dc.contributor.author | Goez, David | |
dc.contributor.author | Aycan Beyazit, Esra | |
dc.contributor.author | Slamnik-Krijestorac, Nina | |
dc.contributor.author | Marquez-Barja, Johann | |
dc.contributor.author | Gaviria, Natalia | |
dc.contributor.author | Latre, Steven | |
dc.contributor.author | Camelo Botero, Miguel | |
dc.date.accessioned | 2025-06-30T12:29:23Z | |
dc.date.available | 2025-06-12T04:41:14Z | |
dc.date.available | 2025-06-30T12:29:23Z | |
dc.date.issued | 2024 | |
dc.identifier.isbn | 979-8-3315-2112-7 | |
dc.identifier.issn | 2330-989X | |
dc.identifier.other | WOS:001456550000033 | |
dc.identifier.uri | https://imec-publications.be/handle/20.500.12860/45792.2 | |
dc.source | WOS | |
dc.title | Computational Efficiency of Deep Learning-Based Super Resolution Methods for 5G-NR Channel Estimation | |
dc.type | Proceedings paper | |
dc.contributor.imecauthor | Goez, David | |
dc.contributor.imecauthor | Slamnik-Krijestorac, Nina | |
dc.contributor.imecauthor | Latre, Steven | |
dc.contributor.imecauthor | Aycan Beyazit, Esra | |
dc.contributor.imecauthor | Marquez-Barja, Johann | |
dc.contributor.imecauthor | Camelo Botero, Miguel | |
dc.contributor.orcidimec | Goez, David::0000-0001-7658-0994 | |
dc.contributor.orcidimec | Slamnik-Krijestorac, Nina::0000-0003-1719-772X | |
dc.contributor.orcidimec | Latre, Steven::0000-0003-0351-1714 | |
dc.contributor.orcidimec | Aycan Beyazit, Esra::0000-0003-1035-6695 | |
dc.contributor.orcidimec | Marquez-Barja, Johann::0000-0001-5660-3597 | |
dc.contributor.orcidimec | Camelo Botero, Miguel::0000-0001-8152-7143 | |
dc.identifier.doi | 10.1109/LATINCOM62985.2024.10770678 | |
dc.identifier.eisbn | 979-8-3315-2111-0 | |
dc.source.numberofpages | 7 | |
dc.source.peerreview | yes | |
dc.source.conference | 16th IEEE Latin-American Conference on Communications | |
dc.source.conferencedate | NOV 06-08, 2024 | |
dc.source.conferencelocation | Medellin | |
dc.source.journal | N/A | |
imec.availability | Published - imec | |
dc.description.wosFundingText | The dataset generation and model performance evaluation and analysis have been funded by the 6G-TWIN project, which has received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the EU's Horizon Europe research and innovation program under Grant Agreement No 101136314. Similarly, the design and development of the models presented in this paper has been performed within the European project 6G-XCEL, which has received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union's Horizon Europe research and innovation program under Grant Agreement No 101139194. However, views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or Smart Networks and Services Joint Undertaking. Neither the EU nor the granting authority can be held responsible for them. | |