Show simple item record

dc.contributor.authorGoez, David
dc.contributor.authorAycan Beyazit, Esra
dc.contributor.authorSlamnik-Krijestorac, Nina
dc.contributor.authorMarquez-Barja, Johann
dc.contributor.authorGaviria, Natalia
dc.contributor.authorLatre, Steven
dc.contributor.authorCamelo Botero, Miguel
dc.date.accessioned2025-06-30T12:29:23Z
dc.date.available2025-06-12T04:41:14Z
dc.date.available2025-06-30T12:29:23Z
dc.date.issued2024
dc.identifier.isbn979-8-3315-2112-7
dc.identifier.issn2330-989X
dc.identifier.otherWOS:001456550000033
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/45792.2
dc.sourceWOS
dc.titleComputational Efficiency of Deep Learning-Based Super Resolution Methods for 5G-NR Channel Estimation
dc.typeProceedings paper
dc.contributor.imecauthorGoez, David
dc.contributor.imecauthorSlamnik-Krijestorac, Nina
dc.contributor.imecauthorLatre, Steven
dc.contributor.imecauthorAycan Beyazit, Esra
dc.contributor.imecauthorMarquez-Barja, Johann
dc.contributor.imecauthorCamelo Botero, Miguel
dc.contributor.orcidimecGoez, David::0000-0001-7658-0994
dc.contributor.orcidimecSlamnik-Krijestorac, Nina::0000-0003-1719-772X
dc.contributor.orcidimecLatre, Steven::0000-0003-0351-1714
dc.contributor.orcidimecAycan Beyazit, Esra::0000-0003-1035-6695
dc.contributor.orcidimecMarquez-Barja, Johann::0000-0001-5660-3597
dc.contributor.orcidimecCamelo Botero, Miguel::0000-0001-8152-7143
dc.identifier.doi10.1109/LATINCOM62985.2024.10770678
dc.identifier.eisbn979-8-3315-2111-0
dc.source.numberofpages7
dc.source.peerreviewyes
dc.source.conference16th IEEE Latin-American Conference on Communications
dc.source.conferencedateNOV 06-08, 2024
dc.source.conferencelocationMedellin
dc.source.journalN/A
imec.availabilityPublished - imec
dc.description.wosFundingTextThe dataset generation and model performance evaluation and analysis have been funded by the 6G-TWIN project, which has received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the EU's Horizon Europe research and innovation program under Grant Agreement No 101136314. Similarly, the design and development of the models presented in this paper has been performed within the European project 6G-XCEL, which has received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union's Horizon Europe research and innovation program under Grant Agreement No 101139194. However, views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or Smart Networks and Services Joint Undertaking. Neither the EU nor the granting authority can be held responsible for them.


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following collection(s)

Show simple item record

VersionItemDateSummary

*Selected version