Chained anomaly detection models for federated learning: An intrusion detection case study
dc.contributor.author | Preuveneers, Davy | |
dc.contributor.author | Rimmer, Vera | |
dc.contributor.author | Tsingenopoulos, ilias | |
dc.contributor.author | Spooren, Jan | |
dc.contributor.author | Joosen, Wouter | |
dc.contributor.author | Ilie-Zudor, Elisabeth | |
dc.date.accessioned | 2021-10-27T16:23:08Z | |
dc.date.available | 2021-10-27T16:23:08Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 2076-3417 | |
dc.identifier.uri | https://imec-publications.be/handle/20.500.12860/33827 | |
dc.source | IIOimport | |
dc.title | Chained anomaly detection models for federated learning: An intrusion detection case study | |
dc.type | Journal article | |
dc.contributor.imecauthor | Joosen, Wouter | |
dc.date.embargo | 9999-12-31 | |
dc.source.peerreview | yes | |
dc.source.beginpage | 1 | |
dc.source.endpage | 21 | |
dc.source.journal | Applied Sciences | |
dc.source.issue | 12 | |
dc.source.volume | 8 | |
dc.identifier.url | https://doi.org/10.3390/app8122663 | |
imec.availability | Published - open access |