Publication:

HapkeCNN: Blind Nonlinear Unmixing for Intimate Mixtures Using Hapke Model and Convolutional Neural Network

 
dc.contributor.authorRasti, Behnood
dc.contributor.authorKoirala, Bikram
dc.contributor.authorScheunders, Paul
dc.contributor.imecauthorKoirala, Bikram
dc.contributor.imecauthorScheunders, Paul
dc.contributor.orcidimecKoirala, Bikram::0000-0002-8887-8197
dc.contributor.orcidimecScheunders, Paul::0000-0003-2447-4772
dc.date.accessioned2023-01-03T10:40:55Z
dc.date.available2022-10-06T02:49:34Z
dc.date.available2023-01-03T10:40:55Z
dc.date.embargo2022-08-22
dc.date.issued2022
dc.description.wosFundingTextThis work was supported in part by the Alexander-vonHumboldt-Stiftung/Foundation. The work of Bikram Koirala was supported by the Research Foundation-Flanders under Project G031921N.
dc.identifier.doi10.1109/TGRS.2022.3202490
dc.identifier.issn0196-2892
dc.identifier.urihttps://imec-publications.be/handle/20.500.12860/40539
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.source.beginpage5536315
dc.source.endpagena
dc.source.issuena
dc.source.journalIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
dc.source.numberofpages15
dc.source.volume60
dc.subject.keywordsIMAGE
dc.title

HapkeCNN: Blind Nonlinear Unmixing for Intimate Mixtures Using Hapke Model and Convolutional Neural Network

dc.typeJournal article
dspace.entity.typePublication
Files

Original bundle

Name:
hapke_cnn.pdf
Size:
5.54 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
Publication available in collections: