Publication:

Generalized Nonconvex Low-Rank Tensor Representation for Hyperspectral Anomaly Detection

 
dc.contributor.authorQin, Hao
dc.contributor.authorShen, Qiangqiang
dc.contributor.authorZeng, Haijin
dc.contributor.authorChen, Yongyong
dc.contributor.authorLu, Guangming
dc.contributor.imecauthorZeng, Haijin
dc.contributor.orcidimecZeng, Haijin::0000-0003-0398-3316
dc.date.accessioned2024-04-22T12:23:00Z
dc.date.available2023-11-13T17:40:25Z
dc.date.available2024-04-22T12:23:00Z
dc.date.issued2023
dc.description.wosFundingTextThis work was supported in part by the National Natural Science Foundation of China under Grant 62106063, in part by the Guangdong Natural Science Foundation under Grant 2022A1515010819, in part by the Shenzhen Science and Technology Program under Grant RCBS20210609103708013, and in part by the Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies under Grant 2022B1212010005.
dc.identifier.doi10.1109/TGRS.2023.3321789
dc.identifier.issn0196-2892
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/43145
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.source.beginpageArt. 5526612
dc.source.endpageN/A
dc.source.issueN/A
dc.source.journalIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
dc.source.numberofpages12
dc.source.volume61
dc.subject.keywordsVARIABLE SELECTION
dc.subject.keywordsRX-ALGORITHM
dc.subject.keywordsREGRESSION
dc.subject.keywordsAPPROXIMATION
dc.subject.keywordsDECOMPOSITION
dc.subject.keywordsSURVEILLANCE
dc.subject.keywordsRECOVERY
dc.subject.keywordsNETWORK
dc.subject.keywordsGRAPH
dc.title

Generalized Nonconvex Low-Rank Tensor Representation for Hyperspectral Anomaly Detection

dc.typeJournal article
dspace.entity.typePublication
Files
Publication available in collections: