Browsing by author "Van Steenkiste, Tom"
Now showing items 1-20 of 21
-
A Bayesian optimisation procedure for estimating optimal trajectories in electromagnetic compliance testing
Delanghe, Remi; Van Steenkiste, Tom; Couckuyt, Ivo; Deschrijver, Dirk; Dhaene, Tom (2020) -
A study of early sepsis detection models based on multivariate medical time series
Maes, Aren; Van Steenkiste, Tom; Dhaene, Tom; Deschrijver, Dirk (2019) -
Accurate prediction of blood culture outcome in the intensive care unit using long short-term memory neural networks
Van Steenkiste, Tom; Ruyssinck, Joeri; De Baets, Leen; Decruyenaere, J.; De Turck, Filip; Ongenae, Femke; Dhaene, Tom (2019-06) -
ALBATROS: adaptive line-based sampling trajectories for sequential measurements
Van Steenkiste, Tom; van der Herten, Joachim; Deschrijver, Dirk; Dhaene, Tom (2019-04) -
Automated assessment of bone age using deep learning and Gaussian process regression
Van Steenkiste, Tom; Ruyssinck, Joeri; Janssens, Olivier; Vandersmissen, Baptist; Vandecasteele, Florian; Devolder, Pieter; Achten, Eric; Van Hoecke, Sofie; Deschrijver, Dirk; Dhaene, Tom (2018) -
Automated sleep apnea detection in raw respiratory signals using long short-term memory neural networks
Van Steenkiste, Tom; Groenendaal, Willemijn; Deschrijver, Dirk; Dhaene, Tom (2019-11) -
Bayesian optimization of MRI k-Space trajectories
Van Steenkiste, Tom; Aelterman, Jan; Luong, Hiep; Deschrijver, Dirk; Dhaene, Tom (2019) -
Continuous exploitative measurement trajectories using Bayesian optimisation
Delanghe, Remi; Van Steenkiste, Tom; Deschrijver, Dirk; Dhaene, Tom (2019) -
Data-efficient sensitivity analysis with surrogate modeling
Van Steenkiste, Tom; van der Herten, Joachim; Couckuyt, Ivo; Dhaene, Tom (2019) -
Disentangled variational auto-encoders for explaining ECG beat embeddings
Van Steenkiste, Tom; Deschrijver, Dirk; Dhaene, Tom (2019) -
Interpretable ECG beat embedding using disentangled variational auto-encoders
Van Steenkiste, Tom; Deschrijver, Dirk; Dhaene, Tom (2019) -
Interpretable epilepsy detection in routine, interictal EEG data using deep learning
Uyttenhove, Thomas; Maes, Aren; Van Steenkiste, Tom; Deschrijver, Dirk; Dhaene, Tom (2020-12) -
Learning to forget: Design of experiments for line-based Bayesian optimization in dynamic environments
Jocqué, Jens; Van Steenkiste, Tom; Stroobant, Pieter; Deschrijver, Dirk; Dhaene, Tom (2019) -
Machinaal leren voor analyse van tijdsreeksdata in de gezondheidszorg
Van Steenkiste, Tom (2020-06) -
Portable detection of apnea and hypopnea events using bio-impedance of the chest and deep learning
Van Steenkiste, Tom; Groenendaal, Willemijn; Dreesen, P.; Lee, Seulki; Klerkx, S.; de Francisco, R.; Deschrijver, Dirk; Dhaene, Tom (2020-09) -
SEGOLS: A line-based sequential sampling strategy for efficient design space exploration and optimization
Delanghe, Remi; Van Steenkiste, Tom; Deschrijver, Dirk; Dhaene, Tom (2019) -
Sensor fusion using backward shortcut connections for sleep apnea detection in multi-modal data
Van Steenkiste, Tom; Deschrijver, Dirk; Dhaene, Tom (2020-12) -
Sequential sensitivity analysis of expensive black-box simulators with metamodelling
Van Steenkiste, Tom; van der Herten, Joachim; Couckuyt, Ivo; Dhaene, Tom (2018) -
Surrogate modelling with sequential design for expensive simulation applications
van der Herten, Joachim; Van Steenkiste, Tom; Couckuyt, Ivo; Dhaene, Tom (2017) -
Systematic comparison of respiratory signals for the automated detection of sleep apnea
Van Steenkiste, Tom; Groenendaal, Willemijn; Ruyssinck, Joeri; Dreesen, Pauline; Klerkx, S.; Smeets, C.; De Francisco Martin, Ruben; Deschrijver, Dirk; Dhaene, Tom (2018)