dc.contributor.author | Le Jeune, Laurens | |
dc.contributor.author | Goedeme, Toon | |
dc.contributor.author | Mentens, Nele | |
dc.date.accessioned | 2022-02-24T09:36:46Z | |
dc.date.available | 2022-02-24T09:36:46Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 2169-3536 | |
dc.identifier.other | WOS:000645843400001 | |
dc.identifier.uri | https://imec-publications.be/handle/20.500.12860/39093 | |
dc.source | WOS | |
dc.title | Machine Learning for Misuse-Based Network Intrusion Detection: Overview, Unified Evaluation and Feature Choice Comparison Framework | |
dc.type | Journal article | |
dc.contributor.imecauthor | Mentens, Nele | |
dc.contributor.orcidext | Goedeme, Toon::0000-0002-7477-8961 | |
dc.contributor.orcidimec | Le Jeune, Laurens::0000-0003-0744-4897 | |
dc.contributor.orcidimec | Mentens, Nele::0000-0001-8753-7895 | |
dc.identifier.doi | 10.1109/ACCESS.2021.3075066 | |
dc.source.numberofpages | 21 | |
dc.source.peerreview | yes | |
dc.source.beginpage | 63995 | |
dc.source.endpage | 64015 | |
dc.source.journal | IEEE ACCESS | |
dc.source.issue | na | |
dc.source.volume | 9 | |
imec.availability | Published - open access | |