployment, focused on reducing deployment costs by increasing re-
source usage. It rewards the agent with a positive reward of 1 when the
number of replicas deployed aligns with the desired configuration, as
indicated by Eq. (4). Otherwise, the agent receives no positive feedback
(i.e., reward of 0). In addition, if the agent attempts to deploy or
terminate pod instances that would violate the maximum or minimum
replication factor, it receives a penalty of —1. This penalty helps the
agent learn the valid range of actions for pod deployment. The values
of +1 and —1 have been empirically selected through trial-and-error.
During our experiments, this balance provided effective learning for
the agent. The symmetric nature of the rewards helped stabilize the
learning process without overly penalizing the agent for replication
factor violations.

1.0 if Ry =w,
C(d) = —counter if R; # w, A counter > 2 5)
0 Otherwise

Latency-aware reward (L) (Eq. (6)) The latency function guides the
agent to find suitable allocation schemes that reduce the overall ap-
plication latency (¥,). The agent receives a penalty based on latency,
with the goal of achieving the lowest possible reward (ideally zero) if
latency remains below a specified threshold (z,). If latency exceeds this
threshold, the agent is penalized more severely by receiving a negative
reward of —z,. Both reward functions follow a linear pattern since
these were found to be more effective than exponential functions in our
experiments, i.e. the agent learned to perform more adequate actions.

-, if?, <z,
L(a) = § —counter Xz, if ¥, > 7, A counter > 2 (6)
-, Otherwise

a

An additional penalty is introduced in Gwydion in comparison with
the previous gym-hpa, in which the agent is significantly penalized
if it prefers to keep the deployment scheme as is when the current
demand indicates at least one addition or termination of a microservice
instance. It occurs if the none counter is higher than two, leaving some
room for the agent to explore the action space.

Cloud administrators face the ongoing challenge of balancing re-
source efficiency while minimizing latency in their cloud infrastructure.
Their ultimate decisions are made based on user needs and organiza-
tional objectives. While prioritizing costs can help minimizing deploy-
ment expenses, particularly for budget-constrained companies, favoring
low latency is crucial for real-time applications where responsiveness
is key. This paper evaluates the trade-off of both strategies while
showcasing their benefits and disadvantages.

5.5. Agents

The agents have been implemented based on the stable baselines 3
library (Raffin et al., 2021), a set of reliable RL algorithm implementa-
tions written in Python. Three agents that support MultiDiscrete action
spaces have been evaluated in Gwydion:

» Advantage Actor Critic (A2C) (Mnih et al., 2016): A
synchronous, deterministic algorithm that combines policy and
value-based algorithms.

» Proximal Policy Optimization (PPO) (Engstrom et al., 2019):
a policy gradient method for RL vastly used today for different
scenarios (e.g., robot control and video games)

J. Santos et al.

» Recurrent Proximal Policy Optimization (RPPO) (Ratcliffe
et al.,, 2019): A variant of PPO that adds support for recurrent
policies, such as Long Short-Term Memory (LSTM).

Policy-based agents directly learn a policy mapping input states to
output actions, meaning agents choose the action in a given state based
on its previous experience (i.e., actors). Value-based algorithms learn
to select actions based on the predicted value of the input state or
action (i.e., critic), meaning agents choose actions that lead to states
with higher expected rewards. Also, recurrent policies can be beneficial
for tasks where the agent’s actions depend on its past observations.
For example, in the microservice auto-scaling problem, the agent’s
next action may depend on the current and previous states of the
microservices. Recurrent policies can learn these dependencies and
make better decisions as a result.

6. Towards resource usage prediction

This section presents the inclusion of algorithms for future re-
source usage prediction added to the Gwydion framework. Section 6.1
details the prediction algorithms applied in the Gwydion framework,
and Section 6.2 presents the deployment-estimator developed for K8s
deployments.

6.1. Gwydion’s prediction algorithms

To achieve a more efficient resource usage and proactive strategy in
Gwydion, statistical and ML-based algorithms have been used to fore-
cast future resource consumption of microservice applications. Recent
works have shown the potential of several algorithms in estimating
future resource consumption (Janardhanan and Barrett, 2017; Rao
et al., 2019). Gwydion supports the following algorithms:

» Naive serves as a benchmark in Gwydion forecasting. This method
involves predicting future values equal to the most recent ob-
servation. Despite its simplicity, it often proves surprisingly ef-
fective, especially in environments characterized by consider-
able randomness, frequently outperforming more complex and
sophisticated forecasting methods.

Simple Exponential Smoothening (SES) (Ostertagova and Os-
tertag, 2012) is a widely used time series forecasting method that
provides an efficient way to make short-term predictions based on
historical data. This method focuses on capturing the underlying
trend and seasonality in time series data by assigning exponen-
tially decreasing weights to past observations. It essentially gives
more weight to recent data points while progressively reducing
the influence of older data samples. SES is mainly applied for data
with no significant trends or seasonality.

LSTM (Yu et al., 2019) is a type of neural network designed for
forecasting data sequences. Their main advantage is the ability to
capture long-range dependencies and handle vanishing gradient
problems that traditional neural networks struggle with. LSTM
maintains a memory cell that can store and retrieve informa-
tion over extended sequences, making them well-suited for tasks
such as time series prediction, speech recognition, and language
modeling.

Auto-Regressive Integrated Moving Average (ARIMA)
(Shumway et al., 2017) models are a widely popular time series
forecasting method that captures temporal patterns and trends
in data. These models predict based on stationary timeseries
using weights on previous values. The Auto-Regressive component
models the relationship between the current value, and previous
values in the time series. The Integrated part represents differ-
encing to stabilize and make the time series stationary, while
the Moving Average component models the dependency on past
forecast errors. ARIMA models are versatile and can handle both
short-term and long-term time series forecasting by adjusting the
order of these components.

Journal of Network and Computer Applications 234 (2025) 104067

Gwydion Prediction

% o Deploy pods for resource estimation
% @ Gwydion-estimator pod (leader)
R
Gwydion-estimator pod (follower)

redis-leader deployment
redis-follower deployment

© et cpuand
memory metrics
from specific
microservice

Kubernetes (K8s) Cluster

O cotect

metrics from
the cluster

Prometheus

Fig. 7. Illustration of the Gwydion prediction capabilities.

Fig. 8. Illustration of the annotations performed by the Gwydion-estimator pod for the
leader deployment.

6.2. Resource estimation in Kubernetes (K8s)

To create a reliable and scalable manner of forecasting future re-
source consumption, a container named Gwydion-estimator has been de-
veloped to enrich K8s deployments with annotations that offer insights
into their expected resource utilization. Fig. 7 provides an overview of
the Gwydion-estimator developed for the Gwydion framework, illustrat-
ing its primary operations and its interactions with typical K8s com-
ponents. After deploying the microservice-based application to which
Gwydion will perform auto-scaling, several monitoring pods are strate-
gically deployed in the cluster to monitor all microservices (. Each
Gwydion-estimator pod is responsible for monitoring a specific mi-
croservice. These Gwydion-estimator pods retrieve current CPU and
memory utilization of the given microservice instances by relying on
Prometheus (Turnbull, 2018) deployed in the K8s cluster (2). The
goal is to collect multiple CPU and memory samples based at regular
intervals (e.g., every 15 s) and store them in dedicated CSV files. This
data samples serve as the basis for subsequent predictions based on
a particular algorithm such as ARIMA (3). Once these predictions are
computed in the Gwydion-estimator, the K8s deployments are enriched
with appropriate annotations, as shown in Fig. 8. These metrics can
be included in the observation space of Gwydion as a potential indi-
cation of the resource consumption of these microservices in the next
time step. These annotations provide valuable estimations that can
be integrated into the observation space of the Gwydion framework.
This integration allows Gwydion to consider these metrics as potential
indicators of the resource consumption of these microservices in the
subsequent time steps. This enhanced understanding of resource usage
helps Gwydion in auto-scaling decisions, ultimately leading to more
efficient resource allocation and management.

J. Santos et al.

Table 5
Deployment properties of the evaluated microservice applications.

Journal of Network and Computer Applications 234 (2025) 104067

Application Deployment CPU R/L (in m) RAM R/L (in Mi) Min/Max Rep. («,)
Redis Leader
Cluster (a,) Follower 2507500 2507500 1/8
Frontend 100/200 64/128
Cart 200/300 180/300
Product 100/200 64/128
Currency 100/200 64/128
Online Payment 100/200 64/128
Boutique Shipping 100/200 64/128 1/8
(ay) Email 100/200 64/128
Checkout 100/200 64/128
Recommend. 100/200 64/128
Ad 200/300 180/300
Redis-cart 70/125 200/256

8

Total number of Emulated Users (in K)

(a) Redis Cluster (RC) application.

Total number of Locust Users

5

i

(b) Online Boutique (OB) application.

Fig. 9. Illustration of the specific workload pattern applied during testing for both applications. A 15-min pattern has been applied for RC, and a 1-hour pattern for OB. If the
testing of the algorithm is not completed within the designated time frame, the pattern repeats consecutively until completion.

7. Evaluation setup

This section presents the applications used in the evaluation, fol-
lowed by the experimental setup.

7.1. Applications

Table 5 shows the deployment properties for the evaluated appli-
cations. Different resource requests and limits (i.e., CPU and memory)
have been specified for each microservice. The minimum and maximum
replication factors are set to 1 and 8, respectively.

Redis Cluster (RC) The first scenario (Fig. 2(a)) relates to the
deployment of the RC application (Redis, 2024) consisting of two K8s
deployments: leader and follower. The Redis-benchmark utility (Redis,
2022) is used to generate database queries from emulated clients during
the training and testing of the RL agents. The number of emulated
clients (i.e., from 0 to 50K users) and the types of queries executed
varies dynamically during training, generating different load patterns
on the RC application. The goal is that RL agents learn to adapt the
allocation scheme according to the current demand. RC is a highly-
available application, so auto-scaling mechanisms should ensure no
downtime during scaling operations. During testing, a specific workload
pattern has been applied to compare the different reward strategies
after training as shown in Fig. 9(a). The Redis Exporter (Exporter, 2022)
developed for Prometheus is deployed in the K8s cluster to extract
metrics regarding the performance of the RC application. The latency
for RC (¥,,) corresponds to the calculation of the average response time
of the Redis server by collecting the total query duration and the total
query response time during the last five minutes as shown in (7). The
latency threshold () is set to 250 ms.

redis_command s_duration_seconds_total[5 m]

¥y = 7
a redis_commands_processed_total[5 m] @

Online Boutique (OB) The second scenario (Fig. 2(b)) relates to the
OB application (Boutique, 2024) consisting of 11 K8s deployments. It is
a web-based e-commerce application where users can browse items and
add them to their cart to purchase them. OB represents a microservice
application with numerous dependencies between its microservices.

Table 6

The Hardware Configuration of theK8s cluster.
Node CPU Memory
Master

Intel(R) Xeon(R) CPU
Worker 1 E5-2650 v2 @ 2.60GHz 48 GB
Worker 2

The frontend service receives HTTP requests and forwards them to
several services, including currency and product-catalog. In the evalu-
ation, a load generator based on the locust load tool (Locust, 2021)
sends several GET and POST requests from emulated users (i.e., from
0 to 100 users). During training, the load on the OB application varies
dynamically depending on the number of emulated users and the
types of requests executed. During testing, a specific pattern has been
applied to compare the different reward strategies after training as
shown in Fig. 9(b). The Locust Exporter (Solutions, 2022) developed for
Prometheus has been deployed in the K8s cluster to collect the average
response time of several requests. The latency for OB (‘I’az) corresponds
to the average response time based on the GET /cart request as shown
in (8). This request represents a critical user interaction point within
the OB’s functionality. While also having explored the average response
time of various requests, our experiments revealed similar results.
Consequently, we have opted to consider only the response time of
the GET /cart request as it provides a comprehensive understanding
of the user experience, while minimizing the number of API calls to
Prometheus. The latency threshold (Tﬂz) is set to 3 s.

5”“2 = locust_avg_response_time_G ET _cart (8)

7.2. Testbed implementation

The Gwydion framework has been implemented in Python to ease
the interaction with both the OpenAI Gym and stable baselines 3
libraries. The K8s Python Client has been used to access a K8s cluster
and retrieve information from the given deployments. A K8s-based
infrastructure composed of a master node and two worker nodes has

J. Santos et al.

Journal of Network and Computer Applications 234 (2025) 104067

p ~1500 — A2c (Clusten)
PO (Cluster)

2000 - RPPO (Cluster)

2500

~3000

2000 000 6000 1000 2000 3000
Episode Episode

(a) Cost (Simulation). (b) Cost (Cluster).

2000 4000 000 000 10000 1000 2000 3000 4000
Episode. Episode

(c) Latency (Simulation). (d) Latency (Cluster).

Fig. 10. Accumulated rewards during training for the Redis Cluster (RC) application.

Table 7

Software Versions of the Testbed.
Software Version
Python &K8s Python Client 3.11 & 28.1.0
gym & stable baselines 3 0.26.2 & 2.1.0
Kubeadm & Kubectl v1.26.1

containerd://1.6.12
5.4.0-33-generic
Ubuntu 20.04.2 LTS

Container Runtime
Linux Kernel
Operating System

Table 8

The Gwydion environment configuration.
Application Action Space Obs. Space
RC MultiDiscrete(2, 15) 7 states
OB MultiDiscrete(11, 15) 34 states

been applied in the evaluation to have reliable and highly available
computing resources. The K8s cluster has been set up in the imec
Virtual Wall (VWall) infrastructure (Wall, 2023) at IDLab, Belgium.
Table 6 details the hardware configurations of each cluster node, and
Table 7 lists the software versions applied. In addition, Table 8 shows
the environment configurations based on the evaluated applications.
In the evaluation, an episode consists of 25 steps where the agent
attempts to maximize the reward based on the current demand. For the
simulation, the agents have been executed on a 14-core Intel i7-12700H
CPU @ 4.7 GHz processor with 16 GB of memory. The performance of
the agents has been evaluated based on the following metrics:

Execution Time of each agent per episode.

Accumulated reward during each episode. It refers to the total
sum of rewards obtained by an agent over time as it interacts with
the environment.

Deployment costs based on the average number of deployed
pods during each episode.

Expected latency based on the average application response time
during each episode.

8. Results

This section presents the results obtained for both applications in
the evaluation. Section 8.1 accesses the performance of the RL algo-
rithms integrated in Gwydion and Section 8.2 quantifies the prediction
algorithms supported by Gwydion based on different metrics. Moreover,
Section 8.3 showcases the last step in our evaluation which relates to
the integration of the Gwydion-estimator into the RL observation space.
Lastly, Section 8.4 summarizes this section by highlighting the insights
obtained in this study.

8.1. Reinforcement learning (RL) assessment
Execution Time Table 9 shows the execution time per episode

(i.e., 25 steps) during training for all RL algorithms based on the sim-
ulation and cluster modes. The simulation mode is significantly faster

since the observations come from CSV files rather than retrieved from
the K8s API and Prometheus API in the cluster mode. The RL agents
have been trained for 250K steps (i.e., 10000 episodes) and 65K/125K
steps (i.e., 2500/5000 episodes) for the simulation and cluster mode,
respectively. The results show that training RL agents in a real cluster
is significantly costly. For the RC application, each episode lasts 70 to
90 s on average in the cluster mode and takes only 0.4 to 3.6 s in
the simulation mode, with RPPO being slower than A2C and PPO. All
algorithms run even slower for the OB application since it consists of
eleven microservices, which makes the observation space significantly
larger. In addition, the required execution time for 2500 episodes is
shown, highlighting that the simulation needs a few minutes while the
cluster more requires a few days to run the exact number of episodes.

Training Fig. 10 illustrates the accumulated reward for both reward
functions during training for the RC application in the simulation and
cluster modes. The RL algorithms for the cost function in the cluster
mode achieve slightly higher rewards than the trained agents in the
simulation mode. However, the training in the cluster mode is more
unstable since spikes are obtained for most algorithms. These spikes
can be related to unstable API calls or incorrect metrics retrieved from
Prometheus. Though Gwydion supports API retries to mitigate the impact
of these erroneous calls on the RL performance. Regarding the latency-
aware function, the algorithms explore the action space to find actions
that lead to null rewards since it means that the latency is close to zero.
Fig. 11 illustrates the accumulated reward for both reward functions
during training for the OB application in the simulation and cluster
modes. A similar pattern occurs compared to the RC application, where
the cluster mode achieves slightly higher accumulated rewards than the
simulation mode.

Testing After training the RL algorithms, the saved model con-
figurations (i.e., after 5K or 10K steps) have been executed for 100
episodes to assess the performance of the RL agents with a different
demand pattern. KHPA has also been evaluated by enabling it for
each deployment in the considered applications. KHPA stands as the
most widely adopted baseline for container auto-scaling. Each episode
for KHPA consists of the average execution time for each application
previously shown in Table 9, where the number of deployed pods and
the application’s latency are retrieved from Prometheus. Figs. 12 and
13 show the results acquired during the testing phase for the KHPA
and the various RL algorithms, demonstrating the average number of
deployed pods and the average application latency. Most cost-aware
algorithms can reduce the number of pods deployed for the RC ap-
plication compared to KHPA, leading to a slightly higher latency but
decreased resource consumption (i.e., CPU and memory usage). A2C
(Cluster) deploys an average of 2.0 pods, and PPO (Cluster) deploys
2.19 pods, while KHPA deploys an average of 8.81 pods. In contrast,
RPPO (Cluster) deploys significantly more pods than KHPA (10.14
pods). While KHPA achieves an average response time of 50 ps, most
RL algorithms achieve an average response time ranging from 300 ps to
6 ms. For the cost-aware strategy (Fig. 12(c)), A2C (Cluster) achieves
one of the lowest response times, 0.12 ms on average, with PPO
(Cluster) slightly higher at 0.55 ms, and RPPO (Cluster) at 0.08 ms.
In the simulation mode, A2C (Simulation) achieves a response time
of 2.26 ms, PPO (Simulation) at 2.55 ms, and RPPO (Simulation) at
1.43 ms. For the latency-aware strategy (Fig. 12(d)), PPO (Cluster)

10

J. Santos et al.

Table 9

Journal of Network and Computer Applications 234 (2025) 104067

The execution time during training for both applications. The cluster mode is significantly more expensive than simulations.

Algorithm Application Mode Execution Time per Execution Time for
episode (in s) 2500 episodes

A2C 0.41 + 0.16 17.08 min

PPO RC S 0.35 + 0.10 14.58 min

RPPO 3.63 + 7.28 151.25 min

A2C 71.11 + 48.16 2.06 days (49.38 h)

PPO RC C 73.67 + 33.78 2.13 days (51.16 h)

RPPO 112.73 + 19.30 3.26 days (78.28 h)

A2C 1.08 + 0.42 45.0 min

PPO OB S 1.11 + 0.36 46.25 min

RPPO 4.55 + 7.20 189.58 min

A2C 116.88 + 17.67 3.38 days (81.17 h)

PPO OB C 117.29 + 18.74 3.39 days (81.45 h)

RPPO 127.36 + 27.84

3.68 days (88.44 h)

Mode: S = Simulation, C = Cluster.
Application: RC = Redis Cluster, OB

Online Boutique.

— AC (Cluster)
PPO (Cluster)
-~ RPPO (Cluster)

10000 10000

A ~20000 20000
™ - — — -
o™ B 30000 30000
X gl i, i H
£ _ao000 / = -40000
~5000p T 50000
2
oo sooon] — A2C (e
70 (custer)
7920 Clusten
o | ~70000
200 2000 000 a0 10000 560 1000 1500 2000 2500 o0 om0 oo wko oo ED 100 1500 000 2500
episoce episoce coisode episode

(a) Cost (Simulation). (b) Cost (Cluster).

Fig. 11.

(c) Latency (Simulation). (d) Latency (Cluster).

Accumulated rewards during training for the Online Boutique (OB) application.

A2C (Simulation) - 6.99 + 0.006
fon) - 3.13 = 0,032

A2C (Simulation) - 7.44 = 0.02
PPO (Simulation) - 9.86 + 0.47

A2C (Clusten) -2
PPO (Cluster) - 2.19 + 0,009
RPPO (Cluster) - 10.1¢ £ 0.41
KHPA-8.81 £ 021

RPPO (Cluster) - 8.69 + 0.32

Avg. Number of deployed pods
Avg. Number of deployed pods

Avg. Respanse Time (in ms)

A2C (simulation) - 226 + 0.53
PPO (Simulation) - 2.5 = 0.5

A2C (simulation) -3.01 = 0.59
PPO (Simulation) - 0.08 = 0.11

v, Response Time (in ms)

60
Episode

(a) Cost-aware - Pods. (b) Latency-aware - Pods.

Fig. 12. The testing results for the

100

A2C (simulation) - 13.98 + 0.09
PPO (Simulation) - 35.94 = 0.83

- RPPO (Simulation) - 25.68 + 0.71
A2C (Cluster) - 14.16 2 0.17
PPO (Cluster) - 35.04 = 114
RPPO (Cluster) - 37.02 = 1.49

- KHPA-18.51 2 0.65

A2C (simulation) - 14.02 = 0.42
PPO (Simulation) - 4874 = 128

-~ RPPO (Simulation) - 50.13 = 1.2
A2C (Cluster) - 23.64 = 085
PPO (Cluster) - 50,66 + 1.42
RPPO (Cluster) - 49.49 = 1.36

- KHPA-18.51 % 0.65

v, Number of deployed pods

7

Avg. Respanse Time (in ms)

)

50 50
Episode Episode

(c) Cost-aware - Latency. (d) Latency-aware - Latency.

Redis Cluster (RC) application.

—— A2C (Simulation) - 740.43 = 8.95
PPO (Simulation) - 468.33 + 424
- RPPO (Simulation) - 536.28 = 12.20
A2C (Cluster) - 51322 + 12.27
PPO (Cluster) - 629.21 = 14.94
RPPO (Cluster) - 487.86 + 1198
- KHPA-642.43 2 34.96

—— A2C (Simulation) - 665.30 = 10.24
PPO (Simulation) - 525.89 + 4.8¢
-~ RPPO (Simulation) - 520.02 = 8.62
A2C (Cluster) - 560.28 = 1650
PPO (Cluster) -535.06 = 5.96
RPPO (Cluster) - 652.76 + 6.77
KHPA- 642,43 = 34.95

1200

1000]

400

200

60 0
Episode Episode

(a) Cost-aware - Pods. (b) Latency-aware - Pods.

60
Episode

(c) Cost-aware - Latency. (d) Latency-aware - Latency.

Fig. 13. The testing results for the Online Boutique (OB) application.

achieves the lowest latency at 0.03 ms, followed by A2C (Cluster) at
0.04 ms. RPPO (Cluster), however, performs worse with an average la-
tency of 2.21 ms, while KHPA maintains a consistent 0.05 ms response
time. Also, most latency-aware algorithms often deploy additional pods
in the cluster to further reduce the expected latency, achieving similar
results to KHPA.

KHPA cannot find appropriate scaling actions since it does not
consider microservice inter-dependencies, and its stabilization window
does not allow fast reactions to sudden demands. The deployment
or termination of pod instances by KHPA typically occurs a few sec-
onds after detecting fluctuations in demand. For the RC application,
adjustments are faster since only two KHPAs are deployed, whereas
for the OB application, around 20 episodes are necessary for KHPA

11

to significantly reduce the latency since OB requires eleven KHPAs
(Figs. 13(c) and 13(d)). KHPA obtains an average response time of
642.43 ms, and deploys an average of 18.51 pods, indicating a balanced
performance between response time and resource utilization. All RL
algorithms exhibit a notable reduction in response time for OB since
all microservices are considered in the observation space, enabling
the sequential triggering of actions across different deployments. In
addition, the proposed cost-aware function prioritizes CPU and memory
optimization, while KHPA focuses mainly on CPU usage to trigger
scaling actions. Thus, the trained algorithms typically do not scale up
microservices when the memory consumption is relatively low, even if
CPU is slightly higher. Actually, these extra scaling actions triggered
by KHPA have a relatively low benefit on application performance, as

J. Santos et al.

shown by our results. Thus, these extra scaling actions could have been
avoided to save computing resources at a slightly higher application
response time. In terms of deployment costs for the OB application, it
is noteworthy that only A2C outperformed KHPA, achieving a nearly
30% reduction in costs while maintaining consistently lower latency
throughout the experiment. For the cost-aware strategy, A2C (Cluster)
achieves an average response time of 513.22 ms while deploying an
average of 14.16 pods. In comparison, both PPO (Cluster) and RPPO
(Cluster) deploy a significantly higher number of pods (35 to 37),
resulting in low latency, ranging from 487 ms to 629 ms. While their
latency is competitive, the higher number of pods suggests a trade-off
between latency and resource efficiency. When it comes to latency-
aware functions for the OB application, most RL algorithms achieve
lower latency compared to KHPA by scaling up the number of pods,
typically ranging from 14 to 50 pods on average. However, A2C stands
out for obtaining a balanced trade-off, achieving low latency without
requiring an excessively high number of pods. A2C (Cluster) deploys
more pods (23.64) compared to A2C (Simulation) (14.02), leading
to reduced latency, with A2C achieving 560.28 ms in cluster mode
versus 665.30 ms in simulation. In contrast, PPO and RPPO maintain
consistent pod deployment numbers and latency between simulation
and cluster modes.

The performance fluctuations of the RL algorithms are influenced
by several factors inherent to the dynamic nature of microservice
environments and the learning process of each RL algorithm:

+ Exploration-Exploitation Trade-off: A2C, PPO, and RPPO con-
tinuously balance between exploring new scaling strategies and
exploiting known optimal actions. This balance can result in
periodic fluctuations as the algorithms experiment with different
actions to find the best scaling policy.

Learning Rate and Policy Updates: The frequency of policy
updates in RL algorithms can influence the stability of their
decisions. Larger or more frequent updates may lead to more
noticeable fluctuations in performance as the algorithms adjust
to new policies.

Workload Variability: The algorithms are exposed to varying
demand patterns depending on whether these are running in
simulation or cluster modes. These fluctuations in workload can
cause temporary increases in response time and resource usage as
the RL algorithms adapt to the changing environment.
Microservice Inter-dependencies: The interdependent nature of
microservices means that changes in one service can affect others.
As the RL algorithms learn to optimize the entire application,
adjustments in scaling for one microservice may temporarily
disrupt the performance of others, contributing to the observed
fluctuations.

In conclusion, the performance differences observed in this work
emphasize the intricate balance between latency reduction and re-
source efficiency in microservice environments. While all RL algorithms
show improvements over KHPA in various aspects, A2C demonstrates
the most balanced performance across both cost-aware and latency-
aware scenarios. PPO and RPPO, while achieving low latency, do so
at the expense of an increased number of pods, which may not be
suitable for every use case. In addition, the discrepancies between
simulation and cluster results highlight the importance of testing in
real environments to validate and refine the models developed in
simulations.

8.2. Gwydion’s prediction assessment
The performance of the statistical and ML-based algorithms has
been assessed based on the collected datasets.” for the simulation

mode of Gwydion These algorithms have been evaluated based on the
following metrics:

4 Example of collected datasets: https://zenodo.org/records/7944661.

12

Journal of Network and Computer Applications 234 (2025) 104067

* Root Mean Square Error (RMSE).
« Mean Absolute Error (MAE).
* Mean Absolute Percentage Deviation (MAPD).

RMSE, MAE, and MAPD are typical metrics used to evaluate the
performance of predictive models. RMSE measures the square root of
the average of the squared differences between predicted and actual
values, giving more importance to larger errors. MAE computes the
average of the absolute differences between predicted and actual val-
ues, treating all errors equally. MAPD calculates the average percentage
difference between predicted and actual values, providing insights into
the relative error. RMSE is typically sensitive to outliers, while MAE
is more robust, and MAPD provides error information as a percentage
of actual values, useful for comparing models across different datasets
or when the scale of the data varies. All metrics have been used
extensively to assess the accuracy of predictions.

Table 10 presents the achieved results for all deployments in the
evaluated applications. The Naive algorithm performed significantly
well since CPU usage values are typically collected every 1-3 s with
minimal variance between successive collected values. In these sce-
narios, Naive proves to be a robust estimator since small differences
exist between the current CPU usage and the subsequent sample.
However, its effectiveness decreases if the samples are aggregated or
acquired less frequently, such as every 15-30 s. In these cases, the
variability between consecutive values increases, leading to decreased
performance of the Naive algorithm. Also, ARIMA demonstrated com-
parable performance to Naive, consistently yielding lower RMSE values
across various microservices. SES often showed inferior performance
compared to Naive and ARIMA, particularly in scenarios where the
data has less clear patterns or trends. Despite its superior ability to
model complex patterns, LSTM comes with higher computational and
memory demands due to the need to train and maintain the neural
network. However, LSTM showed lower performance compared to sim-
pler models, though it can capture intricate usage patterns effectively.
For example, LSTM performed well for the Ad microservice in which
sudden changes occur in its CPU usage.

In summary, while Naive and ARIMA generally provided strong
results with lower complexity, LSTM was particularly effective for
handling sudden changes but at the cost of increased computational
resources. SES, while adding moderate complexity, often fell short
compared to Naive and ARIMA. The choice of the prediction algorithm
in Gwydion thus depends on the specific workload characteristics and
the trade-offs between accuracy and resource consumption.

8.3. Integration of Gwydion’s prediction into RL

As a final evaluation step, the Gwydion-estimator has been integrated
into the RL algorithms by incorporating CPU and memory forecast
predictions into the observation space. The purpose is to assess the
impact on the performance of Gwydion when agents are provided with
resource estimations. Fig. 14 shows the training results for the RC
application in the cluster mode for the A2C algorithm, which already
achieves notable performance even without resource estimations. The
inclusion of resource estimations enables the agent to achieve higher
rewards at a faster rate compared to training without them. The A2C
algorithm attains accumulated rewards exceeding 30 after just 800
episodes. This indicates a significant reduction in average response
time from 6 ms to 0.7 ms since the beginning of training, while main-
taining low deployment costs to meet current demand. These findings
demonstrate the potential of integrating prediction capabilities into the
RL observation space to advance efficient auto-scaling mechanisms in
future cloud environments.

https://zenodo.org/records/7944661

J. Santos et al.

Table 10

Performance comparison of different prediction algorithms for the CPU usage estimation.

