Publication:

dtiRIM: A generalisable deep learning method for diffusion tensor imaging

 
dc.contributor.authorSabidussi, E. R.
dc.contributor.authorKlein, S.
dc.contributor.authorJeurissen, Ben
dc.contributor.authorPoot, D. H. J.
dc.contributor.imecauthorJeurissen, Ben
dc.contributor.orcidimecJeurissen, Ben::0000-0002-3488-9819
dc.date.accessioned2023-07-18T13:54:27Z
dc.date.available2023-03-06T03:31:19Z
dc.date.available2023-07-18T13:54:27Z
dc.date.embargo2023-04-01
dc.date.issued2023
dc.description.wosFundingTextWe would like to thank Mr. Riwaj Byanju for providing the coil sensitivity maps, and Dr. Bo Li, Dr. Esther Bron, and the Rotterdam Study team for providing access to the in vivo testing data. This work is part of the project B-Q MINDED which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 764513. BJ is supported by FWO Vlaanderen, grant number G090020N and by the Belgian Science Policy Prodex (Grant ISLRA 2009-1062). BJ is a member of the..NEURO Research center of Excellence of the University of Antwerp.
dc.identifier.doi10.1016/j.neuroimage.2023.119900
dc.identifier.issn1053-8119
dc.identifier.pmidMEDLINE:36702213
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/41239
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.source.beginpageArt. 119900
dc.source.endpagena
dc.source.issueApril
dc.source.journalNEUROIMAGE
dc.source.numberofpages11
dc.source.volume269
dc.subject.keywordsMRI
dc.subject.keywordsNETWORK
dc.title

dtiRIM: A generalisable deep learning method for diffusion tensor imaging

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
dtiRIM__A_generalisable_deep_learning_method_for_diffusion_tensor_imaging
Size:
5.11 MB
Format:
Adobe Portable Document Format
Description:
Published version
Publication available in collections: