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Abstract: Real-time condition monitoring of machinery is increasingly being adopted to minimize
costs and enhance operational efficiency. By leveraging large-scale data acquisition and intelligent
algorithms, failures can be detected and predicted, thereby reducing machine downtime. In this
paper, we present a novel hybrid edge–cloud system for detecting rotational bearing failures using
accelerometer data. We evaluate both supervised and unsupervised neural network approaches,
highlighting their respective strengths and limitations. Supervised models demonstrate high accuracy
but require labeled datasets representative of the failures of interesting data that are challenging
to acquire due to the rarity of anomalies. Conversely, unsupervised models rely on data from
normal operational conditions, which is more readily available. However, these models classify all
deviations from normalcy as anomalies, including those unrelated to failure, leading to costly false
positives. To address these challenges, we propose a distributed system that integrates supervised
and unsupervised learning. A compact unsupervised model is deployed on edge devices near the
machines to compress sensor data, which are then transmitted to a centralized cloud-based system.
Over time, these data are automatically labeled and used to train a supervised model, improving the
accuracy of failure predictions. Our approach enables efficient, scalable failure detection across a fleet
of machines while balancing the trade-offs between supervised and unsupervised learning.

Keywords: anomaly detection; bearing fault detection; predictive maintenance; edge computing;
distributed machine learning

1. Introduction

Manufacturing companies are confronted with very competitive international markets
and are under pressure to produce high-quality products while at the same time adhering
to challenging emission norms and efficiency labels. To increase the productivity, it is
crucial to minimize machine downtimes. Downtime costs can be excessive, an automo-
tive manufacturer’s true downtime cost for example can amount up to USD 22,000 per
minute [1]. To mitigate this, early and accurate fault detection in industrial machines is
of high importance. Early fault detection could allow a move from a periodic-time-based
preventive maintenance program to a condition-based predictive maintenance strategy and
reduce unexpected machine downtime and costs [2]. As some defects can only be detected
by observing short transients, the machine should be monitored continuously [3]. This is
achieved using different sensors attached to the machines, combined with an automated
fault detection system. Typical sensors that are used for this purpose are accelerometers,
temperature sensors, magnetometers or acoustic sensors. In this work, we focus on ac-
celerometers mounted to the machine. Accelerometers can pick up on high-frequency
vibrations that can be indicative of a future failure. Accelerometers have been shown
to be a cost-effective solution to detect faults in rotating machines [3]. We use a dataset
collected on a lab setup of seven identical powertrain subsystems, each consisting of an
electromotor driving a bearing to which a load is applied. Our goal is to use accelerometer
data to detect failures in the bearing. Rolling bearings are one of the most common compo-
nents found in industrial machines and cause the majority of failures in electro-mechanical
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drive systems and motors [4], which makes them an interesting target for continuous
condition monitoring.

Various manually specified metrics are commonly used to detect bearing faults in
industrial machines using accelerometer data. Good results can already be obtained using
simple statistical methods. More complicated approaches take the physical properties of
the bearing into account to obtain more accurate predictions [5]. In this paper, however, we
focus on machine learning approaches. These are gaining popularity as an accurate alterna-
tive to the manually defined metrics. The benefit of machine learning is that everything
is learned from data and little to no domain knowledge is needed to design an accurate
model. Machine learning models have also been shown to be more robust against noise
and can generalize better to different operating conditions [6].

In this work, we use deep neural networks to accurately detect the failing bearings
from accelerometer data. We first explore a supervised approach which uses labeled
information recorded from healthy and faulty bearings to train a deep neural network.
We show that this model is able to predict failures accurately. A disadvantage of the
supervised approach, however, is that we need training data that include data from faulty
bearings. A manufacturer interested in implementing this technique would first need to
collect a representative dataset of failures, which is expensive, as the faults only occur
very rarely. Another disadvantage of the supervised learning approach is that, while it
can accurately detect the failures that it was trained for, it might not detect other types of
failures that were not present in the training dataset. Unsupervised learning which does
not require labeled training data might solve this. A model is only trained on data from
healthy bearings, which are much easier to collect. It models the behavior of a healthy
bearing and will flag everything that deviates from this as an anomaly. This, however, also
means that it will pick up on anomalies caused by slightly different operating conditions
that are not necessarily indicative of a failing bearing, resulting in a larger amount of false
positives. False positives are expensive since they involve a manual check of the machine
and, potentially, the replacement of a part that is not yet broken.

Most existing approaches for bearing anomaly detection provide offline solutions
where data are captured from a large set of machines and then used to train a model.
Afterwards, the trained model can be deployed to detect failures in the future. This is,
however, not a very practical approach in reality. Collecting all the data is expensive and
it might take a long time until anomalies of interest occur. In this work, we introduce
an online learning approach where we require only a minimal initial training set of data
recorded from healthy bearings. This is much easier to obtain. Over time, as the machines
operate in production and failures occur naturally, data are collected and the model is
continuously updated, resulting in a higher detection accuracy.

We assume that the factory has a fleet of similar machines that operate in parallel. We
first train a very small unsupervised model on healthy data that are easy to collect. This
model is then deployed to an edge device close to the machine. This model can immediately
be used to detect anomalies but as explained previously it might result in false positives.
This model is therefore also used to compress the accelerometer signal into a small feature
vector that is transmitted to a central cloud repository that accumulates the data from
different machines as shown in Figure 1. Once a machine fails, we automatically label
all data points of that machine based on how close they were to the point of failure. This
labeled data can then be used to initialize a supervised model. Over time, when multiple
failures have been observed, the supervised model in the cloud will be able to make more
accurate predictions. Our proposed system can be bootstrapped without data from a failing
bearing and will continuously learn over time to better detect failures after they have
occurred on multiple machines.
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The main contributions of this paper can be summarized as follows:

• We illustrate the advantages and disadvantages of supervised and unsupervised
learning for the task of bearing anomaly detection using a large realistic dataset.

• We introduce a hybrid edge–cloud system that combines unsupervised and supervised
learning.

• We require only data recorded from a healthy bearing to bootstrap the system. Over
time, the model is continuously updated as new data come in and failures occur
naturally.

• We require only minimal communication between edge and cloud and are able to
aggregate information from a fleet of machines.

Figure 1. The hybrid edge–cloud system. A small neural network trained for anomaly detection in
an unsupervised way is deployed on an edge device close to each machine in the fleet. This model
can detect anomalies on its own but is also used to compress the sensor data before they are sent to
the cloud. The cloud model aggregates information from multiple machines and uses it to train one
large supervised model. The cloud model is train continuously as new data become available.

2. Related Work

Rolling element bearings can be found in almost all industrial machines with rotating
parts. During operation, these bearings are subjected to very high loads, causing the
bearings to develop defects over time. As bearing failures are a major cause of machine
downtime [7], there is much interest in systems that can automatically detect or even
predict failures. These can prevent further damage to the machine and can reduce the
costs associated with machine downtime. Various sensor types can be used to detect
bearing faults. In this paper, we use accelerometers that measure the vibration signal.
Accelerometers can pick up on high-frequency vibrations that can be indicative of a future
failure. Accelerometers have been shown to be a cost-effective solution to detect faults
in rotating machines [3]. Other sensors that are commonly used for this purpose are
temperature sensors and acoustic sensors [8].

The techniques differ in how they analyze the vibration signal to detect anomalies.
The most common approach is to extract time domain features such as root mean square
(RMS), peak acceleration, kurtosis, crest factor, impulse factor, shape factor, or clearance
factor from the vibration signals [9]. These statistical techniques are easy to implement and
can be evaluated in real-time as they have only a minimal computational cost. They usually
perform very well, despite their simplicity, but can be sensitive to noise in real-world
applications.

More powerful techniques first transform the raw accelerometer signal into the fre-
quency domain. Bearing faults can then be detected by analyzing the energy in a certain
frequency range or by comparing the obtained spectrum with a reference spectrum [10].
It is also possible to theoretically calculate the frequency in which different bearing faults
will manifest themselves. A rolling element bearing consists of different components.
Each of these components can be the cause of failure and a deterioration of each of these
elements will generate a different characteristic failing frequency. Based on the geometric
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dimensions of the bearing and the operating conditions, such as the rotational speed, these
frequencies can be calculated and the measured energy in that frequency bin can be used
to detect failures. The disadvantage of these techniques is that they require some domain
knowledge about the characteristics of the bearing and that they are sensitive to different
operation conditions.

In recent years, machine-learning-based techniques have received a lot of attention.
Machine learning techniques differ from the previous approaches in that they learn to detect
failures from large amounts of training data. Distinguishing between a healthy and a faulty
state can then be framed as a classification problem. Many approaches have been proposed
that first extract features from the raw signal that are then given as input to a classification
model. The features can be the statistical features as explained in the previous paragraph
or they can be more complicated features such as a wavelet packet decomposition [11].
Commonly used machine learning models are support vector machines (SVMs) [11] or
K-nearest neighbor algorithms [12].

A problem with these supervised classification-based approaches is that they require
a large set of previously collected labeled data. As real-world failures are rare, it is not
trivial to collect representative failure data. As the fault progresses naturally over time,
it is not always clear when the fault has appeared for the first time, making it hard to
accurately label all data points [13]. Various machine learning models have been proposed
to learn the “normal” state of the machine instead and to flag anything that deviates from
this as an anomaly. Commonly used techniques are one-class SVMs [14] or local outlier
factors [15]. As these techniques flag anything that deviates from the baseline behavior
as anomalous, they often result in large amounts of false positives, especially when the
machine has varying operating conditions [16].

Deep neural networks are a type of machine learning models that have gained much
popularity in the past years due to their state-of-the-art performance on many tasks such as
computer vision and speech recognition [17]. There are also many successful approaches for
bearing anomaly detection that rely on neural networks. Deep neural networks have been
used for both supervised [18] and unsupervised learning [8] for this task, outperforming the
more traditional approaches. Especially interesting are techniques that can be trained using
limited amounts of faulty training data as these are expensive to collect. Some approaches
rely on data augmentation to generate additional training data [19], while others train
generative adversarial networks to generate artificial training data [20]. Few-shot learning
has also recently been applied to bearing anomaly detection. Few-shot learning refers to
the capability of the model to generalize to new classes not previously seen during training.
An especially promising approach for few-shot learning is based on model-agnostic meta
learning (MAML). With MAML, the process of training is learned. MAML trains the
parameters of the model such that they can easily be fine-tuned for a new task using only
a limited amount of new training data [21]. This is especially interesting for the task of
bearing fault detection as this could allow us to fine-tune a model efficiently to a new
bearing type or operating condition.

3. Materials and Methods
3.1. Data Collection

The data were collected from seven identical drive train subsystems, representing a
fleet of machines. The machines were designed to perform accelerated lifetime testing of
bearings and run bearings to their end-of-life. The experimental setup used is shown in
Figure 2. The setup comprises of a single shaft with a test bearing (indicated in blue). The
test bearings are FAG 6205-C-TVH bearings. The shaft is supported by a support bearing
on each side. A hydraulic cylinder (indicated in yellow) is used to apply a radial load to
the test bearing. In our experiments, this was a stationary load of 9 kN. The test bearing
is lubricated by an internal oil bath (10 mL Total Carter SH 220). The setup is driven by a
motor at a rotation speed of 2000 (revolutions per minute (rpm)). Each setup is equipped
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with an accelerometer, a temperature sensor, a load sensor, and a speed sensor. Only the
accelerometer data are used in our experiments.

Figure 2. Schematic of the test setup (left) and the actual setup (right).

The data were collected from seven identical setups. Although the setups are designed
to be as similar as possible, small differences in the tolerances of components will result
in slightly different vibration characteristics. This is challenging for the machine learning
models as they will need to generalize well to deal with this variation. For each of the
seven setups, three data collections runs were performed with a (different) healthy bearing
and seven with a damaged bearing. The experiments with healthy bearings were stopped
after the temperature had been stabilized for 15 min with a minimum experiment length of
2 h. For the faulty bearings, the experiments were run until the peak-to-peak acceleration
reached the safety limit value of 20 g (end-of-life). Figure 3 shows a histogram of the
experiment durations. Most experiments lasted between 1.5 and 4 h.

Figure 3. Histogram of experiment duration. Most experiments lasted between 1.5 and 4 h.

For the data collection runs with a damaged bearing, a small indentation was made in
the bearing inner race using a Rockwell C hardness tester of 100 kg. The expected indent
diameter is 400 ± 25 µm. This indentation emulates a common spalling fault in industrial
bearings resulting from break-out of metal due to high material stress. Figure 4 shows a
close up of the induced indent on the left (around 400 µm in diameter) and the fault at the
end of the experiment on the right.
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Figure 4. The indentation of the bearing at the start of the experiment (left) and the fault at the
end (right).

The accelerometer was sampled with a sample rate of 50 kHz. In addition to the
accelerometer, also the motor speed, the radial force and the bearing and ambient temper-
ature were recorded. These were recorded at a sample rate of 1 kHz but were only used
for manual inspection and not as input for any of the anomaly detection models. Figure 5
shows the raw accelerometer data for approximately 1 s (50,000 samples) at the beginning
of the experiment (top) and at the end of the experiment (bottom). As the bearing is nearing
its end-of-life, the peak vibrations become very large.

Figure 5. The raw accelerometer signal for approximately 1 s (50,000 samples) at the beginning of the
experiment (top) and at the end of the experiment (bottom). The y-axis indicates the acceleration
(in g). Note the difference in scale for the y-axis.

3.2. Baseline Methods

Various techniques are commonly used to detect failing bearings from accelerometer
data. In this section, we introduce four baseline methods. Each of these take approximately
1 s of data (x = 50,000 data points) and calculate a single value that can be compared to a
threshold to detect anomalies. Figure 6 shows these four features for an entire run with a
faulty bearing. All of the metrics show a sharp increase around the 10,000 mark, indicating
severe damage to the bearing.
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Figure 6. Four baseline features, from top to bottom: Peak acceleration, RMS acceleration, Kurtosis
and BPFI. All of these methods behave in a similar way.

3.2.1. Peak Acceleration

Peak acceleration corresponds to the maximum of the absolute values in a (sliding)
window of 50,000 data points. The disadvantage of this metric is that it can be very noisy
as it is sensitive to a single outlier, this results in the higher variance, as can be seen in
Figure 6.

Peak(x) = max(abs(x)) (1)

3.2.2. RMS

The root mean square (RMS) is the square root of the arithmetic mean of the squares
of the acceleration values. The RMS is the most commonly used feature to detect anomalies
in acceleration time–series.

RMS(x) =

√
1
n

n

∑
i=0

x2
i (2)

3.2.3. Kurtosis

Kurtosis is a measure of the “tailedness” of the probability distribution of a real-valued
random variable. Higher kurtosis corresponds to greater outliers. The kurtosis is the fourth
standardized moment, defined as

Kurtosis(x) = E

[(
x − µ

σ

)4
]
=

E
[
(x − µ)4]

(E[(x − µ)2])2 (3)

with µ and σ, respectively, the mean and standard deviation of the signal. Kurtosis is
commonly used to detect outliers in univariate time–series [22].

3.2.4. Ball Pass Frequency Inner

The three previous features are general statistical measures that can be applied to any
data series. Ball pass frequency inner (BPFI) on the other hand uses domain knowledge
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of the bearing to predict in which frequency faults will manifest themselves based on the
rotation speed and the characteristics of the bearing [23]. BPFI indicates the frequency
that will appear in the spectral signature when the inner ring is deteriorated and can be
calculated as

BPFI =
N
2
× F ×

(
1 +

B
P

cos(θ)
)

(4)

where N is the number of balls in the bearing, F is the shaft frequency (in Hz), B is the
ball diameter, P is the pitch diameter (both in mm), and θ indicates the contact angle in
degrees [24]. To detect failures using the BPFI feature, we calculate the frequency spectrum
of the acceleration signal and use the value at the BPFI frequency as the anomaly score.

3.3. Supervised Learning

Although the techniques introduced in the previous section typically perform quite
well, they are limited in the sense that they are manually engineered. In this section, we
introduce a first machine learning approach using a deep neural network that learns to
detect faults from data. The model is trained in a supervised fashion which means it
requires labeled training data of healthy and faulty bearings. We begin by explaining the
data preprocessing procedure which will also be used for the unsupervised approach of
the next section. We then introduce the neural network architecture and training details.

3.3.1. Data Preprocessing

As explained in the previous sections, the input data for our models are generated by
an accelerometer sampled at 50 kHz. Although it is possible to use these data directly as
input to a recurrent neural network such as an LSTM, we instead transform these data to
the frequency domain using a Fast Fourier Transform (FFT) approach. It has been shown
that this makes it easier to detect abnormal patterns than in the time domain [25]. Since we
record data at a sample rate of 50 kHz, we can resolve frequencies up to 25 kHz according
to Nyquist’s theorem. We then average the values in bins of 25 Hz to reduce the input size
for the model, resulting in 1000 floating point values. Figure 7 shows the transformed data
at the beginning of the experiment (top) and near the end-of-live (bottom). The failure is
most obviously visible near the lower frequencies.

Figure 7. The FFT of the accelerometer signal for a window of approximately 1 s (50,000 samples) at
the beginning of the experiment (top) and at the end of the experiment (bottom). Note the difference
in scale for the y-axis.
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3.3.2. Network Architecture and Training Details

The neural network architecture is shown in Figure 8. The first three blocks each
follow the same design with a fully connected layer, batch normalization [26], dropout
(p = 0.2) [27], and a leaky ReLu activation. The fully connected layers have 512, 256, and
128 neurons, respectively. The last layer has only a single neuron and a sigmoid activation
which forces the model to output a score between zero and one.

Figure 8. The supervised neural network architecture.

We train the model using a combination of healthy and faulty data. Healthy data
points are labeled as zero. For the data from the faulty bearings, we label the first 25%
from each experiment also as zero and the last 25% as one. We do not train on the data in
between as it is not always clear exactly when a fault starts manifesting itself. We found
that this forces the network to generalize better and is less prone to overfitting. We use the
Adam optimizer [28] to train the network with an initial learning rate of 0.001. We use a
batch size of 64 and train for 15 epochs using a binary cross entropy loss. The learning rate
is reduced by a factor of ten after ten epochs.

3.4. Unsupervised Learning

The disadvantage of the supervised approach is that we need labeled healthy and
faulty data for training. This means that we somehow have to collect data from faulty
bearings. As the anomalies are by definition rare, this could be expensive or take a long
time. We could also artificially induce a fault as was performed in our experimental dataset,
but this proves also to be expensive as it involves intentionally damaging a component.
In this section, we explore an unsupervised learning approach. Compared to the supervised
learning approach from the previous section, this model only requires data from healthy
bearings during training. The model will then learn the typical behavior of the bearing and
will flag anything that deviates from this as an anomaly.

We use an autoencoder model as shown in Figure 9. It follows a similar design as the
supervised model from the previous section. It receives the same 1000-dimensional input
vector as input. This is then compressed to a 32-dimensional feature representation by a
stack of three fully connected layers, each followed by batch normalization, dropout, and
a leaky ReLU activation. This first part of the model is called the “encoder”. The second
part of the model, the “decoder”, follows a similar design but goes from a 32-dimensional
feature representation back to a 1000-dimensional vector. The autoencoder is trained to
reconstruct its input but because of the bottleneck layer, it has to extract higher level feature
representations. An autoencoder can be used for anomaly detection after training it on
normal data by monitoring the reconstruction error. The assumption is that the model will
not be able to reconstruct the faulty data accurately as it differs substantially from the data
seen during training.
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Figure 9. The unsupervised neural network architecture.

Similar to the supervised model from the previous section, we use the Adam opti-
mizer [28] to train the network with an initial learning rate of 0.001. We use a batch size
of 64 and train for 15 epochs. The learning rate is reduced by a factor of ten after ten
epochs. The model is trained to minimize the mean squared error between the input and
its reconstruction.

3.5. Hybrid Edge–Cloud Models

In the two previous sections, we introduced a supervised and an unsupervised neural
network to detect bearing failures. Both have their advantages and disadvantages. As we
will show in Section 4, the supervised model is very accurate and detects failing bearings
while being robust against other small disturbances or noise. A major disadvantage,
however, is that we need representative failure data to train the model. This is not trivial to
collect. The unsupervised model on the other hand is easy to train using healthy data but
will flag anything that deviates from the normal behavior as anomalous, possibly resulting
in false positives. In this section, we introduce a novel hybrid approach that allows us to
combine the best of both worlds.

We assume no prior access to faulty training data and only rely on data collected
from healthy machines, which is much easier to collect. Using these data we train an
unsupervised model as explained in the previous section. This is then deployed on an
edge device, close to the sensor. It can immediately start monitoring the machine to detect
anomalies. As explained in the previous section it could, however, result in false positives.
Over time, as the machines operate in production, data are periodically sent to the cloud for
storage. We, however, do not send the raw sensor data as this would result in substantial
communication overhead, especially since anomalies are rare and most of these data would
have little to no added benefit. Instead, we use the intermediate features of the autoencoder
model as a compressed representation of the data. This is a 32-element vector which is much
smaller than the 50,000 accelerometer values or the 1000 dimensional FFT representation.

