Publication:

Proposing a High-Precision Petroleum Pipeline Monitoring System for Identifying the Type and Amount of Oil Products Using Extraction of Frequency Characteristics and a MLP Neural Network

Date

 
dc.contributor.authorMayet, Abdulilah Mohammad
dc.contributor.authorNurgalieva, Karina Shamilyevna
dc.contributor.authorAl-Qahtani, Ali Awadh
dc.contributor.authorNarozhnyy, Igor M.
dc.contributor.authorAlhashim, Hala H.
dc.contributor.authorNazemi, Ehsan
dc.contributor.authorIndrupskiy, Ilya M.
dc.contributor.imecauthorNazemi, Ehsan
dc.date.accessioned2022-12-15T13:00:11Z
dc.date.available2022-09-05T02:37:55Z
dc.date.available2022-12-15T13:00:11Z
dc.date.issued2022
dc.description.wosFundingTextThis work was supported by the Deanship of Scientific Research at King Khalid University (Grant numbers RGP.1/243/42). This article was written with the support of grant No. MK-4464.2022.1.5. This paper has been supported by the RUDN University Strategic Academic Leadership Program.
dc.identifier.doi10.3390/math10162916
dc.identifier.issn2227-7390
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/40349
dc.publisherMDPI
dc.source.beginpage2916
dc.source.endpagena
dc.source.issue16
dc.source.journalMATHEMATICS
dc.source.numberofpages20
dc.source.volume10
dc.subject.keywordsGAMMA-RAY ATTENUATION
dc.subject.keywordsDESIGN
dc.title

Proposing a High-Precision Petroleum Pipeline Monitoring System for Identifying the Type and Amount of Oil Products Using Extraction of Frequency Characteristics and a MLP Neural Network

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
mathematics-10-02916-v2.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format
Description:
Published version
Publication available in collections: