Notice

This item has not yet been validated by imec staff.

Notice

This is not the latest version of this item. The latest version can be found at: https://imec-publications.be/handle/20.500.12860/38350.2

Show simple item record

dc.contributor.authorDe Ridder, Simon
dc.contributor.authorSpina, Domenico
dc.contributor.authorToscani, Nicola
dc.contributor.authorGrassi, Flavia
dc.contributor.authorVande Ginste, Dries
dc.contributor.authorDhaene, Tom
dc.date.accessioned2021-11-02T16:07:13Z
dc.date.available2021-11-02T16:07:13Z
dc.date.issued2020-DEC
dc.identifier.issn0018-9375
dc.identifier.otherWOS:000599506500023
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/38350
dc.sourceWOS
dc.titleMachine-Learning-Based Hybrid Random-Fuzzy Uncertainty Quantification for EMC and SI Assessment
dc.typeJournal article
dc.contributor.imecauthorDe Ridder, Simon
dc.contributor.imecauthorSpina, Domenico
dc.contributor.imecauthorVande Ginste, Dries
dc.contributor.imecauthorDhaene, Tom
dc.contributor.orcidextToscani, Nicola::0000-0002-2671-6870
dc.contributor.orcidextGrassi, Flavia::0000-0001-6844-8766
dc.contributor.orcidimecVande Ginste, Dries::0000-0002-0178-288X
dc.contributor.orcidimecDhaene, Tom::0000-0003-2899-4636
dc.contributor.orcidimecSpina, Domenico::0000-0003-2379-5259
dc.identifier.doi10.1109/TEMC.2020.2980790
dc.source.numberofpages9
dc.source.peerreviewyes
dc.source.beginpage2538
dc.source.endpage2546
dc.source.journalIEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY
dc.source.issue6
dc.source.volume62
imec.availabilityUnder review


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

VersionItemDateSummary

*Selected version