Journal of Network and Computer Applications 234 (2025) 104067

Redis Cluster (RC) application

Dep. Naive SES LSTM ARIMA

R M P R M P R M P R M P
Leader 11.83 2.49 1.07 16.11 5.87 2.68 15.63 8.21 5.09 11.78 2.68 1.15
Follower 3.49 0.47 1.61 5.04 1.75 5.85 6.60 4.53 17.81 3.46 0.56 1.98
Online Boutique (OB) application

Naive SES LSTM ARIMA
Dep. R M P R M P R M P R M P
Frontend 9.98 1.64 0.48 12.10 3.56 1.05 18.53 7.91 2.35 9.43 2.25 0.67
Cart 25.90 10.12 5.69 34.01 18.19 11.24 27.16 16.43 10.2 25.72 10.76 6.28
Product 13.15 4.84 1.63 16.49 8.59 2.96 22.95 13.90 4.93 13.23 4.92 1.66
Currency 18.08 6.84 2.27 23.35 11.68 3.93 28.23 16.06 5.59 17.26 7.83 2.67
Payment 19.24 7.17 10.35 24.6 11.79 18.11 25.93 19.17 27.26 18.61 7.78 12.04
Shipping 853 3.58 3.90 10.96 6.15 6.99 14.58 9.87 12.46 8.50 3.73 4.14
Email 15.74 6.04 9.02 20.64 10.33 16.91 17.56 9.20 15.01 15.63 6.29 9.63
Checkout 12.54 5.86 4.07 15.23 10.24 7.24 19.38 14.63 10.76 12.57 5.87 4.07
Recomm. 21.97 7.63 2.83 27.25 13.45 5.15 26.84 15.52 5.95 22.03 7.83 2.93
Ad 137.74 30.15 6.98 210.58 66.26 16.44 125.54 136.86 136.27 131.93 33.66 8.67
Redis-cart 1.46 0.39 2.57 2.28 1.57 8.98 5.35 4.19 20.85 1.46 0.42 2.77

R = RMSE, M = MAE, P = MAPD.

—— A2C with Prediction (Cluster)
A2C without Prediction (Cluster)

8

Avg. Number of deployed pods

—— A2C with Prediction (Cluster)
A2C without Prediction (Cluster)

—— A2C with Prediction (Cluster)
A2C without Prediction (Cluster)

Avg. Response Time (in ms)

600
Episode

700 800 900 1000

(a) Accumulated Reward.

600
Episode

(b) Deployed Pods.

700 800 900 1000 600

Episode

700 800 900 1000

(c) Latency (in ms).

Fig. 14. The training results for the Redis Cluster application when prediction is integrated into the RL observation space.

8.4. Summary

Our results show that microservice inter-dependencies play a pivotal
role in the efficient auto-scaling of microservice applications. Two op-
posing scaling strategies have demonstrated that RL algorithms can find
appropriate actions by considering microservice inter-dependencies
when offered reliable information in their observation space. During
training, the cluster mode is a more reliable scenario for training
RL agents, but it is a very costly operation. The cluster mode is on
average 100 times more expensive than the simulation mode. In fact,
during the testing phase, the simulation mode performed similarly to
the cluster mode, demonstrating RL agents can be trained offline with
simulation-based environments and then validated in real operational
infrastructures. A2C seems more suitable for generalization since it
achieved higher rewards than both PPO and RPPO during different
demand patterns.

The prediction algorithms integrated in Gwydion are designed to
assist RL agents in estimating future resource consumption, thereby
triggering proactive actions. By integrating predictions into the RL
observation space, the RL learning process is faster, and the achieved
performance is higher by leveraging on resource forecasts. ARIMA has
emerged as a viable option for estimating resource usage within K8s
environments, and Naive as a reliable benchmark for prediction meth-
ods, particularly effective when minimal variance is present between
sequentially collected values.

In conclusion, the main contribution of this paper is the design
and implementation of generic interfaces between OpenAl Gym and
K8s clusters, allowing a seamless experiment for RL training on real
cloud environments. This work provides a benchmark framework for
RL-based auto-scaling research in K8s of interest for both the cloud and
network management communities.

13

9. Open challenges & future directions

This section discusses remaining hurdles on auto-scaling in modern
cloud platforms not yet fully addressed by literature and highlights
future directions. Containers have revolutionized application deploy-
ment, offering high flexibility and enhancements in scheduling and
scaling features. However, this transition is accompanied by multiple
challenges related to efficient allocation and scaling, making it essential
to address them to ensure the sustainability and cost-effectiveness of
container-based cloud infrastructures.

Composite Metrics for Auto-scaling will help to create unified
models that consider various metrics simultaneously, such as comput-
ing resources, latency, and error rates. This multidimensional evalua-
tion provides a more comprehensive view of the performance of the
application. An organization might prefer to optimize processing times
and cost reduction, while other prefers to provide fast responses to
their users. This work assessed two opposing scaling strategies: cost-
aware and latency-aware. As future work, advanced ML models can be
used to learn how to generate an optimal composite score. Composite
metrics for scaling decisions will represent a more holistic approach
to auto-scaling, considering the multifaceted nature of microservice
performance.

Cold Start Reduction is still a major challenge today in modern
cloud environments. A potential research direction is to explore pre-
dictive models that anticipate when cold starts are likely to occur.
By analyzing historical patterns and expected traffic demands, auto-
scaling mechanisms can proactively warm up microservice instances
before they are actually needed. It will minimize the impact of cold
starts on user experience. Moreover, in serverless computing (Li et al.,
2023), functions with similar resource requirements can be clustered

J. Santos et al.

together. When one function within a cluster is invoked, it warms
up the entire cluster. A potential research direction is to study how
to optimize the clustering of these functions to minimize cold starts
and resource wastage. Additionally, for complex microservice-based
applications, deploying and initializing certain microservice instances
in advance will be beneficial, allowing them to warm up gradually
before becoming fully operational. Reducing cold starts is crucial to
ensure that microservices can provide reliable and responsive services.
As microservice architectures evolve, reducing cold starts is essential to
maintain an enhanced user experience, especially in containerized and
serverless environments.

Sustainable Auto-scaling practices should be a major direction in
the next few years. Future research should investigate scaling policies
that consider the environmental impact, including scaling decisions
that align with renewable energy sources and data center energy ef-
ficiency. Auto-scaling strategies that optimize data transfers and mini-
mize network latency to conserve energy and reduce carbon emissions.
Also, the design and development of methodologies for tracking the
carbon footprint of auto-scaling decisions can enable organizations to
make more environmentally responsible choices. Moreover, exploring
the adoption of energy-efficient hardware in data centers, such as low-
power processors and other hardware components, could help consume
less power while maintaining high performance levels.

Multi-cloud deployments will be of paramount importance in the
next years. Future research should investigate mechanisms for auto-
scaling that abstract away cloud-specific details, enabling seamless
scaling across multiple cloud providers and on-premise environments.
It will enable applications to run on any cloud platform without signifi-
cant modifications, ensuring high portability and flexibility in adopting
cloud providers. Developing standards and best practices for interoper-
able auto-scaling solutions across distinct cloud providers can simplify
multi-cloud and hybrid deployments, facilitating workload distribu-
tion and data exchange. Multi-cloud deployments will offer numerous
benefits, but also introduce complexities that require careful planning
and management. Further research will help organizations harness
the advantages of multi-cloud and hybrid strategies while effectively
addressing open challenges and optimizing their cloud infrastructure.

10. Conclusions

This paper presents the Gwydion framework inspired by the OpenAl
Gym library and the widely adopted K8s platform, enabling the creation
of suitable RL environments for auto-scaling research. The framework
has been released in open-source, allowing researchers to evaluate their
auto-scaling techniques. This paper extensively studies microservice
inter-dependencies in auto-scaling since current applications represent
complex graphs of loosely-coupled microservices, making auto-scaling
a significantly challenging assignment. Gwydion builds further on our
previous gym-hpa framework by refining the RL design and integrat-
ing prediction algorithms to estimate the resource consumption of
microservices. The goal is to improve resource usage and reduce the
application’s response time in future clouds by applying RL for proper
horizontal scaling of microservice applications with complex inter-
dependencies. Experiments with microservice benchmark applications,
such as RC and OB, showed that Gwydion can significantly decrease
deployment costs or the application latency compared to default auto-
scaling mechanisms. For RC, cost-aware algorithms can reduce the
number of deployed pods (2 to 4), resulting in slightly higher latency
(300 ps to 6 ms) but lower resource consumption. For OB, all RL
algorithms exhibit a notable response time improvement by considering
all microservices in the observation space, enabling the sequential trig-
gering of actions across different deployments. This leads to nearly 30%
cost savings while maintaining consistently lower latency throughout
the experiment. In addition, RL training within real K8s clusters is sig-
nificantly more expensive compared to simulation-based environments,
needing on average 100x its execution time. As future work, novel
descheduling policies will be studied to terminate underperforming
microservices while running Gwydion’s scaling strategies.