In the cloud, we accumulate all these data from multiple machines. Once a machine
fails, all its data points can be labeled based on how close they were to the point of failure.
This labeling can be performed automatically, as the machines experience failure over time.
In the cloud, we train a supervised model based on this labeled data which can then be
used to reduce the number of false positives or to make more accurate predictions. The
whole system is visualized in Figure 1.

A logical choice for the supervised cloud model would be the neural network from
Section 3.3. We, however, use a much less complex model, a k-nearest-neighbor (KNN)
classifier. This is a non-parametric machine learning model which stores all its training
data in an efficient data structure. When asked to make a prediction for a new data point,
the k-nearest-neighbors are retrieved from the data structure. These are the training data
points that are the most similar to the query data point according to some distance metric.
A weighted average of the labels of the neighbors is then returned as the prediction. We
decided to use a KNN model over a neural network for three main reasons. First, the
input for the cloud model is not the raw sensor data but the feature representation as
extracted by the encoder part of the unsupervised edge model. This means we do not need
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the capacity of a neural network to make accurate predictions as the encoder has already
extracted a high-level feature representation. Second, the KNN makes it easy to attach
extra information to the data points such as the type of machine or the operating condition.
When making the prediction, we can then filter the nearest neighbors to only include those
data points that have the same operational characteristics. For example, if the machine has
multiple speeds or supports multiple products, we can make sure that only data points for
the same speed or same product are taken into account when making the prediction. The
third and most important reason to prefer a KNN over a neural network in this case is that
the KNN trivially supports online learning without catastrophic forgetting. Updating the
KNN with a new data point is as simple as storing that data point in the data structure. The
new data point can immediately be used to make new predictions. Continuous learning in
neural networks without causing catastrophic forgetting on the other hand is still an active
area of research [29].

It should be noted that this automatic labeling procedure assumes that all anomalies
that occur near the time of failure are caused by the failing bearing. This might not be the
case in situations with changing dynamics or external factors.

4. Results

In this section, we experimentally compare the baseline approaches: both the neural
network techniques and our proposed hybrid edge–cloud solution. We will first briefly
introduce the different performance metrics used in all experiments. All the reported
results are obtained as the result of a leave-one-out cross validation procedure. Here, we
set the data from one bearing aside and train the model on all other data. The resulting
model is then validated on the held-out data. This is repeated for every bearing. In the
case of n bearings, the data from each bearing are used once as test data and n − 1 times as
training data.

4.1. Performance Metrics
4.1.1. Receiver Operational Characteristic

Each of the techniques used in this paper predicts an anomaly score for a window of
data. This score is then compared to a threshold to decide whether to classify the window
as anomalous or not. The threshold value is a hyperparameter. A low threshold will make
sure that we detect most of the anomalies but might also flag healthy windows of data
as anomalous (false positives). With a high threshold on the other hand, we might only
detect a subset of the anomalies resulting in a large number of false negatives. A commonly
used metric to assess the performance of a binary classifier is the receiver operational
characteristic curve (ROC curve) [30]. The ROC curve plots the true positive rate (TPR)
against the false positive rate (FPR) for various thresholds. The true positive rate is also
known as sensitivity or recall and is the fraction of anomalies that are detected (true
positives) to the total number of anomalies (true positives + false negatives). The false
positive rate is defined as the ratio of false positives (normal samples that were flagged as
anomalous) to the total number of normal samples (false positives + true negatives). Each
possible threshold results in a certain TPR and FPR which defines a single point on the plot.
We can draw the ROC curve by varying the threshold. A random classifier would result
in a diagonal line while for a perfect classifier, the ROC curve goes immediately to the
upper left corner, meaning it classifies all positive examples immediately as positive. It then
steps to the right with each negative example it encounters until it reaches the upper right
corner. The ROC curve can be summarized in a single number: the area under the ROC
curve (AUC). A perfect classifier obtains an AUC of 1 while a no-skill classifier that makes
random predictions would have an AUC of 0.5. For more details on the interpretation of
the ROC curve, we refer to [31].

Since we are dealing with time–series that describe the entire lifetime of a bearing,
not all data points should be treated in the same way. For a faulty bearing, the end of the
experiment indicates the end-of-life of the bearing. A false negative near the end of the
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experiment (close to the point of failure) should be penalized more strongly than one near
the beginning. To take this into account, we use a linearly increasing weight that goes
from zero to one for the last 1.5 h of each experiment. This means that the data points
for a faulty bearing where the bearing still has more than 1.5 h before failing, are not
counted as false negatives. In our experiments, the speed and load were artificially high to
accelerate the degradation of the bearing. A limit of 1.5 h corresponds to about 14 days for
a non-accelerated experiment. This limit was chosen based on feedback from industry.

4.1.2. TPR@0.01

In practice, false positives and false negatives do not have the same cost. In the case of
predictive maintenance, a false positive would mean that we stop the machine and replace
a part when it is not yet needed, which can be very expensive. A false negative would mean
that we miss an anomalous data point and potentially replace the part too late. We are
mainly interested in reducing the number of false positives as these have the highest cost.
This means that we are actually interested in the leftmost part of the ROC-curve (the part
with little to no false positives). To quantify this into a single number, we report the TPR at
an FPR of 0.01 (TPR@0.01). Intuitively, this means that we allow 1% of the predictions to
be false positives and we report the number of anomalies that are detected compared to
the total number of anomalies. This number corresponds to the value of the ROC curve at
x = 0.01.

4.2. Baseline Methods

Figure 10 shows the ROC curves for the four baseline methods introduced in the
previous section. RMS, peak, and kurtosis perform similar in terms of AUC score and
TPR@0.01. The BPFI method achieves a much lower AUC score but after inspecting the
ROC curves, we can conclude that this is caused by a large number of false positives for
low thresholds. In the regime where we only allow a very limited amount of false positives
(TPR@0.01), this method performs similar to the other baselines.

Figure 10. The ROC curves for the four baseline methods.

4.3. Supervised and Unsupervised Deep Neural Networks

Figure 11 shows the ROC curves for the supervised (blue) and unsupervised (orange)
neural network approaches. Both clearly outperform the baseline methods. The supervised
model obtains an AUC score of 0.91 where the best baseline method achieves 0.79. With a
TPR@0.01 of 0.71, we can detect 71% of the anomalies with only 1% false positives as shown
in Table 1. This is a major improvement to the baseline methods that had a TPR@0.01 of
around 0.45.
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Figure 11. The ROC curve and the corresponding AUC score for the unsupervised neural network.

Table 1. The AUC and TPR@0.01 for the four baseline methods and the three machine-learning-based
approaches.

Feature TPR@0.01 AUC

RMS 0.44 0.79
Peak 0.44 0.79
Kurtosis 0.45 0.78
BPFI 0.44 0.62

Supervised neural network 0.71 0.91
Unsupervised neural network 0.64 0.93
Cloud model 0.68 0.98

The unsupervised model achieves an AUC of 0.93, slightly higher than the supervised
model. The FPR@0.01 on the other hand is lower (0.64 compared to 0.71 for the supervised
model as shown in Table 1). This indicates that the unsupervised model has a slightly
higher number of false positives which can also be seen in the ROC curve. This means that
for our use case where we want to avoid false positives, the supervised model performs
better, even though the AUC score would indicate otherwise.

To better understand this, we investigate what causes these false positives. The
unsupervised model will pick up on any deviations from the normal behavior. Some of the
false positives are in fact valid anomalies but since they occur in data collected from healthy
bearings, they are not indicative of a bearing failure and are labeled as normal. An example
of this is shown in Figure 12. The top Figure 12a shows the anomaly score as predicted
by the supervised model, the middle figure shows the predictions of the unsupervised
model. As these data are collected from a healthy bearing, all data points are labeled as
normal and the prediction of both models should be close to zero. This is indeed what the
supervised model predicts. The unsupervised model on the other hand predicts a high
anomaly score starting from the 0.75 mark. The bottom figure explains why. This figure
shows the measured speed of the shaft which should be constant at 2000. Around the
0.75 mark, there is a minor disturbance, which causes the speed to change slightly. This
is indeed a valid anomaly as this happens only rarely. The unsupervised model performs
well and is able to detect it, but it can not distinguish between anomalies that are caused by
a degrading bearing or by some external factor. In this case, this results in a false positive.
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(a)

(b)

(c)

Figure 12. The speed of the shaft (c) should be constant at 2000 rpm. Around the 0.75 mark, a
disturbance occurs. The prediction of the supervised model (a) remains near zero (no anomaly) while
the unsupervised model (b) predicts a higher anomaly score for these data points, even though it is
not indicative of a failing bearing.

4.4. Hybrid Edge–Cloud Models

We will now compare our novel hybrid edge–cloud technique with all previous
approaches. We trained the unsupervised model from Section 3.4 using the healthy training
data and used the trained encoder to extract feature representations from both the healthy
and faulty training data. We randomly selected 200 data points from each training bearing
and used these to initialize the KNN model. Then we can make predictions for the test
data using the unsupervised edge model and the KNN. We used k = 5 (the number of
neighbors) in our experiments. The resulting ROC curve is shown in Figure 11. The cloud
model achieves an AUC of 0.96, outperforming both the supervised model from Section 3.3
and the unsupervised model of Section 3.4. This is an interesting result as the KNN has
seen much less training data (only 200 data points per training bearing). The KNN achieves
an TPR@0.01 of 0.68, which is slightly less than the 0.71 for the supervised neural network
but is higher than the 0.64 for the unsupervised model. This shows the benefit of our
hybrid edge–cloud approach: by only transferring a small number of high-level feature
representations to the cloud, we can train an accurate supervised model automatically on-
the-fly, without any human intervention or labeling. To put the reduction in data transfer
cost into perspective, the 200-feature representations that are transferred to the cloud only
take up 25 kB per experiment. Transferring the raw sensor data to cloud (for example to
train the supervised neural network) would take 720 MB per hour, per sensor. This might
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not pose a problem in a fixed industrial setting where a wired connection can be provided
but our technique is not limited to this use case, it is general enough to be applied in settings
where only a wireless connection is available or where the edge device is battery-powered.

Figure 13 shows the anomaly score of the cloud model (in red) compared to the
anomaly score of the local model (in blue). Around the 30 mark, the prediction of the local
model shows a large spike due to a momentary speed reduction. The cloud model realizes
that this is not indicative of failure and its prediction remains low. Around the 220 mark,
a first event occurs that is indicative of failure, the edge model hardly picks up on this,
resulting in a very small increase in its score. The anomaly score as predicted by the cloud
model on the other hand increases drastically. Around the 350 mark, the failure becomes
more pronounced and both scores go up, but again, the cloud model is able to make the
most accurate prediction. This experiment clearly shows the benefit of combining both
unsupervised and supervised learning in an edge–cloud setting.

Figure 13. The anomaly score as predicted by the local model (blue) and the cloud model (red) for a
single example run.

5. Conclusions and Future Work

In this work, we introduced a novel hybrid edge–cloud system that is able to learn
to detect failures on the fly. No failure data are needed to initialize the model, only data
collected during the healthy state. These data are used to train a small autoencoder model in
an unsupervised way. The autoencoder can be used to detect anomalies on its own but we
also use it to compress the sensor data into a high-level feature representation. This feature
representation is much smaller than the raw sensor data and can easily be transferred to
the cloud. In the cloud, we collect these data from multiple machines and use it to train a
supervised model on the fly. Over time, as more failures have been observed, this cloud
model becomes more accurate and can reduce the false positive rate of the edge models
or can detect failures earlier. We experimentally validated our approach on data collected
from seven identical drive train sub-systems, representing a fleet of machines and show
that our hybrid model outperforms baselines techniques and neural networks trained in a
supervised and unsupervised manner while having only a very small communication cost.

In future work, we will investigate different strategies of selecting the data that are
transferred to the cloud. Here, we selected data points at random but other strategies such as
only transmitting those data points for which the local edge model has a high reconstruction
error might reduce the communication overhead even further. We will also investigate
what is needed to support different operational conditions such as different speeds of the
machine, different loads, or different types of bearings. Our approach could be seen as
a special case of federated learning where a global model is trained using information
from a large number of local models. Our approach, however, exchanges compressed data
representations instead of parameter updates. Federated learning provides an alternative
that is more privacy friendly, which is especially important when dealing with sensitive
user data. It would be interesting to compare both approaches to investigate the trade-offs
in learning capacity and data privacy guarantees.
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AUC area under the (ROC) curve
ROC receiver operating characteristic
LSTM long short-term memory
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TP true positive
TN true negative
TPR true positive rate
TNR true negative rate
ReLU rectified linear unit
RMS root mean square
SVM support vector machine
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