Show simple item record

dc.contributor.authorRommers, N.
dc.contributor.authorRössler, R.
dc.contributor.authorVerhaegen, E.
dc.contributor.authorVandecasteele, Florian
dc.contributor.authorVerstockt, Steven
dc.contributor.authorVaeyens, R.
dc.contributor.authorLenoir, M.
dc.contributor.authorD'Hondt, E.
dc.contributor.authorWitvrouw, E.
dc.date.accessioned2021-10-29T03:13:51Z
dc.date.available2021-10-29T03:13:51Z
dc.date.issued2020
dc.identifier.issn0195-9131
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/35852
dc.sourceIIOimport
dc.titleA machine learning approach to assess injury risk in elite youth football players
dc.typeJournal article
dc.contributor.imecauthorVerstockt, Steven
dc.contributor.orcidimecVerstockt, Steven::0000-0003-1094-2184
dc.date.embargo9999-12-31
dc.identifier.doi10.1249/MSS.0000000000002305
dc.source.peerreviewyes
dc.source.beginpage1745
dc.source.endpage1751
dc.source.journalMedicine & Science in Sports & Exercise
dc.source.issue8
dc.source.volume52
imec.availabilityPublished - open access


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record