Show simple item record

dc.contributor.authorGonzalez, Claudia Carballo
dc.contributor.authorPupo, Ernesto Fontes
dc.contributor.authorRuisanchez, Dariel Pereira
dc.contributor.authorMuroni, Maurizio
dc.contributor.authorPlets, David
dc.date.accessioned2022-03-11T11:30:06Z
dc.date.available2021-12-29T02:06:42Z
dc.date.available2022-03-11T11:30:06Z
dc.date.issued2022
dc.identifier.issn0018-9316
dc.identifier.otherWOS:000732233400001
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/38684.2
dc.sourceWOS
dc.titleFrom MFN to SFN: Performance Prediction Through Machine Learning
dc.typeJournal article
dc.contributor.imecauthorPlets, David
dc.contributor.orcidimecPlets, David::0000-0002-8879-5076
dc.date.embargo2022-03-31
dc.identifier.doi10.1109/TBC.2021.3132804
dc.source.numberofpages11
dc.source.peerreviewyes
dc.source.beginpage180
dc.source.endpage190
dc.source.journalIEEE TRANSACTIONS ON BROADCASTING
dc.source.issue1
dc.source.volume68
imec.availabilityPublished - open access
dc.description.wosFundingTextThis work was supported in part by the Department of Electronic Engineering (DIEE/UdR CNIT), University of Cagliari, Cagliari, Italy; in part by the LACETEL, Research and Development Telecommunication Institute, Havana, Cuba; in part by the Department of Information Technology, Ghent University, Belgium; and in part by the Department of Computer Engineering and CITIC Research Center, A Coruna, Spain.


Files in this item

No Thumbnail [100%x80]
No Thumbnail [100%x80]

This item appears in the following collection(s)

Show simple item record

VersionItemDateSummary

*Selected version