14

Journal of Network and Computer Applications 234 (2025) 104067
CRediT authorship contribution statement

José Santos: Writing - review & editing, Writing — original draft, Vi-
sualization, Validation, Supervision, Software, Project administration,
Methodology, Investigation, Funding acquisition, Formal analysis, Data
curation, Conceptualization. Efstratios Reppas: Software, Methodol-
ogy, Investigation, Formal analysis, Data curation, Conceptualization.
Tim Wauters: Writing — review & editing, Supervision, Resources,
Project administration, Methodology, Investigation. Bruno Volckaert:
Writing — review & editing, Supervision, Resources, Project admin-
istration. Filip De Turck: Writing — review & editing, Supervision,
Resources, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

José Santos is funded by the Research Foundation Flanders (FWO),
Belgium, grant number 1299323N. This work is supported by the
Belgian Chancellery of the Prime Minister (Grant: AIDE-BOSA).

Data availability

The framework has been released in open-source.

References

Amazon, 2024a. Amazon elastic container service (Amazon ECS). [Online]. Available:
https://aws.amazon.com/ecs/. (Accessed on 13 September 2024).

Amazon, 2024b. Amazon elastic kubernetes service. [Online]. Available: https://aws.
amazon.com/eks/. (Accessed on 13 February 2024).

Arcaini, P., Mirandola, R., Riccobene, E., Scandurra, P., 2020. Model-based testing
for MAPE-K adaptation control loops. In: 2020 IEEE International Conference on
Software Testing, Verification and Validation Workshops. ICSTW, 7, IEEE, pp.
43-51. http://dx.doi.org/10.1109/icstw50294.2020.00024.

AWS, 2024. Service auto scaling. [Online]. Available:
com/AmazonECS/latest//developerguide/service-auto-scaling.html.
13 September 2024).

Boutique, O., 2024. Online boutique, a cloud-native microservices demo application.
[Online]. Available: https://github.com/GoogleCloudPlatform/microservices-demo.
(Accessed on 13 September 2024).

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W., 2016. Openai gym. http://dx.doi.org/10.48550/ARXIV.1606.01540.

Burns, B., Beda, J., Hightower, K., 2019. Kubernetes: Up and Running: Dive into the

https://docs.aws.amazon.
(Accessed on

Future of Infrastructure. O’Reilly Media.

Burns, B., Beda, J., Hightower, K., Evenson, L., 2022. Kubernetes: Up and Running.
O’Reilly Media, Inc..

Calheiros, R.N., Masoumi, E., Ranjan, R., Buyya, R., 2015. Workload prediction using
ARIMA model and its impact on cloud applications’ QoS. IEEE Trans. Cloud
Comput. 3 (4), 449-458. http://dx.doi.org/10.1109/tcc.2014.2350475.

Danilo, A., Michele, C., Lancellotti, R., Michele, G., 2021. A hierarchical receding
horizon algorithm for qos-driven control of multi-iaas applications. IEEE Trans.
Cloud Comput. 9 (2), 418-434. http://dx.doi.org/10.1109/tcc.2018.2875443.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., Madry, A.,
2019. Implementation matters in deep rl: A case study on ppo and trpo. In:
International Conference on Learning Representations.

Exporter, P., 2022. Prometheus redis metrics exporter. [Online]. Available: https:
//github.com/oliver006/redis_exporter. (Accessed on 28 August 2022).

Farokhi, S., Jamshidi, P., Lakew, E.B., Brandic, I., Elmroth, E., 2016. A hybrid cloud
controller for vertical memory elasticity: A control-theoretic approach. Future
Gener. Comput. Syst. 65, 57-72. http://dx.doi.org/10.1016/j.future.2016.05.028.

Gergin, L., Simmons, B., Litoiu, M., 2014. A decentralized autonomic architecture for
performance control in the cloud. In: 2014 IEEE International Conference on Cloud
Engineering. IEEE, http://dx.doi.org/10.1109/ic2e.2014.75.

Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., Zorzi, M., 2020. Toward 6G
networks: Use cases and technologies. IEEE Commun. Mag. 58 (3), 55-61. http:
//dx.doi.org/10.1109/mcom.001.1900411.

https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
http://dx.doi.org/10.1109/icstw50294.2020.00024
https://docs.aws.amazon.com/AmazonECS/latest//developerguide/service-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest//developerguide/service-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest//developerguide/service-auto-scaling.html
https://github.com/GoogleCloudPlatform/microservices-demo
http://dx.doi.org/10.48550/ARXIV.1606.01540
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb7
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb7
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb7
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb8
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb8
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb8
http://dx.doi.org/10.1109/tcc.2014.2350475
http://dx.doi.org/10.1109/tcc.2018.2875443
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb11
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb11
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb11
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb11
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb11
https://github.com/oliver006/redis_exporter
https://github.com/oliver006/redis_exporter
https://github.com/oliver006/redis_exporter
http://dx.doi.org/10.1016/j.future.2016.05.028
http://dx.doi.org/10.1109/ic2e.2014.75
http://dx.doi.org/10.1109/mcom.001.1900411
http://dx.doi.org/10.1109/mcom.001.1900411
http://dx.doi.org/10.1109/mcom.001.1900411

J. Santos et al.

Google, 2024. Google kubernetes engine (GKE), the most scalable and fully
automated kubernetes service. [Online]. Available: https://cloud.google.com/
kubernetes-engine?hl=en. (Accessed on 13 February 2024).

Hat, R., 2024. Red hat OpenShift container platform. [Online]. Available: https:
//www.redhat.com/en/technologies/cloud-computing/openshift. (Accessed on 13
September 2024).

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W.,
Horgan, D., Piot, B., Azar, M., Silver, D., 2018. Rainbow: Combining improvements
in deep reinforcement learning. In: Thirty-Second AAAI Conference on Artificial
Intelligence.

Janardhanan, D., Barrett, E., 2017. CPU workload forecasting of machines in data
centers using LSTM recurrent neural networks and ARIMA models. In: 2017 12th
International Conference for Internet Technology and Secured Transactions. ICITST,
IEEE, http://dx.doi.org/10.23919/icitst.2017.8356346.

Kubernetes, 2022a. A deployment provides declarative updates for pods and
ReplicaSets.. [Online]. Available: https://kubernetes.io/docs/concepts/workloads/
controllers/deployment/. (Accessed on 28 July 2022).

Kubernetes, 2022b. Resource management for pods and containers. [Online]. Available:
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/.
(Accessed on 28 July 2022).

Kubernetes, 2024a. Horizontal pod autoscaler. [Online]. Available: https://kubernetes.
io/docs/tasks/run-application/horizontal-pod-autoscale/. (Accessed on 13 Septem-
ber 2024).

Kubernetes, 2024b. Vertical pod autoscaler. [Online]. Available: https://cloud.
google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler. (Accessed on
13 September 2024).

Kumar, J., Singh, A.K., 2018. Workload prediction in cloud using artificial neural
network and adaptive differential evolution. Future Gener. Comput. Syst. 81, 41-52.
http://dx.doi.org/10.1016/j.future.2017.10.047.

Lee, D., Yoo, J.-H., Hong, J.W.-K., 2020. Deep Q-networks based auto-scaling for service
function chaining. In: 2020 16th International Conference on Network and Service
Management. CNSM, IEEE, http://dx.doi.org/10.23919/cnsm50824.2020.9269107.

