Publication:

Improved Deep Learning Based ECG Classification through Automated Feature Selection and Weighted Loss Function

 
dc.contributor.authorDe Waele, Timo
dc.contributor.authorPeralta, Daniel
dc.contributor.authorDe Poorter, Eli
dc.contributor.authorShahid, Adnan
dc.contributor.imecauthorDe Waele, Timo
dc.contributor.imecauthorPeralta, Daniel
dc.contributor.imecauthorDe Poorter, Eli
dc.contributor.imecauthorShahid, Adnan
dc.contributor.orcidimecDe Waele, Timo::0000-0001-6518-9834
dc.contributor.orcidimecPeralta, Daniel::0000-0002-7544-8411
dc.contributor.orcidimecDe Poorter, Eli::0000-0002-0214-5751
dc.contributor.orcidimecShahid, Adnan::0000-0003-1943-6261
dc.date.accessioned2025-08-18T11:04:24Z
dc.date.available2025-03-06T20:45:30Z
dc.date.available2025-03-07T08:51:03Z
dc.date.available2025-08-18T11:04:24Z
dc.date.embargo2024-09-09
dc.date.issued2024
dc.description.wosFundingTextThis work was supported by the Fund for Scientific Research Flanders, Belgium, FWO-Vlaanderen, FWO-SB, under Grant 1S33924N.This project was supported by the Erasmus+ program of the European Commission through the 'Capacity Building for Digital Health Monitoring and Care Systems in Asia (DigiHealth-Asia)' under grant agreement number 619193-EPP-1-2020-BE-EPPKA2-CBHE-JP.
dc.identifier.doi10.1109/IJCNN60899.2024.10651531
dc.identifier.eisbn979-8-3503-5931-2
dc.identifier.isbn979-8-3503-5932-9
dc.identifier.issn2161-4393
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/45321
dc.publisherIEEE
dc.source.conferenceInternational Joint Conference on Neural Networks (IJCNN)
dc.source.conferencedateJUN 30-JUL 05, 2024
dc.source.conferencelocationYokohama
dc.source.journalN/A
dc.source.numberofpages8
dc.subject.keywordsHEARTBEAT CLASSIFICATION
dc.title

Improved Deep Learning Based ECG Classification through Automated Feature Selection and Weighted Loss Function

dc.typeProceedings paper
dspace.entity.typePublication
Files

Original bundle

Name:
8644.pdf
Size:
1.16 MB
Format:
Unknown data format
Description:
Published version
Name:
8644_acc.pdf
Size:
495.02 KB
Format:
Unknown data format
Description:
Accepted version
Publication available in collections: