Publication:
Control Policy Correction Framework for Reinforcement Learning-based Energy Arbitrage Strategies
| cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
| cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
| cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
| cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
| cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
| cris.virtual.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
| cris.virtual.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
| cris.virtual.orcid | 0000-0002-1451-397X | |
| cris.virtual.orcid | 0000-0003-2707-4176 | |
| cris.virtual.orcid | 0000-0001-8072-4532 | |
| cris.virtualsource.department | e4b9b9c1-c6da-4532-9444-dfb2576bb7e9 | |
| cris.virtualsource.department | b1ed2720-3619-440a-8c4f-be92499407bc | |
| cris.virtualsource.department | f41e4e99-2374-44c1-9e91-165b32798103 | |
| cris.virtualsource.department | 620b024a-fd0a-4fbf-9967-6a13307ced87 | |
| cris.virtualsource.department | 85b4733f-a9ef-4085-a12d-030ac887f5ff | |
| cris.virtualsource.orcid | e4b9b9c1-c6da-4532-9444-dfb2576bb7e9 | |
| cris.virtualsource.orcid | b1ed2720-3619-440a-8c4f-be92499407bc | |
| cris.virtualsource.orcid | f41e4e99-2374-44c1-9e91-165b32798103 | |
| cris.virtualsource.orcid | 620b024a-fd0a-4fbf-9967-6a13307ced87 | |
| cris.virtualsource.orcid | 85b4733f-a9ef-4085-a12d-030ac887f5ff | |
| dc.contributor.author | Karimi Madahi, Seyed Soroush | |
| dc.contributor.author | Gokhale, Gargya | |
| dc.contributor.author | Verwee, Marie-Sophie | |
| dc.contributor.author | Claessens, Bert | |
| dc.contributor.author | Develder, Chris | |
| dc.date.accessioned | 2025-12-16T09:34:22Z | |
| dc.date.available | 2025-12-16T09:34:22Z | |
| dc.date.createdwos | 2025-09-25 | |
| dc.date.issued | 2024-01-01 | |
| dc.description.wosFundingText | We would like to thank AlphaESS and iinno-benelux companies for providing the battery and their technical support. This research has received funding from the Energy Transition Fund (FOD Economy) via the FlexMyHeat project. Part of the research leading to these results has received funding from Agentschap Innoveren & Ondernemen (VLAIO) as part of the Strategic Basic Research (SBO) program under the InduFlexControl-2 project. | |
| dc.identifier.doi | 10.1145/3632775.3661948 | |
| dc.identifier.uri | https://imec-publications.be/handle/20.500.12860/58582 | |
| dc.language.iso | eng | |
| dc.provenance.editstepuser | greet.vanhoof@imec.be | |
| dc.publisher | ASSOC COMPUTING MACHINERY | |
| dc.source.beginpage | 123 | |
| dc.source.conference | 15TH ACM INTERNATIONAL CONFERENCE ON FUTURE AND SUSTAINABLE ENERGY SYSTEMS, E-ENERGY 2024 | |
| dc.source.conferencedate | 2024-06-04 | |
| dc.source.conferencelocation | Singapore | |
| dc.source.endpage | 133 | |
| dc.source.journal | PROCEEDINGS OF THE 15TH ACM INTERNATIONAL CONFERENCE ON FUTURE AND SUSTAINABLE ENERGY SYSTEMS, E-ENERGY 2024 | |
| dc.source.numberofpages | 11 | |
| dc.title | Control Policy Correction Framework for Reinforcement Learning-based Energy Arbitrage Strategies | |
| dc.type | Proceedings paper | |
| dspace.entity.type | Publication | |
| imec.internal.crawledAt | 2025-10-22 | |
| imec.internal.source | crawler | |
| Files | ||
| Publication available in collections: |