Li, Y., Lin, Y., Wang, Y., Ye, K., Xu, C., 2023. Serverless computing: State-of-the-
art, challenges and opportunities. IEEE Trans. Serv. Comput. 16 (2), 1522-1539.
http://dx.doi.org/10.1109/tsc.2022.3166553.

Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C., Shan, Z., Shen, J., Babar, M.A., 2021.
Understanding and addressing quality attributes of microservices architecture: A
systematic literature review. Inf. Softw. Technol. 131, 106449. http://dx.doi.org/
10.1016/j.infsof.2020.106449.

Locust, 2021. An open source load testing tool. [Online]. Available: https://locust.io/.
(Accessed on 2 December 2021).

Medel, V., Tolosana-Calasanz, R., Bafiares, J.A., Arronategui, U., Rana, O.F., 2018.
Characterising resource management performance in kubernetes. Comput. Electr.
Eng. 68, 286-297. http://dx.doi.org/10.1016/j.compeleceng.2018.03.041.

Messias, V.R., Estrella, J.C., Ehlers, R., Santana, M.J., Santana, R.C., Reiff-Marganiec, S.,
2015. Combining time series prediction models using genetic algorithm to autoscal-
ing web applications hosted in the cloud infrastructure. Neural Comput. Appl. 27
(8), 2383-2406. http://dx.doi.org/10.1007/s00521-015-2133-3.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D.,
Kavukcuoglu, K., 2016. Asynchronous methods for deep reinforcement learning.
In: International Conference on Machine Learning. PMLR, pp. 1928-1937.

Newman, S., 2021. Building Microservices. O’Reilly Media, Inc..

Nouri, S.M.R., Li, H., Venugopal, S., Guo, W., He, M., Tian, W., 2019. Autonomic
decentralized elasticity based on a reinforcement learning controller for cloud
applications. Future Gener. Comput. Syst. 94, 765-780. http://dx.doi.org/10.1016/
j.future.2018.11.049.

openAlGym, 2024. The action spaces in openAl gym. [Online]. Available: https:
//github.com/openai/gym/tree/master/gym/spaces. (Accessed on 13 September
2024).

Ostertagova, E., Ostertag, O., 2012. Forecasting using simple exponential smoothing
method. Acta Electrotech. Inform. 12 (3), http://dx.doi.org/10.2478/v10198-012-
0034-2.

Qu, C., Calheiros, R.N., Buyya, R., 2018. Auto-scaling web applications in clouds: A
taxonomy and survey. ACM Comput. Surv. 51 (4), 1-33. http://dx.doi.org/10.1145/
3148149.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N., 2021. Stable-
baselines3: Reliable reinforcement learning implementations. J. Mach. Learn. Res.
22 (268), 1-8.

Rao, S.N., Shobha, G., Prabhu, S., Deepamala, N., 2019. Time series forecasting methods
suitable for prediction of CPU usage. In: 2019 4th International Conference on Com-
putational Systems and Information Technology for Sustainable Solution. CSITSS,
vol. 9, IEEE, pp. 1-5. http://dx.doi.org/10.1109/csitss47250.2019.9031015.

Ratcliffe, D.S., Hofmann, K., Devlin, S., 2019. Win or learn fast proximal policy
optimisation. In: 2019 IEEE Conference on Games (CoG), vol. 23, IEEE, pp. 1-4.
http://dx.doi.org/10.1109/cig.2019.8848100.

15

Journal of Network and Computer Applications 234 (2025) 104067

Rattihalli, G., Govindaraju, M., Lu, H., Tiwari, D., 2019. Exploring potential for
non-disruptive vertical auto scaling and resource estimation in kubernetes. In:
2019 IEEE 12th International Conference on Cloud Computing. CLOUD, IEEE,
http://dx.doi.org/10.1109/cloud.2019.00018.

Redis, 2022. How fast is redis?. [Online]. Available: https://redis.io/topics/benchmarks.
(Accessed on 28 August 2022).

Redis, 2024. Redis, an open source in-memory data structure store. [Online]. Available:
https://redis.io/. (Accessed on 13 September 2024).

Rossi, F., Nardelli, M., Cardellini, V., 2019. Horizontal and vertical scaling of container-
based applications using reinforcement learning. In: 2019 IEEE 12th International
Conference on Cloud Computing. CLOUD, IEEE, http://dx.doi.org/10.1109/cloud.
2019.00061.

Rzadca, K., Findeisen, P., Swiderski, J., Zych, P., Broniek, P., Kusmierek, J., Nowak, P.,
Strack, B., Witusowski, P., Hand, S., et al., 2020. Autopilot: workload autoscaling at
google. In: Proceedings of the Fifteenth European Conference on Computer Systems.
EuroSys ’20, ACM, http://dx.doi.org/10.1145/3342195.3387524.

Santos, J., Wang, C., Wauters, T., De Turck, F., 2023a. Diktyo: Network-aware
scheduling in container-based clouds. IEEE Trans. Netw. Serv. Manag. 20 (4),
4461-4477. http://dx.doi.org/10.1109/tnsm.2023.3271415.

Santos, J., Wauters, T., Volckaert, B., De Turck, F., 2019. Towards network-aware
resource provisioning in kubernetes for fog computing applications. In: 2019 IEEE
Conference on Network Softwarization. NetSoft, IEEE, http://dx.doi.org/10.1109/
netsoft.2019.8806671.

Santos, J., Wauters, T., Volckaert, B., De Turck, F., 2021. Towards low-latency
service delivery in a continuum of virtual resources: State-of-the-art and research
directions. IEEE Commun. Surv. Tutor. 23 (4), 2557-2589. http://dx.doi.org/10.
1109/comst.2021.3095358.

Santos, J., Wauters, T., Volckaert, B., De Turck, F., 2023b. gym-hpa: Efficient auto-
scaling via reinforcement learning for complex microservice-based applications in
kubernetes. In: NOMS 2023-2023 IEEE/IFIP Network Operations and Management
Symposium. IEEE, http://dx.doi.org/10.1109/n0ms56928.2023.10154298.

Shumway, R.H., Stoffer, D.S., Shumway, R.H., Stoffer, D.S., 2017. ARIMA models. In:
Time Series Analysis and Its Applications: with R Examples. Springer, pp. 75-163.

Singh, P., Gupta, P., Jyoti, K., Nayyar, A., 2019. Research on auto-scaling of web
applications in cloud: Survey, trends and future directions. Scalable Comput.: Pract.
Exp. 20 (2), 399-432. http://dx.doi.org/10.12694/scpe.v20i2.1537.

Soldani, J., Montesano, G., Brogi, A., 2021. What went wrong? Explaining cascad-
ing failures in microservice-based applications. In: Service-Oriented Computing.
Springer International Publishing, pp. 133-153. http://dx.doi.org/10.1007/978-3-
030-87568-8 9.

Solutions, C., 2022. Locust exporter. [Online]. Available: https://github.com/
ContainerSolutions/locust_exporter. (Accessed on 28 August 2022).

Srirama, S.N., Adhikari, M., Paul, S., 2020. Application deployment using containers
with auto-scaling for microservices in cloud environment. J. Netw. Comput. Appl.
160, 102629. http://dx.doi.org/10.1016/j.jnca.2020.102629.

Toka, L., Dobreff, G., Fodor, B., Sonkoly, B., 2021. Machine learning-based scaling
management for kubernetes edge clusters. IEEE Trans. Netw. Serv. Manag. 18 (1),
958-972. http://dx.doi.org/10.1109/tnsm.2021.3052837.

Toosi, A.N., Son, J., Chi, Q., Buyya, R., 2019. ElasticSFC: Auto-scaling techniques for
elastic service function chaining in network functions virtualization-based clouds.
J. Syst. Softw. 152, 108-119. http://dx.doi.org/10.1016/].js5.2019.02.052.

Turnbull, J., 2018. Monitoring with Prometheus. Turnbull Press.

Wall, V., 2023. The virtual wall emulation environment.. [Online]. Available: https:
//doc.ilabt.imec.be/ilabt/virtualwall/index.html. (Accessed on 28 May 2023).

Yu, Y., Si, X.,, Hu, C., Zhang, J., 2019. A review of recurrent neural networks:
LSTM cells and network architectures. Neural Comput. 31 (7), 1235-1270. http:
//dx.doi.org/10.1162/neco_a_01199.

José Santos obtained his M.Sc. degree in Electrical and
Computers Engineering in July 2015 from the University
of Porto, Portugal. Recently, he completed his doctoral
studies at Ghent University in April 2022. He is currently a
Postdoctoral Researcher in the Internet Technology and Data
Science Lab (IDLab) Research Group at Ghent University -
imec, Belgium. His research interests include Cloud and Fog
Computing, [oT, Service Function Chaining, and Reinforce-
ment Learning. His work has been published in more than
25 scientific publications. He received the Ph.D. Excellence
Award from imec in 2022 and the Best Dissertation Award
at NOMS 2023 based on the research conducted during
his Ph.D. about efficient orchestration strategies in Fog
Computing.

https://cloud.google.com/kubernetes-engine?hl=en
https://cloud.google.com/kubernetes-engine?hl=en
https://cloud.google.com/kubernetes-engine?hl=en
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb18
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb18
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb18
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb18
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb18
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb18
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb18
http://dx.doi.org/10.23919/icitst.2017.8356346
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler
http://dx.doi.org/10.1016/j.future.2017.10.047
http://dx.doi.org/10.23919/cnsm50824.2020.9269107
http://dx.doi.org/10.1109/tsc.2022.3166553
http://dx.doi.org/10.1016/j.infsof.2020.106449
http://dx.doi.org/10.1016/j.infsof.2020.106449
http://dx.doi.org/10.1016/j.infsof.2020.106449
https://locust.io/
http://dx.doi.org/10.1016/j.compeleceng.2018.03.041
http://dx.doi.org/10.1007/s00521-015-2133-3
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb31
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb31
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb31
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb31
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb31
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb32
http://dx.doi.org/10.1016/j.future.2018.11.049
http://dx.doi.org/10.1016/j.future.2018.11.049
http://dx.doi.org/10.1016/j.future.2018.11.049
https://github.com/openai/gym/tree/master/gym/spaces
https://github.com/openai/gym/tree/master/gym/spaces
https://github.com/openai/gym/tree/master/gym/spaces
http://dx.doi.org/10.2478/v10198-012-0034-2
http://dx.doi.org/10.2478/v10198-012-0034-2
http://dx.doi.org/10.2478/v10198-012-0034-2
http://dx.doi.org/10.1145/3148149
http://dx.doi.org/10.1145/3148149
http://dx.doi.org/10.1145/3148149
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb37
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb37
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb37
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb37
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb37
http://dx.doi.org/10.1109/csitss47250.2019.9031015
http://dx.doi.org/10.1109/cig.2019.8848100
http://dx.doi.org/10.1109/cloud.2019.00018
https://redis.io/topics/benchmarks
https://redis.io/
http://dx.doi.org/10.1109/cloud.2019.00061
http://dx.doi.org/10.1109/cloud.2019.00061
http://dx.doi.org/10.1109/cloud.2019.00061
http://dx.doi.org/10.1145/3342195.3387524
http://dx.doi.org/10.1109/tnsm.2023.3271415
http://dx.doi.org/10.1109/netsoft.2019.8806671
http://dx.doi.org/10.1109/netsoft.2019.8806671
http://dx.doi.org/10.1109/netsoft.2019.8806671
http://dx.doi.org/10.1109/comst.2021.3095358
http://dx.doi.org/10.1109/comst.2021.3095358
http://dx.doi.org/10.1109/comst.2021.3095358
http://dx.doi.org/10.1109/noms56928.2023.10154298
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb49
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb49
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb49
http://dx.doi.org/10.12694/scpe.v20i2.1537
http://dx.doi.org/10.1007/978-3-030-87568-8_9
http://dx.doi.org/10.1007/978-3-030-87568-8_9
http://dx.doi.org/10.1007/978-3-030-87568-8_9
https://github.com/ContainerSolutions/locust_exporter
https://github.com/ContainerSolutions/locust_exporter
https://github.com/ContainerSolutions/locust_exporter
http://dx.doi.org/10.1016/j.jnca.2020.102629
http://dx.doi.org/10.1109/tnsm.2021.3052837
http://dx.doi.org/10.1016/j.jss.2019.02.052
http://refhub.elsevier.com/S1084-8045(24)00244-3/sb56
https://doc.ilabt.imec.be/ilabt/virtualwall/index.html
https://doc.ilabt.imec.be/ilabt/virtualwall/index.html
https://doc.ilabt.imec.be/ilabt/virtualwall/index.html
http://dx.doi.org/10.1162/neco_a_01199
http://dx.doi.org/10.1162/neco_a_01199
http://dx.doi.org/10.1162/neco_a_01199

Efstratios Reppas is studying toward an Integrated M.Sc. in
Electrical and Computer Engineering at the National Tech-
nical University of Athens (NTUA). His research interests
include algorithms, machine learning, and decision-making
systems. He did an internship during July-August 2023
in the Internet Technology and Data Science Lab (IDLab)
Research Group at Ghent University - imec, Belgium.

Tim Wauters received the M.Sc. and Ph.D. degrees in
electro-technical engineering from Ghent University, in
2001 and 2007, respectively. He has been working as a
Postdoctoral Fellow of F.W.O.-V. with the Department of
Information Technology (INTEC), Ghent University. He is
currently active as a Senior Researcher at imec. His work
has been published in more than 170 scientific publica-
tions. His research interests include design and management
of networked services, covering multimedia distribution,
cybersecurity, big data, and smart cities.

16

Journal of Network and Computer Applications 234 (2025) 104067

Bruno Volckaert is professor advanced software engineer-
ing and secure distributed systems in the INTEC department
at Ghent University and imec’s IDLab group. His current re-
search deals with reliable and high performance distributed
software for a.o. scalable data ingestion and processing,
scalable cybersecurity intrusion detection and autonomous
optimization of cloud-based applications. He has worked on
over 65 (inter)national research projects and is (co-)author
of over 200 peer-reviewed papers in international journals
and conference proceedings.

Filip De Turck leads the network and service management
research group at Ghent University, Belgium and imec.
He (co-) authored over 700 peer reviewed papers and his
research interests include design of efficient softwarized net-
work and cloud systems. He is involved in several research
projects with industry and academia, served as chair of
the IEEE Technical Committee on Network Operations and
Management (CNOM), and serves as a steering committee
member of the IM, NOMS, CNSM and NetSoft conferences.
Prof. Filip De Turck served as Editor-in-Chief of IEEE
Transactions on Network and Service Management (TNSM),
and was named an IEEE Fellow since 2021.

	Gwydion: Efficient auto-scaling for complex containerized applications in Kubernetes through Reinforcement Learning
	Introduction
	Related Work
	Application deployment and auto-scaling in the Kubernetes (K8s) platform
	The Gwydion Framework
	System Overview
	Integrating Gwydion with Kubernetes (K8s)
	Dataset creation for the simulation mode

	Towards efficient auto-scaling in Kubernetes (K8s)
	Reinforcement Learning (RL)-based auto-scaling
	Action Space
	Observation Space
	Reward Function
	Agents

	Towards Resource Usage Prediction
	Gwydion's Prediction algorithms
	Resource Estimation in Kubernetes (K8s)

	Evaluation Setup
	Applications
	Testbed Implementation

	Results
	Reinforcement Learning (RL) assessment
	Gwydion's Prediction assessment
	Integration of Gwydion's Prediction into RL
	Summary

	Open Challenges & Future Directions
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

