Notice

This item has not yet been validated by imec staff.

Notice

This is not the latest version of this item. The latest version can be found at: https://imec-publications.be/handle/20.500.12860/40413.2

Show simple item record

dc.contributor.authorJohnston, Noemie
dc.contributor.authorDe Rycke, Jeffrey
dc.contributor.authorLievens, Yolande
dc.contributor.authorvan Eijkeren, Marc
dc.contributor.authorAelterman, Jan
dc.contributor.authorVandersmissen, Eva
dc.contributor.authorPonte, Stephan
dc.contributor.authorVanderstraeten, Barbara
dc.date.accessioned2022-09-09T02:42:15Z
dc.date.available2022-09-09T02:42:15Z
dc.date.issued2022-JUL
dc.identifier.otherWOS:000848101600001
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/40413
dc.sourceWOS
dc.titleDose-volume-based evaluation of convolutional neural network-based auto-segmentation of thoracic organs at risk
dc.typeJournal article
dc.identifier.doi10.1016/j.phro.2022.07.004
dc.source.numberofpages9
dc.source.peerreviewyes
dc.source.beginpage109
dc.source.endpage117
dc.source.journalPHYSICS & IMAGING IN RADIATION ONCOLOGY
dc.identifier.pmidMEDLINE:35936797
dc.source.volume23
imec.availabilityUnder review


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following collection(s)

Show simple item record

VersionItemDateSummary

*Selected version